pH-Sensitive Fluorescent Marker Based on Rhodamine 6G Conjugate with Its FRET/PeT Pair in “Smart” Polymeric Micelles for Selective Imaging of Cancer Cells
Abstract
:1. Introduction
2. Methods
2.1. Reagents
2.2. Synthesis of pH-Sensitive Fluorophore
2.3. Synthesis of Chit5-LA Amphiphilic Conjugate and Polymeric Micelles Loaded with Fluorophore Preparation
2.4. Characterization of Synthesized Substances and Polymer Micelles with Loaded Fluorophores
2.4.1. Fourier Infrared Spectroscopy
2.4.2. NMR Spectroscopy
2.4.3. Fluorescence Spectroscopy
2.4.4. Circular Dichroism Spectroscopy
2.4.5. Atomic Force Microscopy
2.4.6. Dynamic Light Scattering
2.5. HEK293T, A875, K562, Macrophage Cells Cultivation
2.6. Confocal Laser Scanning Microscopy (CLSM)
3. Results and Discussion
3.1. Synthesis and Characterization of the pH-Sensitive Fluorophore NBD-spd-R6G
3.1.1. R6G-spd-NBD Synthesis and FTIR Spectroscopy Characterization
3.1.2. NMR Spectroscopy for R6G-spd-NBD Characterization
3.1.3. “Aikido Micelles” with pH Sensor: Synthesis, Properties, and Characterization
3.2. pH and Thermal Dependence of NBD-spd-R6G Fluorescence in Comparison with Free NBD and R6G in Aqueous Solution and in Micellar Systems
3.3. Confocal Laser Scanning Microscopy Imaging of the Effect of pH Labeling on Cancerous And Normal Cells
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Zhong, H.; Liu, C.; Ge, W.; Sun, R.; Huang, F.; Wang, X. Self-Assembled Conjugated Polymer/Chitosan-Graft-Oleic Acid Micelles for Fast Visible Detection of Aliphatic Biogenic Amines by ‘Turn-On’ FRET. ACS Appl. Mater. Interfaces 2017, 9, 22875–22884. [Google Scholar] [CrossRef] [PubMed]
- Uchiyama, S.; Makino, Y. Digital Fluorescent PH Sensors. Chem. Commun. 2009, 7345, 2646–2648. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.J.; Chen, L.N.; Zhang, X.; Liu, J.T.; Chen, M.Y.; Wu, Q.R.; Miao, J.Y.; Zhao, B.X. A NBD-Based Simple but Effective Fluorescent PH Probe for Imaging of Lysosomes in Living Cells. Anal. Chim. Acta 2016, 920, 86–93. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Li, C. PH Responsive Fluorescence Nanoprobe Imaging of Tumors by Sensing the Acidic Microenvironment. J. Mater. Chem. 2011, 21, 15862–15871. [Google Scholar] [CrossRef]
- Negut, I.; Bita, B. Polymeric Micellar Systems—A Special Emphasis on “Smart” Drug Delivery. Pharmaceutics 2023, 15, 976. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Xia, J.; Wei, X.; Yan, H.; Si, Z.; Ju, S. pH-Activated near-Infrared Fluorescence Nanoprobe Imaging Tumors by Sensing the Acidic Microenvironment. Adv. Funct. Mater. 2010, 20, 2222–2230. [Google Scholar] [CrossRef]
