Mycologists and Virologists Align: Proposing Botrytis cinerea for Global Mycovirus Studies
Abstract
:1. Introduction
2. Mycoviruses
3. Botrytis cinerea
3.1. Botrytis cinerea Hosts a High Number and Diversity of Mycoviruses
Genome | Family | No. of Species | Distribution | |
---|---|---|---|---|
Type | Segmented? | |||
dsRNA | √ | Partitiviridae | 4 | Chile, China, Italy, Spain |
√ | Botybirnaviridae * (proposed) | 4 | Chile, Pakistan, Spain | |
√ | Quadriviridae | 2 | China, Spain | |
Totiviridae * | 5 | China, Italy, Pakistan, Spain, USA | ||
Unclassified ** | 3 | China, Colombia, Italy, Spain | ||
(+)ssRNA | Togaviridae-related | 1 | Italy, Australia | |
Botourmiaviridae | 20 | China, Italy, Pakistan, Spain, Australia | ||
Deltaflexiviridae | 4 | China, Pakistan, Spain, Australia | ||
Endornaviridae | 4 | China, Pakistan, Italy, Australia | ||
Fusariviridae | 9 | China, Italy, Pakistan, Spain, Australia | ||
Hypoviridae | 6 | China, Italy, Pakistan, Spain, Australia | ||
Hypoviridae satellite *** | 1 | China, Russia, Spain | ||
Mitoviridae **** | 14 | China, Italy, Pakistan, Russia, Spain, Australia | ||
Tymoviridae-related | 1 | China, Pakistan, Spain | ||
Narnaviridae | 1 | Spain | ||
√ | Splipalmiviridae (proposed) | 5 | China, Pakistan, Spain | |
Mycotombusviridae or Ambiguiviridae (proposed) | 4 | China, Pakistan, Spain | ||
Gammaflexiviridae | 1 | France, New Zealand, Spain, Australia | ||
Alphaflexiviridae | 1 | New Zealand | ||
Unclassified | 1 | Italy | ||
(−)ssRNA | √ | Phenuiviridae | 1 | Spain |
Mymonaviridae | 9 | China, Italy, Pakistan, Spain, Australia | ||
Peribunyaviridae-related | 2 | Italy, Pakistan, Spain | ||
Unclassified | 8 | China, Italy, Pakistan, Spain | ||
ssDNA | √ | Genomoviridae | 1 | China, Italy, New Zealand, Spain |
113 | 113 |
Genome | Genus | Virus | Location | Reference |
---|---|---|---|---|
dsRNA | Botybirnavirus | Botrytis porri botybirnavirus 1 (BpBV1) | Spain | [42] |
Unclassified | Sclerotinia sclerotiorum dsRNA mycovirus L (SsNsV-L) | Spain and Australia | [40,42] | |
(+)ssRNA | Deltaflexivirus | Sclerotinia sclerotiorum deltaflexivirus 2 (SsDFV2) | Spain, Italy and Australia | [42] |
Umbravirus | Sclerotinia sclerotiorum umbra-like virus 2 (SsUV2) | Spain and Italy | [42] | |
Umbravirus | Sclerotinia sclerotiorum umbra-like virus 3 (SsUV3) | Spain, Italy and Australia | [42] | |
Betahypovirus | Sclerotinia sclerotiorum hypovirus 1 A (SsHV1A) | Spain and Italy | [42] | |
Betascleroulivirus | Pyricularia oryzae ourmia-like virus 2 (PoOLV2) | Italy | [42] | |
Duamitovirus | Sclerotinia sclerotiorum mitovirus 3 (SsMV3) | Spain and Italy | [40,42] | |
Unuamitovirus | Sclerotinia sclerotiorum mitovirus 4 (SsMV4) | Spain and Italy | [42] |
3.2. Incidence of Mycoviruses in Botrytis cinerea
Incidence | No. of Isolates/Samples | Detection Method | Location, Fungus Host [If Reported], Field/Cultured Isolate | Reference |
---|---|---|---|---|
100% | 29 pools (total 248 isolates) | RNA-Seq | Italy and Spain, Vitis vinifera, field | [42] |
93% | 29 | Botrytis cinerea mitovirus 1 specific RT-PCR and Sanger sequencing * | Spain, Capsicum annuum, Cucumis sativus, Cucurbita pepo, Solanum lycopersicum, Solanum melongena, Phaseolus vulgaris, Vitis vinifera, field | [53] |
83% | 24 | RNASeq | Australia, a wide range of plants, cultured | [54] |
72% | 200 | dsRNA purification * | New Zealand, Cucumis sativus, V. vinifera, Solanum lycopersicum, Fragaria × ananassa, Phaseolus vulgaris, Rubus fruticosus, cultured | [55] |
55% | 96 | dsRNA purification * | Spain, Capsicum annuum, Cucumis sativus, Cucurbita pepo, Solanum lycopersicum, Solanum melongena, Phaseolus vulgaris, Vitis vinifera, field | [53] |
29% | 87 | Botrytis virus X RT-PCR | New Zealand, a wide range of plants, cultured | [46] |
27.8% | 248 | Botrytis cinerea ssDNA virus 1 RT-PCR | Spain and Italy, Vitis vinifera, field | [43] |
16% | 87 | Botrytis virus F RT-PCR | International, a wide range of plants, cultured | [46] |
14% | 84 | Botrytis virus F RT-PCR | International, a wide range of plants, cultured | [57] |
4.8% | 21 | dsRNA purification * | China, wide range of plants (suggestion) | [58] |
3% | 30 | dsRNA purification * | Chile, Malus domestica, Pyrus, Rubus idaeus, Vitis vinífera, field | [56] |
2% | 500 | Genomoviridae rolling-circle amplification and high throughput sequencing of product | New Zealand, a wide range of asymptomatic plants, cultured | [49] |
0.8 | 508 | Botrytis cinerea mymonavirus 1 RT-PCR | China | [59] |
4. The Dual Challenges of Mycovirology: Virus Description and Biology
4.1. Mycovirus Description
4.2. Mycovirus Biology
4.3. Antiviral Suppressors Encoded by Mycoviruses
4.3.1. RNAi Activity
4.3.2. Fungal RNAi Activity
4.3.3. Virus-Encoded Suppressors of RNAi (VSRs)
4.3.4. Mycovirus-Encoded Suppressors of RNAi (VSRs)
5. Botrytis cinerea Serves as a Perfect Experimental System
6. Other Fungal Model Systems for Mycoviruses
6.1. Saccharomyces cerevisiae
6.2. Cryphonectria parasitica
6.3. Fusarium graminearum
6.4. Neurospora crassa
6.5. Rosellinia necatrix
6.6. Sclerotinia sclerotiorum
7. Research Strategies to Better Understand Mycovirus Biology
8. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, H.; Xie, J.; Fu, Y.; Cheng, J.; Qu, Z.; Zhao, Z.; Cheng, S.; Chen, T.; Li, B.; Wang, Q.; et al. A 2-Kb Mycovirus Converts a Pathogenic Fungus into a Beneficial Endophyte for Brassica Protection and Yield Enhancement. Mol. Plant 2020, 13, 1420–1433. [Google Scholar] [CrossRef] [PubMed]
- García-Pedrajas, M.D.; Cañizares, M.C.; Sarmiento-Villamil, J.L.; Jacquat, A.G.; Dambolena, J.S. Mycoviruses in Biological Control: From Basic Research to Field Implementation. Phytopathology 2019, 109, 1828–1839. [Google Scholar] [CrossRef] [PubMed]
- Kyrychenko, A.N.; Tsyganenko, K.S.; Olishevska, S.V. Hypovirulence of Mycoviruses as a Tool for Biotechnological Control of Phytopathogenic Fungi. Cytol. Genet. 2018, 52, 374–384. [Google Scholar] [CrossRef]
- Niu, Y.; Yuan, Y.; Mao, J.; Yang, Z.; Cao, Q.; Zhang, T.; Wang, S.; Liu, D. Characterization of Two Novel Mycoviruses from Penicillium Digitatum and the Related Fungicide Resistance Analysis. Sci. Rep. 2018, 8, 5513. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.C.; Taylor, B.; Lin, V.; Altman, T.; Barbera, P.; Meleshko, D.; Lohr, D.; Novakovsky, G.; Buchfink, B.; Al-Shayeb, B.; et al. Petabase-Scale Sequence Alignment Catalyses Viral Discovery. Nature 2022, 602, 142–147. [Google Scholar] [CrossRef] [PubMed]
- Villan Larios, D.C.; Diaz Reyes, B.M.; Pirovani, C.P.; Loguercio, L.L.; Santos, V.C.; Góes-Neto, A.; Fonseca, P.L.C.; Aguiar, E.R.G.R. Exploring the Mycovirus Universe: Identification, Diversity, and Biotechnological Applications. J. Fungi 2023, 9, 361. [Google Scholar] [CrossRef]
- Ayllón, M.A.; Vainio, E.J. Mycoviruses as a Part of the Global Virome: Diversity, Evolutionary Links and Lifestyle. Adv. Virus Res. 2023, 115, 1–86. [Google Scholar] [CrossRef]
- Kotta-Loizou, I. Mycoviruses and Their Role in Fungal Pathogenesis. Curr. Opin. Microbiol. 2021, 63, 10–18. [Google Scholar] [CrossRef]
- Myers, J.M.; James, T.Y. Mycoviruses. Curr. Biol. 2022, 32, R150–R155. [Google Scholar] [CrossRef]
- Kondo, H.; Botella, L.; Suzuki, N. Mycovirus Diversity and Evolution Revealed/Inferred from Recent Studies. Annu. Rev. Phytopathol. 2022, 60, 307–336. [Google Scholar] [CrossRef]
- Sato, Y.; Suzuki, N. Continued Mycovirus Discovery Expanding Our Understanding of Virus Lifestyles, Symptom Expression, and Host Defense. Curr. Opin. Microbiol. 2023, 75, 102337. [Google Scholar] [CrossRef] [PubMed]
- Lockhart, S.R.; Chowdhary, A.; Gold, J.A.W. The Rapid Emergence of Antifungal-Resistant Human-Pathogenic Fungi. Nat. Rev. Microbiol. 2023, 21, 818–832. [Google Scholar] [CrossRef] [PubMed]
- Fisher, M.C.; Hawkins, N.J.; Sanglard, D.; Gurr, S.J. Worldwide Emergence of Resistance to Antifungal Drugs Challenges Human Health and Food Security. Science 2018, 360, 739–742. [Google Scholar] [CrossRef] [PubMed]
- Savary, S.; Willocquet, L.; Pethybridge, S.J.; Esker, P.; McRoberts, N.; Nelson, A. The Global Burden of Pathogens and Pests on Major Food Crops. Nat. Ecol. Evol. 2019, 3, 430–439. [Google Scholar] [CrossRef]
- Fones, H.N.; Bebber, D.P.; Chaloner, T.M.; Kay, W.T.; Steinberg, G.; Gurr, S.J. Threats to Global Food Security from Emerging Fungal and Oomycete Crop Pathogens. Nat. Food 2020, 1, 332–342. [Google Scholar] [CrossRef]
- Veloso, J.; van Kan, J.A.L. Many Shades of Grey in Botrytis–Host Plant Interactions. Trends Plant Sci. 2018, 23, 613–622. [Google Scholar] [CrossRef]
- Elad, Y.; Pertot, I.; Cotes Prado, A.M.; Stewart, A. Plant Hosts of Botrytis spp. In Botrytis—The Fungus, the Pathogen and Its Management in Agricultural Systems; Fillinger, S., Elad, Y., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 413–486. [Google Scholar]
- Hahn, M. The Rising Threat of Fungicide Resistance in Plant Pathogenic Fungi: Botrytis as a Case Study. J. Chem. Biol. 2014, 7, 133–141. [Google Scholar] [CrossRef]
- Dean, R.; Van Kan, J.A.L.; Pretorius, Z.A.; Hammond-Kosack, K.E.; Di Pietro, A.; Spanu, P.D.; Rudd, J.J.; Dickman, M.; Kahmann, R.; Ellis, J.; et al. The Top 10 Fungal Pathogens in Molecular Plant Pathology. Mol. Plant Pathol. 2012, 13, 414–430. [Google Scholar] [CrossRef]
- Hevia, M.A.; Canessa, P.; Müller-Esparza, H.; Larrondo, L.F. A Circadian Oscillator in the Fungus Botrytis cinerea Regulates Virulence When Infecting Arabidopsis Thaliana. Proc. Natl. Acad. Sci. USA 2015, 112, 8744–8749. [Google Scholar] [CrossRef]
- Schumacher, J. How Light Affects the Life of Botrytis. Fungal Genet. Biol. 2017, 106, 26–41. [Google Scholar] [CrossRef]
- Arshed, S.; Cox, M.P.; Beever, R.E.; Parkes, S.L.; Pearson, M.N.; Bowen, J.K.; Templeton, M.D. The Bcvic1 and Bcvic2 Vegetative Incompatibility Genes in Botrytis cinerea Encode Proteins with Domain Architectures Involved in Allorecognition in Other Filamentous Fungi. Fungal Genet. Biol. 2023, 169, 103827. [Google Scholar] [CrossRef] [PubMed]
- Rodenburg, S.Y.A.; Terhem, R.B.; Veloso, J.; Stassen, J.H.M.; van Kan, J.A.L. Functional Analysis of Mating Type Genes and Transcriptome Analysis during Fruiting Body Development of Botrytis cinerea. MBio 2018, 9, e01939-17. [Google Scholar] [CrossRef] [PubMed]
- Bi, K.; Liang, Y.; Mengiste, T.; Sharon, A. Killing Softly: A Roadmap of Botrytis cinerea Pathogenicity. Trends Plant Sci. 2023, 28, 211–222. [Google Scholar] [CrossRef]
- Staats, M.; van Kan, J.A.L. Genome Update of Botrytis cinerea Strains B05.10 and T4. Eukaryot. Cell 2012, 11, 1413–1414. [Google Scholar] [CrossRef]
- Atwell, S.; Corwin, J.A.; Soltis, N.E.; Subedy, A.; Denby, K.J.; Kliebenstein, D.J. Whole Genome Resequencing of Botrytis cinerea Isolates Identifies High Levels of Standing Diversity. Front. Microbiol. 2015, 6, 996. [Google Scholar] [CrossRef] [PubMed]
- Mercier, A.; Simon, A.; Lapalu, N.; Giraud, T.; Bardin, M.; Walker, A.-S.; Viaud, M.; Gladieux, P. Population Genomics Reveals Molecular Determinants of Specialization to Tomato in the Polyphagous Fungal Pathogen Botrytis cinerea in France. Phytopathology® 2021, 111, 2355–2366. [Google Scholar] [CrossRef]
- Van Kan, J.A.L.; Stassen, J.H.M.; Mosbach, A.; Van Der Lee, T.A.J.; Faino, L.; Farmer, A.D.; Papasotiriou, D.G.; Zhou, S.; Seidl, M.F.; Cottam, E.; et al. A Gapless Genome Sequence of the Fungus Botrytis cinerea. Mol. Plant Pathol. 2017, 18, 75–89. [Google Scholar] [CrossRef]
- Hahn, M.; Scalliet, G. One Cut to Change Them All: CRISPR/Cas, a Groundbreaking Tool for Genome Editing in Botrytis cinerea and Other Fungal Plant Pathogens. Phytopathology 2021, 111, 474–477. [Google Scholar] [CrossRef]
- Leisen, T.; Werner, J.; Pattar, P.; Safari, N.; Ymeri, E.; Sommer, F.; Schroda, M.; Suárez, I.; Collado, I.G.; Scheuring, D.; et al. Multiple Knockout Mutants Reveal a High Redundancy of Phytotoxic Compounds Contributing to Necrotrophic Pathogenesis of Botrytis cinerea. PLOS Pathog. 2022, 18, e1010367. [Google Scholar] [CrossRef]
- Qin, S.; Veloso, J.; Baak, M.; Boogmans, B.; Bosman, T.; Puccetti, G.; Shi-Kunne, X.; Smit, S.; Grant-Downton, R.; Leisen, T.; et al. Molecular Characterization Reveals No Functional Evidence for Naturally Occurring Cross-kingdom RNA Interference in the Early Stages of Botrytis cinerea–Tomato Interaction. Mol. Plant Pathol. 2023, 24, 3–15. [Google Scholar] [CrossRef]
- Bar, M.; Romanazzi, G. Editorial: Highlights from the Botrytis and Sclerotinia 2022 Joint Conference. Front. Plant Sci. 2023, 14, 1326020. [Google Scholar] [CrossRef] [PubMed]
- Garfinkel, A.R.; Coats, K.P.; Sherry, D.L.; Chastagner, G.A. Genetic Analysis Reveals Unprecedented Diversity of a Globally-Important Plant Pathogenic Genus. Sci. Rep. 2019, 9, 6671. [Google Scholar] [CrossRef] [PubMed]
- ICTV. Available online: https://ictv.global/ (accessed on 18 June 2024).