- Kennedy, L.; Sandhu, J.K.; Harper, M.E.; Cuperlovic-Culf, M. Role of Glutathione in Cancer: From Mechanisms to Therapies. Biomolecules 2020, 10, 1429. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.W.; Du, Y.Z.; Liu, N.; Liu, X.; Meng, T.T.; Cheng, B.L.; He, J.B.; You, J.; Yuan, H.; Hu, F.Q. Selective Redox-Responsive Drug Release in Tumor Cells Mediated by Chitosan Based Glycolipid-like Nanocarrier. J. Control. Release 2015, 206, 91–100. [Google Scholar] [CrossRef]
- Vaupel, P.; Kallinowski, F.; Okunieff, P. Blood Flow, Oxygen and Nutrient Supply, and Metabolic Microenvironment of Human Tumors: A Review. Cancer Res. 1989, 49, 6449–6465. [Google Scholar]
- Ganta, S.; Devalapally, H.; Shahiwala, A.; Amiji, M. A Review of Stimuli-Responsive Nanocarriers for Drug and Gene Delivery. J. Control. Release 2008, 126, 187–204. [Google Scholar] [CrossRef]
- Taha, E.A.; Salama, N.N.; Fattah, L.E.S.A. Spectrofluorimetric and Spectrophotometric Stability-Indicating Methods for Determination of Some Oxicams Using 7-Chloro-4-Nitrobenz-2-Oxa-1,3-Diazole (NBD-Cl). Chem. Pharm. Bull. 2006, 54, 653–658. [Google Scholar] [CrossRef] [PubMed]
- Kessner, S.; Krause, A.; Rothe, U.; Bendas, G. Investigation of the Cellular Uptake of E-Selectin-Targeted Immunoliposomes by Activated Human Endothelial Cells. Biochim. Biophys. Acta Biomembr. 2001, 1514, 177–190. [Google Scholar] [CrossRef] [PubMed]
- Annenkov, V.V.; Verkhozina, O.N.; Shishlyannikova, T.A.; Danilovtseva, E.N. Application of 4-Chloro-7-Nitrobenzo-2-Oxa-1,3-Diazole in Analysis: Fluorescent Dyes and Unexpected Reaction with Tertiary Amines. Anal. Biochem. 2015, 486, 5–13. [Google Scholar] [CrossRef] [PubMed]
- Danilovtseva, E.N.; Verkhozina, O.N.; Zelinskiy, S.N.; Ivanov, N.A.; Tsiganov, P.Y.; Basharina, T.N.; Annenkov, V.V. New Fluorescent Derivatives of Oligopropylamines. Arkivoc 2013, 2013, 266–281. [Google Scholar] [CrossRef]
- Wencel, D.; MacCraith, B.D.; McDonagh, C. High Performance Optical Ratiometric Sol-Gel-Based PH Sensor. Sens. Actuators B Chem. 2009, 139, 208–213. [Google Scholar] [CrossRef]
- Kermis, H.R.; Kostov, Y.; Rao, G. Rapid Method for the Preparation of a Robust Optical PH Sensor. Analyst 2003, 128, 1181–1186. [Google Scholar] [CrossRef] [PubMed]
- De Silva, A.P.; Gunaratne, H.Q.N.; Gunnlaugsson, T.; Huxley, A.J.M.; McCoy, C.P.; Rademacher, J.T.; Rice, T.E. Signaling Recognition Events with Fluorescent Sensors and Switches. Chem. Rev. 1997, 97, 1515–1566. [Google Scholar] [CrossRef] [PubMed]
- Dennis, A.M.; Rhee, W.J.; Sotto, D.; Dublin, S.N.; Bao, G. Quantum Dot-Fluorescent Protein Fret Probes for Sensing Intracellular PH. ACS Nano 2012, 6, 2917–2924. [Google Scholar] [CrossRef]
- Zhou, X.; Su, F.; Lu, H.; Senechal-Willis, P.; Tian, Y.; Johnson, R.H.; Meldrum, D.R. An FRET-Based Ratiometric Chemosensor for in Vitro Cellular Fluorescence Analyses of PH. Biomaterials 2012, 33, 171–180. [Google Scholar] [CrossRef]