- Approved Proposals|ICTV. Available online: https://ictv.global/files/proposals/approved (accessed on 18 June 2024).
- Unclassified Viruses|ICTV. Available online: https://ictv.global/report/chapter/unclassified/unclassified-viruses (accessed on 5 July 2024).
- Simmonds, P.; Adams, M.J.; Benkő, M.; Breitbart, M.; Brister, J.R.; Carstens, E.B.; Davison, A.J.; Delwart, E.; Gorbalenya, A.E.; Harrach, B.; et al. Virus Taxonomy in the Age of Metagenomics. Nat. Rev. Microbiol. 2017, 15, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Hough, B.; Steenkamp, E.; Wingfield, B.; Read, D. Fungal Viruses Unveiled: A Comprehensive Review of Mycoviruses. Viruses 2023, 15, 1202. [Google Scholar] [CrossRef]
- Donaire, L.; Rozas, J.; Ayllón, M.A. Molecular Characterization of Botrytis Ourmia-like Virus, a Mycovirus Close to the Plant Pathogenic Genus Ourmiavirus. Virology 2016, 489, 158–164. [Google Scholar] [CrossRef]
- Donaire, L.; Ayllón, M.A. Deep Sequencing of Mycovirus-derived Small RNAs from Botrytis Species. Mol. Plant Pathol. 2017, 18, 1127–1137. [Google Scholar] [CrossRef]
- Ayllón, M.A.; Turina, M.; Xie, J.; Nerva, L.; Marzano, S.-Y.L.; Donaire, L.; Jiang, D.; Consortium, I.R. ICTV Virus Taxonomy Profile: Botourmiaviridae. J. Gen. Virol. 2020, 101, 454–455. [Google Scholar] [CrossRef]
- Ruiz-Padilla, A.; Rodríguez-Romero, J.; Gómez-Cid, I.; Pacifico, D.; Ayllón, M.A. Novel Mycoviruses Discovered in the Mycovirome of a Necrotrophic Fungus. MBio 2021, 12, e03705-20. [Google Scholar] [CrossRef]
- Ruiz-Padilla, A.; Turina, M.; Ayllón, M.A. Molecular Characterization of a Tetra Segmented ssDNA Virus Infecting Botrytis cinerea Worldwide. Virol. J. 2023, 20, 306. [Google Scholar] [CrossRef]
- Hao, F.; Zhou, Z.; Wu, M.; Li, G. Molecular Characterization of a Novel Endornavirus from the Phytopathogenic Fungus Botrytis cinerea. Arch. Virol. 2017, 162, 313–316. [Google Scholar] [CrossRef]
- Wang, H.; Li, C.; Cai, L.; Fang, S.; Zheng, L.; Yan, F.; Zhang, S.; Liu, Y. The Complete Genomic Sequence of a Novel Botybirnavirus Isolated from a Phytopathogenic Bipolaris maydis. Virus Genes 2018, 54, 733–736. [Google Scholar] [CrossRef] [PubMed]
- Pearson, M.N.; Bailey, A.M. Viruses of Botrytis. Adv. Virus Res. 2013, 86, 249–272. [Google Scholar] [CrossRef] [PubMed]
- Jiāng, D.; Ayllón, M.A.; Marzano, S.-Y.L.; Kondō, H.; Turina, M. ICTV Virus Taxonomy Profile: Mymonaviridae 2022. J. Gen. Virol. 2022, 103, 001787. [Google Scholar] [CrossRef] [PubMed]
- Hao, F.; Wu, M.; Li, G. Characterization of a Novel Genomovirus in the Phytopathogenic Fungus Botrytis cinerea. Virology 2021, 553, 111–116. [Google Scholar] [CrossRef]
- Khalifa, M.E.; MacDiarmid, R.M. A Mechanically Transmitted DNA Mycovirus Is Targeted by the Defence Machinery of Its Host, Botrytis cinerea. Viruses 2021, 13, 1315. [Google Scholar] [CrossRef]
- Donaire, L.; Pagán, I.; Ayllón, M.A. Characterization of Botrytis cinerea Negative-Stranded RNA Virus 1, a New Mycovirus Related to Plant Viruses, and a Reconstruction of Host Pattern Evolution in Negative-Sense SsRNA Viruses. Virology 2016, 499, 212–218. [Google Scholar] [CrossRef]
- Ghabrial, S.A.; Castón, J.R.; Jiang, D.; Nibert, M.L.; Suzuki, N. 50-plus Years of Fungal Viruses. Virology 2015, 479–480, 356–368. [Google Scholar] [CrossRef]
- Pearson, M.N.; Beever, R.E.; Boine, B.; Arthur, K. Mycoviruses of Filamentous Fungi and Their Relevance to Plant Pathology. Mol. Plant Pathol. 2009, 10, 115–128. [Google Scholar] [CrossRef]
- Rodríguez-García, C.; Medina, V.; Alonso, A.; Ayllón, M.A. Mycoviruses of Botrytis cinerea Isolates from Different Hosts. Ann. Appl. Biol. 2014, 164, 46–61. [Google Scholar] [CrossRef]
- Rodriguez Coy, L.L.; Plummer, K.; Mattner, S.W.; Gardiner, D.; Gendall, A.R.; La Trobe University, Bundoora, Victoria, Australia. Virome Characterization of a Collection of Botrytis cinerea from Australia. Unpublished work. 2024; manuscript in preparation. [Google Scholar]
- Howitt, R.L.J.; Beever, R.E.; Pearson, M.N.; Forster, R.L.S. Presence of Double-Stranded RNA and Virus-like Particles in Botrytis cinerea. Mycol. Res. 1995, 99, 1472–1478. [Google Scholar] [CrossRef]
- Vilches, S.; Castillo, A. A Double-Stranded RNA Mycovirus in Botrytis cinerea. FEMS Microbiol. Lett. 2006, 155, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Arthur, K.; Pearson, M. Geographic Distribution and Sequence Diversity of the Mycovirus Botrytis Virus F. Mycol. Prog. 2014, 13, 1000. [Google Scholar] [CrossRef]
- Wu, M.D.; Zhang, L.; Li, G.Q.; Jiang, D.H.; Hou, M.S.; Huang, H.C. Hypovirulence and Double-Stranded RNA in Botrytis cinerea. Phytopathology 2007, 97, 1590–1599. [Google Scholar] [CrossRef]
- Hao, F.; Wu, M.; Li, G. Molecular Characterization and Geographic Distribution of a Mymonavirus in the Population of Botrytis cinerea. Viruses 2018, 10, 432. [Google Scholar] [CrossRef]
- Khan, H.A.; Nerva, L.; Bhatti, M.F. The Good, the Bad and the Cryptic: The Multifaceted Roles of Mycoviruses and Their Potential Applications for a Sustainable Agriculture. Virology 2023, 585, 259–269. [Google Scholar] [CrossRef] [PubMed]
- Khan, H.A.; Mukhtar, M.; Bhatti, M.F. Mycovirus-Induced Hypovirulence in Notorious Fungi Sclerotinia: A Comprehensive Review. Brazilian J. Microbiol. 2023, 54, 1459–1478. [Google Scholar] [CrossRef]
- Pappas, N.; Roux, S.; Hölzer, M.; Lamkiewicz, K.; Mock, F.; Marz, M.; Dutilh, B.E. Virus Bioinformatics. In Encyclopedia of Virology; Elsevier: Amsterdam, The Netherlands, 2021; pp. 124–132. [Google Scholar]
- Kraberger, S.; Hofstetter, R.W.; Potter, K.A.; Farkas, K.; Varsani, A. Genomoviruses Associated with Mountain and Western Pine Beetles. Virus Res. 2018, 256, 17–20. [Google Scholar] [CrossRef]
- Bian, R.; Andika, I.B.; Pang, T.; Lian, Z.; Wei, S.; Niu, E.; Wu, Y.; Kondo, H.; Liu, X.; Sun, L. Facilitative and Synergistic Interactions between Fungal and Plant Viruses. Proc. Natl. Acad. Sci. USA 2020, 117, 3779–3788. [Google Scholar] [CrossRef]
- Córdoba, L.; Ruiz-Padilla, A.; Rodríguez-Romero, J.; Ayllón, M.A. Construction and Characterization of a Botrytis Virus F Infectious Clone. J. Fungi 2022, 8, 459. [Google Scholar] [CrossRef]
- Hao, F.; Ding, T.; Wu, M.; Zhang, J.; Yang, L.; Chen, W.; Li, G. Two Novel Hypovirulence-Associated Mycoviruses in the Phytopathogenic Fungus Botrytis cinerea: Molecular Characterization and Suppression of Infection Cushion Formation. Viruses 2018, 10, 254. [Google Scholar] [CrossRef]
- Kamaruzzaman, M.; He, G.; Wu, M.; Zhang, J.; Yang, L.; Chen, W.; Li, G. A Novel Partitivirus in the Hypovirulent Isolate QT5-19 of the Plant Pathogenic Fungus Botrytis cinerea. Viruses 2019, 11, 24. [Google Scholar] [CrossRef] [PubMed]
- Hai, D.; Li, J.; Jiang, D.; Cheng, J.; Fu, Y.; Xiao, X.; Yin, H.; Lin, Y.; Chen, T.; Li, B.; et al. Plants Interfere with Non-Self Recognition of a Phytopathogenic Fungus via Proline Accumulation to Facilitate Mycovirus Transmission. Nat. Commun. 2024, 15, 4748. [Google Scholar] [CrossRef] [PubMed]
- Ko, Y.-H.; Chun, J.; Lee, S.-J.; Kim, D.-H. Changes in VOCs from a Chestnut Blight Fungus Cryphonectria parasitica by a Hypovirus Infection: Mycoviral Infection Alters Fungal Smell for Insect Vectors. Chem. Biol. Technol. Agric. 2024, 11, 123. [Google Scholar] [CrossRef]
- Torres-Trenas, A.; Prieto, P.; Cañizares, M.C.; García-Pedrajas, M.D.; Pérez-Artés, E. Mycovirus Fusarium oxysporum f. Sp. Dianthi Virus 1 Decreases the Colonizing Efficiency of Its Fungal Host. Front. Cell. Infect. Microbiol. 2019, 9, 51. [Google Scholar] [CrossRef]
- Baek, J.-H.; Park, J.-A.; Kim, J.-M.; Oh, J.-M.; Park, S.-M.; Kim, D.-H. Functional Analysis of a Tannic-Acid-Inducible and Hypoviral-Regulated Small Heat-Shock Protein Hsp24 from the Chestnut Blight Fungus Cryphonectria parasitica. Mol. Plant-Microbe Interact. 2014, 27, 56–65. [Google Scholar] [CrossRef]
- Chun, J.; Ko, Y.-H.; Kim, D.-H. Transcriptome Analysis of Cryphonectria parasitica Infected With Cryphonectria Hypovirus 1 (CHV1) Reveals Distinct Genes Related to Fungal Metabolites, Virulence, Antiviral RNA-Silencing, and Their Regulation. Front. Microbiol. 2020, 11, 1711. [Google Scholar] [CrossRef]
- Bormann, J.; Heinze, C.; Blum, C.; Mentges, M.; Brockmann, A.; Alder, A.; Landt, S.K.; Josephson, B.; Indenbirken, D.; Spohn, M.; et al. Expression of a Structural Protein of the Mycovirus FgV-Ch9 Negatively Affects the Transcript Level of a Novel Symptom Alleviation Factor and Causes Virus Infection-Like Symptoms in Fusarium graminearum. J. Virol. 2018, 92, e00326-18. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.-M.; Cho, W.K.; Yu, J.; Son, M.; Choi, H.; Min, K.; Lee, Y.-W.; Kim, K.-H. A Comparison of Transcriptional Patterns and Mycological Phenotypes Following Infection of Fusarium graminearum by Four Mycoviruses. PLoS ONE 2014, 9, e100989. [Google Scholar] [CrossRef]
- Li, H.; Fu, Y.; Jiang, D.; Li, G.; Ghabrial, S.A.; Yi, X. Down-Regulation of Sclerotinia sclerotiorum Gene Expression in Response to Infection with Sclerotinia Sclerotiorum Debilitation-Associated RNA Virus. Virus Res. 2008, 135, 95–106. [Google Scholar] [CrossRef]
- Ding, F.; Cheng, J.; Fu, Y.; Chen, T.; Li, B.; Jiang, D.; Xie, J. Early Transcriptional Response to DNA Virus Infection in Sclerotinia sclerotiorum. Viruses 2019, 11, 278. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Q.; Wu, Y.; Han, S.; Xiao, Y.; Kong, L. The Effects of Mycovirus BmPV36 on the Cell Structure and Transcription of Bipolaris maydis. J. Fungi 2024, 10, 133. [Google Scholar] [CrossRef] [PubMed]
- Sun, A.; Zhao, L.; Sun, Y.; Chen, Y.; Li, C.; Dong, W.; Yang, G. Horizontal and Vertical Transmission of a Mycovirus Closely Related to the Partitivirus RhsV717 That Confers Hypovirulence in Rhizoctonia solani. Viruses 2023, 15, 2088. [Google Scholar] [CrossRef] [PubMed]
- Nolan, T. The Post-Transcriptional Gene Silencing Machinery Functions Independently of DNA Methylation to Repress a LINE1-like Retrotransposon in Neurospora crassa. Nucleic Acids Res. 2005, 33, 1564–1573. [Google Scholar] [CrossRef] [PubMed]
- Nakayashiki, H.; Nguyen, Q.B. RNA Interference: Roles in Fungal Biology. Curr. Opin. Microbiol. 2008, 11, 494–502. [Google Scholar] [CrossRef]
- Girard, C.; Budin, K.; Boisnard, S.; Zhang, L.; Debuchy, R.; Zickler, D.; Espagne, E. RNAi-Related Dicer and Argonaute Proteins Play Critical Roles for Meiocyte Formation, Chromosome-Axes Lengths and Crossover Patterning in the Fungus Sordaria macrospora. Front. Cell Dev. Biol. 2021, 9, 684108. [Google Scholar] [CrossRef] [PubMed]
- Qian, J.; Ibrahim, H.M.M.; Erz, M.; Kümmel, F.; Panstruga, R.; Kusch, S. Long Noncoding RNAs Emerge from Transposon-Derived Antisense Sequences and May Contribute to Infection Stage-Specific Transposon Regulation in a Fungal Phytopathogen. Mob. DNA 2023, 14, 17. [Google Scholar] [CrossRef]
- Dang, Y.; Yang, Q.; Xue, Z.; Liu, Y. RNA Interference in Fungi: Pathways, Functions, and Applications. Eukaryot. Cell 2011, 10, 1148–1155. [Google Scholar] [CrossRef]
- Yeadon, P.J.; Bowring, F.J.; Catcheside, D.E.A. Recombination Hotspots in Neurospora crassa Controlled by Idiomorphic Sequences and Meiotic Silencing. Genetics 2024, 226, iyad213. [Google Scholar] [CrossRef]
- Cai, Q.; He, B.; Kogel, K.-H.; Jin, H. Cross-Kingdom RNA Trafficking and Environmental RNAi–Nature’s Blueprint for Modern Crop Protection Strategies. Curr. Opin. Microbiol. 2018, 46, 58–64. [Google Scholar] [CrossRef] [PubMed]
- Spada, M.; Pugliesi, C.; Fambrini, M.; Pecchia, S. Challenges and Opportunities Arising from Host–Botrytis cinerea Interactions to Outline Novel and Sustainable Control Strategies: The Key Role of RNA Interference. Int. J. Mol. Sci. 2024, 25, 6798. [Google Scholar] [CrossRef]
- Nowara, D.; Gay, A.; Lacomme, C.; Shaw, J.; Ridout, C.; Douchkov, D.; Hensel, G.; Kumlehn, J.; Schweizer, P. HIGS: Host-Induced Gene Silencing in the Obligate Biotrophic Fungal Pathogen Blumeria graminis. Plant Cell 2010, 22, 3130–3141. [Google Scholar] [CrossRef] [PubMed]