- Bhardwaj, V.; Thangaraj, A.; Varddhan, S.; Ashok Kumar, S.K.; Crisponi, G.; Sahoo, S.K. An Aggregation-Induced Emission Active Vitamin B6cofactor Derivative: Application in PH Sensing and Detection of Latent Fingerprints. Photochem. Photobiol. Sci. 2020, 19, 1402–1409. [Google Scholar] [CrossRef]
- Berghmans, M.; Govaers, S.; Berghmans, H.; De Schryver, F.C. Study of Polymer Gelation by Fluorescence Spectroscopy. Polym. Eng. Sci. 1992, 32, 1466–1470. [Google Scholar] [CrossRef]
- Mohr, A.; Talbiersky, P.; Korth, H.G.; Sustmann, R.; Boese, R.; Bläser, D.; Rehage, H. A New Pyrene-Based Fluorescent Probe for the Determination of Critical Micelle Concentrations. J. Phys. Chem. B 2007, 111, 12985–12992. [Google Scholar] [CrossRef]
- Ollmann, M.; Galla, H.J.; Schwarzmann, G.; Sandhoff, K. Pyrene-Labeled Gangliosides: Micelle Formation in Aqueous Solution, Lateral Diffusion, and Thermotropic Behavior in Phosphatidylcholine Bilayers. Biochemistry 1987, 26, 5943–5952. [Google Scholar] [CrossRef] [PubMed]
- Zlotnikov, I.D.; Streltsov, D.A.; Belogurova, N.G.; Kudryashova, E.V. Chitosan or Cyclodextrin Grafted with Oleic Acid Self-Assemble into Stabilized Polymeric Micelles with Potential of Drug Carriers. Life 2023, 13, 446. [Google Scholar] [CrossRef] [PubMed]
- Ngan, V.T.T.; Chiou, P.Y.; Ilhami, F.B.; Bayle, E.A.; Shieh, Y.T.; Chuang, W.T.; Chen, J.K.; Lai, J.Y.; Cheng, C.C. A CO2-Responsive Imidazole-Functionalized Fluorescent Material Mediates Cancer Chemotherapy. Pharmaceutics 2023, 15, 354. [Google Scholar] [CrossRef] [PubMed]
- Zlotnikov, I.D.; Streltsov, D.A.; Ezhov, A.A.; Kudryashova, E.V. Smart PH- and Temperature-Sensitive Micelles Based on Chitosan Grafted with Fatty Acids to Increase the Efficiency and Selectivity of Doxorubicin and Its Adjuvant Regarding the Tumor Cells. Pharmaceutics 2023, 15, 1135. [Google Scholar] [CrossRef] [PubMed]
- Zlotnikov, I.D.; Ezhov, A.A.; Ferberg, A.S.; Krylov, S.S.; Semenova, M.N.; Semenov, V.V.; Kudryashova, E.V. Polymeric Micelles Formulation of Combretastatin Derivatives with Enhanced Solubility, Cytostatic Activity and Selectivity against Cancer Cells. Pharmaceutics 2023, 15, 1613. [Google Scholar] [CrossRef] [PubMed]
- Ghezzi, M.; Pescina, S.; Padula, C.; Santi, P.; Del Favero, E.; Cantù, L.; Nicoli, S. Polymeric Micelles in Drug Delivery: An Insight of the Techniques for Their Characterization and Assessment in Biorelevant Conditions. J. Control. Release 2021, 332, 312–336. [Google Scholar] [CrossRef]
- Xu, W.; Wang, H.; Dong, L.; Zhang, P.; Mu, Y.; Cui, X.; Zhou, J.; Huo, M.; Yin, T. Hyaluronic Acid-Decorated Redox-Sensitive Chitosan Micelles for Tumor-Specific Intracellular Delivery of Gambogic Acid. Int. J. Nanomed. 2019, 14, 4649–4666. [Google Scholar] [CrossRef]
- Gong, J.; Chen, M.; Zheng, Y.; Wang, S.; Wang, Y. Polymeric Micelles Drug Delivery System in Oncology. J. Control. Release 2012, 159, 312–323. [Google Scholar] [CrossRef]