- Xiong, F.; Liu, M.; Zhuo, F.; Yin, H.; Deng, K.; Feng, S.; Liu, Y.; Luo, X.; Feng, L.; Zhang, S.; et al. Host-induced Gene Silencing of BcTOR in Botrytis cinerea Enhances Plant Resistance to Grey Mould. Mol. Plant Pathol. 2019, 20, 1722–1739. [Google Scholar] [CrossRef]
- Hua, C.; Zhao, J.-H.; Guo, H.-S. Trans-Kingdom RNA Silencing in Plant–Fungal Pathogen Interactions. Mol. Plant 2018, 11, 235–244. [Google Scholar] [CrossRef]
- Zhang, X.; Segers, G.C.; Sun, Q.; Deng, F.; Nuss, D.L. Characterization of Hypovirus-Derived Small RNAs Generated in the Chestnut Blight Fungus by an Inducible DCL-2-Dependent Pathway. J. Virol. 2008, 82, 2613–2619. [Google Scholar] [CrossRef]
- Hammond, T.M.; Andrewski, M.D.; Roossinck, M.J.; Keller, N.P. Aspergillus Mycoviruses Are Targets and Suppressors of RNA Silencing. Eukaryot. Cell 2008, 7, 350–357. [Google Scholar] [CrossRef]
- Himeno, M.; Maejima, K.; Komatsu, K.; Ozeki, J.; Hashimoto, M.; Kagiwada, S.; Yamaji, Y.; Namba, S. Significantly Low Level of Small RNA Accumulation Derived from an Encapsidated Mycovirus with DsRNA Genome. Virology 2010, 396, 69–75. [Google Scholar] [CrossRef]
- Wang, S.; Li, P.; Zhang, J.; Qiu, D.; Guo, L. Generation of a High Resolution Map of sRNAs from Fusarium graminearum and Analysis of Responses to Viral Infection. Sci. Rep. 2016, 6, 26151. [Google Scholar] [CrossRef] [PubMed]
- Yaegashi, H.; Shimizu, T.; Ito, T.; Kanematsu, S. Differential Inductions of RNA Silencing among Encapsidated Double-Stranded RNA Mycoviruses in the White Root Rot Fungus Rosellinia necatrix. J. Virol. 2016, 90, 5677–5692. [Google Scholar] [CrossRef] [PubMed]
- Mochama, P.; Jadhav, P.; Neupane, A.; Marzano, S.Y.L. Mycoviruses as Triggers and Targets of RNA Silencing in White Mold Fungus Sclerotinia sclerotiorum. Viruses 2018, 10, 214. [Google Scholar] [CrossRef]
- Sato, Y.; Kondo, H.; Suzuki, N. Argonaute-Independent, Dicer-Dependent Antiviral Defense against RNA Viruses. Proc. Natl. Acad. Sci. USA 2024, 121, e2322765121. [Google Scholar] [CrossRef]
- Tauati, S.J.; Pearson, M.N.; Choquer, M.; Foster, G.D.; Bailey, A.M. Investigating the Role of Dicer 2 (Dcr2) in Gene Silencing and the Regulation of Mycoviruses in Botrytis cinerea. Microbiology 2014, 83, 140–148. [Google Scholar] [CrossRef]
- Weiberg, A.; Wang, M.; Lin, F.M.; Zhao, H.; Zhang, Z.; Kaloshian, I.; Huang, H.D.; Jin, H. Fungal Small RNAs Suppress Plant Immunity by Hijacking Host RNA Interference Pathways. Science 2013, 342, 118–123. [Google Scholar] [CrossRef] [PubMed]
- Cheng, A.-P.; Lederer, B.; Oberkofler, L.; Huang, L.; Johnson, N.R.; Platten, F.; Dunker, F.; Tisserant, C.; Weiberg, A. A Fungal RNA-Dependent RNA Polymerase Is a Novel Player in Plant Infection and Cross-Kingdom RNA Interference. PLOS Pathog. 2023, 19, e1011885. [Google Scholar] [CrossRef] [PubMed]
- Atabekova, A.K.; Solovieva, A.D.; Chergintsev, D.A.; Solovyev, A.G.; Morozov, S.Y. Role of Plant Virus Movement Proteins in Suppression of Host RNAi Defense. Int. J. Mol. Sci. 2023, 24, 9049. [Google Scholar] [CrossRef] [PubMed]
- Burgyán, J.; Havelda, Z. Viral Suppressors of RNA Silencing. Trends Plant Sci. 2011, 16, 265–272. [Google Scholar] [CrossRef] [PubMed]
- Schuster, S.; Miesen, P.; van Rij, R.P. Antiviral RNAi in Insects and Mammals: Parallels and Differences. Viruses 2019, 11, 448. [Google Scholar] [CrossRef]
- Baulcombe, D. Viral Suppression of Systemic Silencing. Trends Microbiol. 2002, 10, 306–308. [Google Scholar] [CrossRef]
- Bivalkar-Mehla, S.; Vakharia, J.; Mehla, R.; Abreha, M.; Kanwar, J.R.; Tikoo, A.; Chauhan, A. Viral RNA Silencing Suppressors (RSS): Novel Strategy of Viruses to Ablate the Host RNA Interference (RNAi) Defense System. Virus Res. 2011, 155, 1–9. [Google Scholar] [CrossRef]
- Voinnet, O.; Lederer, C.; Baulcombe, D.C. A Viral Movement Protein Prevents Spread of the Gene Silencing Signal in Nicotiana benthamiana. Cell 2000, 103, 157–167. [Google Scholar] [CrossRef]
- Senshu, H.; Ozeki, J.; Komatsu, K.; Hashimoto, M.; Hatada, K.; Aoyama, M.; Kagiwada, S.; Yamaji, Y.; Namba, S. Variability in the Level of RNA Silencing Suppression Caused by Triple Gene Block Protein 1 (TGBp1) from Various Potexviruses during Infection. J. Gen. Virol. 2009, 90, 1014–1024. [Google Scholar] [CrossRef]
- Lim, H.-S.; Vaira, A.M.; Reinsel, M.D.; Bae, H.; Bailey, B.A.; Domier, L.L.; Hammond, J. Pathogenicity of Alternanthera Mosaic Virus Is Affected by Determinants in RNA-Dependent RNA Polymerase and by Reduced Efficacy of Silencing Suppression in a Movement-Competent TGB1. J. Gen. Virol. 2010, 91, 277–287. [Google Scholar] [CrossRef] [PubMed]
- Sehki, H.; Yu, A.; Elmayan, T.; Vaucheret, H. TYMV and TRV Infect Arabidopsis thaliana by Expressing Weak Suppressors of RNA Silencing and Inducing Host RNASE THREE LIKE1. PLOS Pathog. 2023, 19, e1010482. [Google Scholar] [CrossRef]
- Powers, J.G.; Sit, T.L.; Heinsohn, C.; George, C.G.; Kim, K.-H.; Lommel, S.A. The Red Clover Necrotic Mosaic Virus RNA-2 Encoded Movement Protein Is a Second Suppressor of RNA Silencing. Virology 2008, 381, 277–286. [Google Scholar] [CrossRef]
- Takeda, A.; Tsukuda, M.; Mizumoto, H.; Okamoto, K.; Kaido, M.; Mise, K.; Okuno, T. A Plant RNA Virus Suppresses RNA Silencing through Viral RNA Replication. EMBO J. 2005, 24, 3147–3157. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Liu, X.; Wu, K.; Zheng, L.-P.; Ding, Z.; Li, F.; Zou, P.; Yang, L.; Wu, J.; Wu, Z. Rice Grassy Stunt Virus Nonstructural Protein P5 Serves as a Viral Suppressor of RNA Silencing and Interacts with Nonstructural Protein P3. Arch. Virol. 2015, 160, 2769–2779. [Google Scholar] [CrossRef]
- Mathur, K.; Anand, A.; Dubey, S.K.; Sanan-Mishra, N.; Bhatnagar, R.K.; Sunil, S. Analysis of Chikungunya Virus Proteins Reveals That Non-Structural Proteins NsP2 and NsP3 Exhibit RNA Interference (RNAi) Suppressor Activity. Sci. Rep. 2016, 6, 38065. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Park, J.Y.; Heo, J.; Kim, K. The ORF2 Protein of Fusarium Graminearum Virus 1 Suppresses the Transcription of FgDICER2 and FgAGO1 to Limit Host Antiviral Defences. Mol. Plant Pathol. 2020, 21, 230–243. [Google Scholar] [CrossRef]
- Segers, G.; Zhang, X.; Deng, F.; Sun, Q.; Nuss, D.L. Evidence That RNA Silencing Functions as an Antiviral Defense Mechanism in Fungi. Proc. Natl. Acad. Sci. USA 2007, 104, 12902–12906. [Google Scholar] [CrossRef]
- Segers, G.; van Wezel, R.; Zhang, X.; Hong, Y.; Nuss, D.L. Hypovirus Papain-Like Protease P29 Suppresses RNA Silencing in the Natural Fungal Host and in a Heterologous Plant System. Eukaryot. Cell 2006, 5, 896–904. [Google Scholar] [CrossRef]
- Aulia, A.; Hyodo, K.; Hisano, S.; Kondo, H.; Hillman, B.I.; Suzuki, N. Identification of an RNA Silencing Suppressor Encoded by a Symptomless Fungal Hypovirus, Cryphonectria Hypovirus 4. Biology 2021, 10, 100. [Google Scholar] [CrossRef]
- Shimura, H.; Kim, H.; Matsuzawa, A.; Akino, S.; Masuta, C. Coat Protein of Partitiviruses Isolated from Mycorrhizal Fungi Functions as an RNA Silencing Suppressor in Plants and Fungi. Sci. Rep. 2022, 12, 7855. [Google Scholar] [CrossRef] [PubMed]
- Sela, N.; Luria, N.; Dombrovsky, A. Genome Assembly of Bell Pepper Endornavirus from Small RNA. J. Virol. 2012, 86, 7721. [Google Scholar] [CrossRef] [PubMed]
- Nordenstedt, N.; Marcenaro, D.; Chilagane, D.; Mwaipopo, B.; Rajamäki, M.-L.; Nchimbi-Msolla, S.; Njau, P.J.R.; Mbanzibwa, D.R.; Valkonen, J.P.T. Pathogenic Seedborne Viruses Are Rare but Phaseolus Vulgaris Endornaviruses Are Common in Bean Varieties Grown in Nicaragua and Tanzania. PLoS ONE 2017, 12, e0178242. [Google Scholar] [CrossRef]
- Schiwek, S.; Slonka, M.; Alhussein, M.; Knierim, D.; Margaria, P.; Rose, H.; Richert-Pöggeler, K.R.; Rostás, M.; Karlovsky, P. Mycoviruses Increase the Attractiveness of Fusarium graminearum for Fungivores and Suppress Production of the Mycotoxin Deoxynivalenol. Toxins 2024, 16, 131. [Google Scholar] [CrossRef]
- Boine, B.; Kingston, R.L.; Pearson, M.N. Recombinant Expression of the Coat Protein of Botrytis Virus X and Development of an Immunofluorescence Detection Method to Study Its Intracellular Distribution in Botrytis cinerea. J. Gen. Virol. 2012, 93, 2502–2511. [Google Scholar] [CrossRef]
- Fournier, E.; Giraud, T. Sympatric Genetic Differentiation of a Generalist Pathogenic Fungus, Botrytis cinerea, on Two Different Host Plants, Grapevine and Bramble. J. Evol. Biol. 2008, 21, 122–132. [Google Scholar] [CrossRef]
- Faretra, F.; Antonacci, E.; Pollastro, S. Sexual Behaviour and Mating System of Botryotinia fuckeliana, Teleomorph of Botrytis cinerea. Microbiology 1988, 134, 2543–2550. [Google Scholar] [CrossRef]
- Kamaruzzaman, M.; Lyu, A.; Zhang, J.; Wu, M.; Yang, L.; Chen, W.; Li, G. Competitive Saprophytic Ability of the Hypovirulent Isolate QT5-19 of Botrytis cinerea and Its Importance in Biocontrol of Necrotrophic Fungal Pathogens. Biol. Control 2020, 142, 104182. [Google Scholar] [CrossRef]
- Ko, Y.H.; So, K.K.; Chun, J.; Kim, D.H. Distinct Roles of Two Dna Methyltransferases from Cryphonectria parasitica in Fungal Virulence, Responses to Hypovirus Infection, and Viral Clearance. MBio 2021, 12, e02890-20. [Google Scholar] [CrossRef]
- Schumacher, J. Tools for Botrytis cinerea: New Expression Vectors Make the Gray Mold Fungus More Accessible to Cell Biology Approaches. Fungal Genet. Biol. 2012, 49, 483–497. [Google Scholar] [CrossRef]
- Vanderwaeren, L.; Dok, R.; Voordeckers, K.; Nuyts, S.; Verstrepen, K.J. Saccharomyces cerevisiae as a Model System for Eukaryotic Cell Biology, from Cell Cycle Control to DNA Damage Response. Int. J. Mol. Sci. 2022, 23, 11665. [Google Scholar] [CrossRef] [PubMed]
- Sahaya Glingston, R.; Yadav, J.; Rajpoot, J.; Joshi, N.; Nagotu, S. Contribution of Yeast Models to Virus Research. Appl. Microbiol. Biotechnol. 2021, 105, 4855–4878. [Google Scholar] [CrossRef] [PubMed]
- Crabtree, A.M.; Taggart, N.T.; Lee, M.D.; Boyer, J.M.; Rowley, P.A. The Prevalence of Killer Yeasts and Double-Stranded RNAs in the Budding Yeast Saccharomyces cerevisiae. FEMS Yeast Res. 2023, 23, foad046. [Google Scholar] [CrossRef]
- Billmyre, R.B.; Calo, S.; Feretzaki, M.; Wang, X.; Heitman, J. RNAi Function, Diversity, and Loss in the Fungal Kingdom. Chromosom. Res. 2013, 21, 561–572. [Google Scholar] [CrossRef]
- Eusebio-Cope, A.; Sun, L.; Tanaka, T.; Chiba, S.; Kasahara, S.; Suzuki, N. The Chestnut Blight Fungus for Studies on Virus/Host and Virus/Virus Interactions: From a Natural to a Model Host. Virology 2015, 477, 164–175. [Google Scholar] [CrossRef]
- Sato, Y.; Hisano, S.; Suzuki, N. Exploration of the Yadokari/Yadonushi Nature of YkV3 and RnMBV3 in the Original Host and a Model Filamentous Fungus. Virus Res. 2023, 334, 199155. [Google Scholar] [CrossRef]
- Sun, L.; Nuss, D.L.; Suzuki, N. Synergism between a Mycoreovirus and a Hypovirus Mediated by the Papain-like Protease P29 of the Prototypic Hypovirus CHV1-EP713. J. Gen. Virol. 2006, 87, 3703–3714. [Google Scholar] [CrossRef] [PubMed]
- GISD. Cryphonectria Parasitica. Available online: https://www.iucngisd.org/gisd/speciesname/Cryphonectria+parasitica (accessed on 27 May 2024).
- Pest Register for NZ Importers|ONZPR|MPI|NZ Govt. Available online: https://pierpestregister.mpi.govt.nz/pest-register-importing/?scientificName=&organismType=&freeSearch=Cryphonectria+parasitica (accessed on 23 May 2024).
- Rigling, D.; Prospero, S. Cryphonectria Parasitica, the Causal Agent of Chestnut Blight: Invasion History, Population Biology and Disease Control. Mol. Plant Pathol. 2018, 19, 7–20. [Google Scholar] [CrossRef] [PubMed]
- Cryphonectria Parasitica. Available online: https://storymaps.arcgis.com/stories/0554468188c946399998fe14854fd8e3 (accessed on 23 May 2024).