- Mutlu-Agardan, N.B.; Sarisozen, C.; Torchilin, V.P. Cytotoxicity of Novel Redox Sensitive PEG2000-S-S-PTX Micelles against Drug-Resistant Ovarian and Breast Cancer Cells. Pharm. Res. 2020, 37, 65. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Qin, X.; Fan, D.; Feng, C.; Wang, Q.; Fang, J. Dual-Stimuli Responsive Polymeric Micelles for the Effective Treatment of Rheumatoid Arthritis. ACS Appl. Mater. Interfaces 2021, 13, 21076–21086. [Google Scholar] [CrossRef] [PubMed]
- Tsitsilianis, C. Responsive Reversible Hydrogels from Associative ‘Smart’ Macromolecules. Soft Matter 2010, 6, 2372–2388. [Google Scholar] [CrossRef]
- Zlotnikov, I.D.; Savchenko, I.V.; Kudryashova, E.V. Specific FRET Probes Sensitive to Chitosan-Based Polymeric Micelles Formation, Drug-Loading, and Fine Structural Features. Polymers 2024, 16, 739. [Google Scholar] [CrossRef] [PubMed]
- Bhat, P.A.; Chat, O.A.; Dar, A.A. Exploiting Co-Solubilization of Warfarin, Curcumin, and Rhodamine B for Modulation of Energy Transfer: A Micelle FRET On/Off Switch. ChemPhysChem 2016, 17, 2360–2372. [Google Scholar] [CrossRef] [PubMed]
- Lone, M.S.; Afzal, S.; Nazir, N.; Dutta, R.; Dar, A.A. Excimer Based FRET between Non-FRET Pair Flourophores Aided by the Aromatic Moiety of Anionic Surfactants: An Experimental Observation. J. Mol. Liq. 2019, 277, 84–92. [Google Scholar] [CrossRef]
- Zlotnikov, I.D.; Ezhov, A.A.; Dobryakova, N.V.; Kudryashova, E.V. Disulfide Cross-Linked Polymeric Redox-Responsive Nanocarrier Based on Heparin, Chitosan and Lipoic Acid Improved Drug Accumulation, Increased Cytotoxicity and Selectivity to Leukemia Cells by Tumor Targeting via “Aikido” Principle. Gels 2024, 10, 157. [Google Scholar] [CrossRef] [PubMed]
- Zlotnikov, I.D.; Vigovskiy, M.A.; Davydova, M.P.; Danilov, M.R.; Dyachkova, U.D.; Grigorieva, O.A.; Kudryashova, E.V. Mannosylated Systems for Targeted Delivery of Antibacterial Drugs to Activated Macrophages. Int. J. Mol. Sci. 2022, 23, 16144. [Google Scholar] [CrossRef] [PubMed]
- Kraithong, S.; Sangsuwan, R.; Worawannotai, N.; Sirirak, J.; Charoenpanich, A.; Thamyongkit, P.; Wanichachewa, N. Triple Detection Modes for Hg2+ Sensing Based on a NBD-Fluorescent and Colorimetric Sensor and Its Potential in Cell Imaging. New J. Chem. 2018, 42, 12412–12420. [Google Scholar] [CrossRef]
- Song, F.; Li, Z.; Li, J.; Wu, S.; Qiu, X.; Xi, Z.; Yi, L. Investigation of Thiolysis of NBD Amines for the Development of H2S Probes and Evaluating the Stability of NBD Dyes. Org. Biomol. Chem. 2016, 14, 11117–11124. [Google Scholar] [CrossRef]
- Huster, D.; Müller, P.; Arnold, K.; Herrmann, A. Dynamics of Membrane Penetration of the Fluorescent 7-Nitrobenz-2-Oxa-1,3-Diazol-4-Yl (NBD) Group Attached to an Acyl Chain of Phosphatidylcholine. Biophys. J. 2001, 80, 822–831. [Google Scholar] [CrossRef] [PubMed]