- Kulik, T.; Molcan, T.; Fiedorowicz, G.; van Diepeningen, A.; Stakheev, A.; Treder, K.; Olszewski, J.; Bilska, K.; Beyer, M.; Pasquali, M.; et al. Whole-Genome Single Nucleotide Polymorphism Analysis for Typing the Pandemic Pathogen Fusarium graminearum Sensu Stricto. Front. Microbiol. 2022, 13, 885978. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Wang, S.; Zhang, L.; Qiu, D.; Zhou, X.; Guo, L. A Tripartite ssDNA Mycovirus from a Plant Pathogenic Fungus Is Infectious as Cloned DNA and Purified Virions. Sci. Adv. 2020, 6, eaay9634. [Google Scholar] [CrossRef]
- Li, P.; Bhattacharjee, P.; Wang, S.; Zhang, L.; Ahmed, I.; Guo, L. Mycoviruses in Fusarium Species: An Update. Front. Cell. Infect. Microbiol. 2019, 9, 257. [Google Scholar] [CrossRef] [PubMed]
- Zou, C.; Cao, X.; Zhou, Q.; Yao, Z. The Interaction between Hypovirulence-Associated Chrysoviruses and Their Host Fusarium Species. Viruses 2024, 16, 253. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, S.; Ruan, S.; Nzabanita, C.; Wang, Y.; Guo, L. A Mycovirus VIGS Vector Confers Hypovirulence to a Plant Pathogenic Fungus to Control Wheat FHB. Adv. Sci. 2023, 10, 2302606. [Google Scholar] [CrossRef] [PubMed]
- Honda, S.; Eusebio-Cope, A.; Miyashita, S.; Yokoyama, A.; Aulia, A.; Shahi, S.; Kondo, H.; Suzuki, N. Establishment of Neurospora crassa as a Model Organism for Fungal Virology. Nat. Commun. 2020, 11, 5627. [Google Scholar] [CrossRef] [PubMed]
- Cogoni, C.; Macino, G. Isolation of Quelling-Defective (Qde) Mutants Impaired in Posttranscriptional Transgene-Induced Gene Silencing in Neurospora crassa. Proc. Natl. Acad. Sci. USA 1997, 94, 10233–10238. [Google Scholar] [CrossRef] [PubMed]
- Cogoni, C.; Macino, G. Gene Silencing in Neurospora crassa Requires a Protein Homologous to RNA-Dependent RNA Polymerase. Nature 1999, 399, 166–169. [Google Scholar] [CrossRef]
- Tabilo-Agurto, C.; Del Rio-Pinilla, V.; Eltit-Villarroel, V.; Goity, A.; Muñoz-Guzmán, F.; Larrondo, L.F. Developing a Temperature-Inducible Transcriptional Rheostat in Neurospora crassa. MBio 2023, 14, e0329122. [Google Scholar] [CrossRef]
- Wang, Z.; Bartholomai, B.M.; Loros, J.J.; Dunlap, J.C. Optimized Fluorescent Proteins for 4-Color and Photoconvertible Live-Cell Imaging in Neurospora crassa. Fungal Genet. Biol. 2023, 164, 103763. [Google Scholar] [CrossRef]
- Kuo, H.-C.; Hui, S.; Choi, J.; Asiegbu, F.O.; Valkonen, J.P.T.; Lee, Y.-H. Secret Lifestyles of Neurospora crassa. Sci. Rep. 2014, 4, 5135. [Google Scholar] [CrossRef]
- Telengech, P.; Hisano, S.; Mugambi, C.; Hyodo, K.; Arjona-López, J.M.; López-Herrera, C.J.; Kanematsu, S.; Kondo, H.; Suzuki, N. Diverse Partitiviruses From the Phytopathogenic Fungus, Rosellinia necatrix. Front. Microbiol. 2020, 11, 1064. [Google Scholar] [CrossRef]
- Kondo, H.; Kanematsu, S.; Suzuki, N. Viruses of the White Root Rot Fungus, Rosellinia necatrix. In Advances in Virus Research; Elsevier: Amsterdam, The Netherlands, 2013; pp. 177–214. [Google Scholar]
- Pliego, C.; López-Herrera, C.; Ramos, C.; Cazorla, F.M. Developing Tools to Unravel the Biological Secrets of Rosellinia necatrix, an Emergent Threat to Woody Crops. Mol. Plant Pathol. 2012, 13, 226–239. [Google Scholar] [CrossRef] [PubMed]
- List of Pests Regulated by Canada—Inspection.Canada.Ca. Available online: https://inspection.canada.ca/en/plant-health/invasive-species/regulated-pests#r (accessed on 28 June 2024).
- Zhang, R.; Hisano, S.; Tani, A.; Kondo, H.; Kanematsu, S.; Suzuki, N. A Capsidless ssRNA Virus Hosted by an Unrelated dsRNA Virus. Nat. Microbiol. 2016, 1, 15001. [Google Scholar] [CrossRef]
- Telengech, P.; Hyodo, K.; Ichikawa, H.; Kuwata, R.; Kondo, H.; Suzuki, N. Replication of Single Viruses across the Kingdoms, Fungi, Plantae, and Animalia. Proc. Natl. Acad. Sci. USA 2024, 121, e2318150121. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, K.; Inoue, K.; Kida, C.; Uwamori, T.; Sasaki, A.; Kanematsu, S.; Park, P. Potentiation of Mycovirus Transmission by Zinc Compounds via Attenuation of Heterogenic Incompatibility in Rosellinia necatrix. Appl. Environ. Microbiol. 2013, 79, 3684–3691. [Google Scholar] [CrossRef] [PubMed]
- Mu, F.; Xie, J.; Cheng, S.; You, M.P.; Barbetti, M.J.; Jia, J.; Wang, Q.; Cheng, J.; Fu, Y.; Chen, T.; et al. Virome Characterization of a Collection of S. Sclerotiorum from Australia. Front. Microbiol. 2018, 8, 2540. [Google Scholar] [CrossRef] [PubMed]
- Jiang, D.; Fu, Y.; Guoqing, L.; Ghabrial, S.A. Viruses of the Plant Pathogenic Fungus Sclerotinia sclerotiorum. In Advances in Virus Research; Elsevier: Amsterdam, The Netherlands, 2013; pp. 215–248. [Google Scholar]
- Yu, X.; Li, B.; Fu, Y.; Jiang, D.; Ghabrial, S.A.; Li, G.; Peng, Y.; Xie, J.; Cheng, J.; Huang, J.; et al. A Geminivirus-Related DNA Mycovirus That Confers Hypovirulence to a Plant Pathogenic Fungus. Proc. Natl. Acad. Sci. USA 2010, 107, 8387–8392. [Google Scholar] [CrossRef]
- Qu, Z.; Fu, Y.; Lin, Y.; Zhao, Z.; Zhang, X.; Cheng, J.; Xie, J.; Chen, T.; Li, B.; Jiang, D. Transcriptional Responses of Sclerotinia sclerotiorum to the Infection by SsHADV-1. J. Fungi 2021, 7, 493. [Google Scholar] [CrossRef]
- Fu, M.; Qu, Z.; Pierre-Pierre, N.; Jiang, D.; Souza, F.L.; Miklas, P.N.; Porter, L.D.; Vandemark, G.J.; Chen, W. Exploring the Mycovirus Sclerotinia sclerotiorum Hypovirulence-Associated DNA Virus 1 as a Biocontrol Agent of White Mold Caused by Sclerotinia sclerotiorum. Plant Dis. 2024, 108, 624–634. [Google Scholar] [CrossRef]
- Amselem, J.; Cuomo, C.A.; van Kan, J.A.L.; Viaud, M.; Benito, E.P.; Couloux, A.; Coutinho, P.M.; de Vries, R.P.; Dyer, P.S.; Fillinger, S.; et al. Genomic Analysis of the Necrotrophic Fungal Pathogens Sclerotinia sclerotiorum and Botrytis cinerea. PLoS Genet. 2011, 7, e1002230. [Google Scholar] [CrossRef]
- Derbyshire, M.; Denton-Giles, M.; Hegedus, D.; Seifbarghy, S.; Rollins, J.; van Kan, J.; Seidl, M.F.; Faino, L.; Mbengue, M.; Navaud, O.; et al. The Complete Genome Sequence of the Phytopathogenic Fungus Sclerotinia sclerotiorum Reveals Insights into the Genome Architecture of Broad Host Range Pathogens. Genome Biol. Evol. 2017, 9, 593–618. [Google Scholar] [CrossRef]
- Regmi, R.; Newman, T.E.; Khentry, Y.; Kamphuis, L.G.; Derbyshire, M.C. Genome-Wide Identification of Sclerotinia sclerotiorum Small RNAs and Their Endogenous Targets. BMC Genomics 2023, 24, 582. [Google Scholar] [CrossRef] [PubMed]
- Qin, L.; Nong, J.; Cui, K.; Tang, X.; Gong, X.; Xia, Y.; Xu, Y.; Qiu, Y.; Li, X.; Xia, S. SsCak1 Regulates Growth and Pathogenicity in Sclerotinia sclerotiorum. Int. J. Mol. Sci. 2023, 24, 12610. [Google Scholar] [CrossRef] [PubMed]
- Bolton, M.D.; Thomma, B.P.H.J.; Nelson, B.D. Sclerotinia sclerotiorum (Lib.) de Bary: Biology and Molecular Traits of a Cosmopolitan Pathogen. Mol. Plant Pathol. 2006, 7, 1–16. [Google Scholar] [CrossRef]
- Córdoba, L.; Ruiz-Padilla, A.; Pardo-Medina, J.; Rodríguez-Romero, J.L.; Ayllón, M.A. Construction of a Mycoviral Infectious Clone for Reverse Genetics in Botrytis cinerea. In Host-Pathogen Interactions: Methods and Protocols; Springer: New York, NY, USA, 2024; pp. 47–68. [Google Scholar]
- Kluge, J.; Terfehr, D.; Kück, U. Inducible Promoters and Functional Genomic Approaches for the Genetic Engineering of Filamentous Fungi. Appl. Microbiol. Biotechnol. 2018, 102, 6357–6372. [Google Scholar] [CrossRef] [PubMed]
- Hollstein, L.S.; Schmitt, K.; Valerius, O.; Stahlhut, G.; Pöggeler, S. Establishment of in Vivo Proximity Labeling with Biotin Using TurboID in the Filamentous Fungus Sordaria macrospora. Sci. Rep. 2022, 12, 17727. [Google Scholar] [CrossRef]
- Rodriguez Coy, L.; Plummer, K.M.; Khalifa, M.E.; MacDiarmid, R.M. Mycovirus-Encoded Suppressors of RNA Silencing: Possible Allies or Enemies in the Use of RNAi to Control Fungal Disease in Crops. Front. Fungal Biol. 2022, 3, 965781. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, A.; Khan, H.A.; Jamal, A.; Virk, N.; Bhatti, M.F. Characterization of Two Novel Fusariviruses Co-Infecting a Single Isolate of Phytopathogenic Fungus Botrytis Cinerea. Virus Genes 2024, 60, 402–411. [Google Scholar] [CrossRef]
- Svanella-Dumas, L.; Marais, A.; Faure, C.; Theil, S.; Lefebvre, M.; Candresse, T. Genome Characterization of a Divergent Isolate of the Mycovirus Botrytis Virus F from a Grapevine Metagenome. Arch. Virol. 2018, 163, 3181–3183. [Google Scholar] [CrossRef]
- Howitt, R.L.J.; Beever, R.E.; Pearson, M.N.; Forster, R.L.S. Genome characterization of Botrytis virus F, a flexuous rod-shaped mycovirus resembling plant ‘potex-like’ viruses. J. Gen. Virol. 2001, 82, 67–78. [Google Scholar] [CrossRef]
- Wu, M.; Zhang, L.; Li, G.; Jiang, D.; Ghabrial, S.A. Genome Characterization of a Debilitation-Associated Mitovirus Infecting the Phytopathogenic Fungus Botrytis Cinerea. Virology 2010, 406, 117–126. [Google Scholar] [CrossRef]
- Wang, Q.; Zou, Q.; Dai, Z.; Hong, N.; Wang, G.; Wang, L. Four Novel Mycoviruses from the Hypovirulent Botrytis Cinerea SZ-2-3y Isolate from Paris Polyphylla: Molecular Characterisation and Mitoviral Sequence Transboundary Entry into Plants. Viruses 2022, 14, 151. [Google Scholar] [CrossRef] [PubMed]
- Potgieter, C.A.; Castillo, A.; Castro, M.; Cottet, L.; Morales, A. A Wild-Type Botrytis Cinerea Strain Co-Infected by Double-Stranded RNA Mycoviruses Presents Hypovirulence-Associated Traits. Virol. J. 2013, 10, 220. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Sang, W.; Wu, M.-D.; Zhang, J.; Yang, L.; Zhou, Y.-J.; Chen, W.-D.; Li, G.-Q. Novel Hypovirulence-Associated RNA Mycovirus in the Plant-Pathogenic Fungus Botrytis Cinerea: Molecular and Biological Characterization. Appl. Environ. Microbiol. 2015, 81, 2299–2310. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Jin, F.; Zhang, J.; Yang, L.; Jiang, D.; Li, G. Characterization of a Novel Bipartite Double-Stranded RNA Mycovirus Conferring Hypovirulence in the Phytopathogenic Fungus Botrytis porri. J. Virol. 2012, 86, 6605–6619. [Google Scholar] [CrossRef]
Virus | VSR Protein/Mechanism | Family | Host | Botrytis cinerea Host? | Reference |
---|---|---|---|---|---|
Potato virus X | TGB1/ Blocking the silencing signal in initially infected cells or stopping its spread to uninfected cells | Alphaflexiviridae | Plants | No | [105] |
Plantago asiatica mosaic virus | [106] | ||||
Alternanthera mosaic virus | [107] | ||||
Turnip yellow mosaic virus | p69/partially inhibits the amplification but not the execution of RNA silencing | Tymoviridae | Plants | No | [108] |
Red clover necrotic mosaic virus | p27, p88, MP/Sequestering DCL1, potentially utilizing its helicase properties for viral replication | Tombusviridae | Plants | No | [109,110] |
Rice grassy stunt virus | nsP5 | Phenuiviridae | Plants | No | [111] |
chikungunya virus | nsP2, nsP3 | Togaviridae | Humans | No | [112] |
Botrytis virus F | Unknown | Gammaflexiviridae | Fungi | Yes | [97] |
Fusarium graminearum virus 1 | P2 gene/FgDICER2 and FgAGO1 suppression | Fusariviridae | Fungi | No | [113] |
Cryphonectria hypovirus 1 | p29/reduction in transcription level of DCL2 and AGL2 | Hypoviridae | Fungi | No | [114,115] |
Cryphonectria hypovirus 4 | p24 | Hypoviridae | Fungi | No | [116] |
Aspergillus virus 1816 | unknown | Totiviridae | Fungi | No | [91] |
Tulasnella partitivirus 2 | CP | Partitiviridae | Fungi | No | [117] |
Tulasnella partitivirus 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khalifa, M.E.; Ayllón, M.A.; Rodriguez Coy, L.; Plummer, K.M.; Gendall, A.R.; Chooi, K.M.; van Kan, J.A.L.; MacDiarmid, R.M. Mycologists and Virologists Align: Proposing Botrytis cinerea for Global Mycovirus Studies. Viruses 2024, 16, 1483. https://doi.org/10.3390/v16091483
Khalifa ME, Ayllón MA, Rodriguez Coy L, Plummer KM, Gendall AR, Chooi KM, van Kan JAL, MacDiarmid RM. Mycologists and Virologists Align: Proposing Botrytis cinerea for Global Mycovirus Studies. Viruses. 2024; 16(9):1483. https://doi.org/10.3390/v16091483
Chicago/Turabian StyleKhalifa, Mahmoud E., María A. Ayllón, Lorena Rodriguez Coy, Kim M. Plummer, Anthony R. Gendall, Kar Mun Chooi, Jan A.L. van Kan, and Robin M. MacDiarmid. 2024. "Mycologists and Virologists Align: Proposing Botrytis cinerea for Global Mycovirus Studies" Viruses 16, no. 9: 1483. https://doi.org/10.3390/v16091483