- Matsuyama, S.; Llopis, J.; Deveraux, Q.L.; Tsien, R.Y.; Reed, J.C. Changes in Intramitochondrial and Cytosolic PH: Early Events That Modulate Caspase Activation during Apoptosis. Nat. Cell Biol. 2000, 2, 318–325. [Google Scholar] [CrossRef] [PubMed]
- He, B.; Deng, C.; Zhang, M.; Zou, D.; Xu, M. Reduction of Intracellular PH Inhibits the Expression of VEGF in K562 Cells after Targeted Inhibition of the Na+/H+ Exchanger. Leuk. Res. 2007, 31, 507–514. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Pang, T.; Wang, J.; Xiong, D.; Ma, L.; Li, B.; Li, Q.; Wakabayashi, S. Down-Regulation of P-Glycoprotein Expression by Sustained Intracellular Acidification in K562/Dox Cells. Biochem. Biophys. Res. Commun. 2008, 377, 441–446. [Google Scholar] [CrossRef]
- Hao, G.; Xu, Z.P.; Li, L. Manipulating Extracellular Tumour PH: An Effective Target for Cancer Therapy. RSC Adv. 2018, 8, 22182–22192. [Google Scholar] [CrossRef]
Property | Value |
---|---|
Chemical Designation | Chit5-LA (Chitosan—lipoic acid) |
Chitosan Grafting Degree (by Glucosamine Units) *, % | 20 ± 3 |
Average Mw of One Polymeric Structure Unit, kDa | 5.8–6.5 |
Critical Micelle Concentration **, nM | 7 ± 1 |
Hydrodynamic size of micelles, nm | Empty: 180 ± 40; Loaded with R6G-spd-NBD: 150 ± 30 |
Zeta potential, mV | +9 ± 1 |
Mass Fraction of Loaded Fluorophores, % | R6G—12, NBD-spd—15, R6G-spd-NBD—10 |
pH Sensor | pH Interval at Which the Fluorescence Intensity Changes Dramatically | Fluorescence Change in the Specified Range, % of the Signal/Unit pH | Fluorescence Ignition in the Target pH Range from 7.4 to 6 Units, % |
---|---|---|---|
NBD-spd-R6G at 22 °C | From 9.5 to 7.5 | 50 ± 2 | 1.7 ± 0.5 |
NBD-spd-R6G at 37 °C | From 9.5 to 7.5 | 53 ± 7 | 6 ± 1 |
NBD-spd-R6G in Aikido-micelles Chit5-LA at 22 °C | From 8 to 5 | 40 ± 8 | 28 ± 2 |
NBD-spd-R6G in Aikido-micelles Chit5-LA at 37 °C | From 8.5 to 3.5 | 37 ± 2 | 30 ± 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zlotnikov, I.D.; Ezhov, A.A.; Kudryashova, E.V. pH-Sensitive Fluorescent Marker Based on Rhodamine 6G Conjugate with Its FRET/PeT Pair in “Smart” Polymeric Micelles for Selective Imaging of Cancer Cells. Pharmaceutics 2024, 16, 1007. https://doi.org/10.3390/pharmaceutics16081007
Zlotnikov ID, Ezhov AA, Kudryashova EV. pH-Sensitive Fluorescent Marker Based on Rhodamine 6G Conjugate with Its FRET/PeT Pair in “Smart” Polymeric Micelles for Selective Imaging of Cancer Cells. Pharmaceutics. 2024; 16(8):1007. https://doi.org/10.3390/pharmaceutics16081007
Chicago/Turabian StyleZlotnikov, Igor D., Alexander A. Ezhov, and Elena V. Kudryashova. 2024. "pH-Sensitive Fluorescent Marker Based on Rhodamine 6G Conjugate with Its FRET/PeT Pair in “Smart” Polymeric Micelles for Selective Imaging of Cancer Cells" Pharmaceutics 16, no. 8: 1007. https://doi.org/10.3390/pharmaceutics16081007