Impact of Combination Antiretroviral Treatment on Liver Metabolic Health in HIV-Infected Persons
Abstract
:1. Timeline Aspect
1.1. The Evolution of Antiretroviral Treatment
1.2. Liver Diseases in PLWH over Decades
2. Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD)
2.1. Introduction
2.2. MASLD Pathogenesis in the General Population
2.3. PLWH-Specific Factors for MAFLD Development
3. Impact of Antiretroviral Agents
3.1. General Approach
3.2. NRTIs
3.3. NNRTIs
3.4. PIs
3.5. INSTIs
3.6. CCR5 Receptor Antagonists (aCCR5)
3.7. New Drug Classes
3.8. Intergroup Comparison
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Tseng, A.; Seet, J.; Phillips, E.J. The Evolution of Three Decades of Antiretroviral Therapy: Challenges, Triumphs and the Promise of the Future: Three Decades of Antiretroviral Therapy. Br. J. Clin. Pharmacol. 2015, 79, 182–194. [Google Scholar] [CrossRef] [PubMed]
- Cervo, A.; Shengir, M.; Patel, K.; Sebastiani, G. NASH in HIV. Curr. HIV/AIDS Rep. 2020, 17, 601–614. [Google Scholar] [CrossRef]
- Benedicto, A.M.; Fuster-Martínez, I.; Tosca, J.; Esplugues, J.V.; Blas-García, A.; Apostolova, N. NNRTI and Liver Damage: Evidence of Their Association and the Mechanisms Involved. Cells 2021, 10, 1687. [Google Scholar] [CrossRef]
- Dvory-Sobol, H.; Shaik, N.; Callebaut, C.; Rhee, M.S. Lenacapavir: A First-in-Class HIV-1 Capsid Inhibitor. Curr. Opin. HIV AIDS 2022, 17, 15–21. [Google Scholar] [CrossRef]
- Matthews, R.P.; Jackson Rudd, D.; Zhang, S.; Fillgrove, K.L.; Sterling, L.M.; Grobler, J.A.; Vargo, R.C.; Stoch, S.A.; Iwamoto, M. Safety and Pharmacokinetics of Once-Daily Multiple-Dose Administration of Islatravir in Adults without HIV. JAIDS J. Acquir. Immune Defic. Syndr. 2021, 88, 314–321. [Google Scholar] [CrossRef]
- Rodés, B.; Cadiñanos, J.; Esteban-Cantos, A.; Rodríguez-Centeno, J.; Arribas, J.R. Ageing with HIV: Challenges and Biomarkers. EBioMedicine 2022, 77, 103896. [Google Scholar] [CrossRef]
- Bavaro, D.F.; Laghetti, P.; Poliseno, M.; De Gennaro, N.; Di Gennaro, F.; Saracino, A. A Step Closer to the “Fourth 90”: A Practical Narrative Review of Diagnosis and Management of Nutritional Issues of People Living with HIV. Diagnostics 2021, 11, 2047. [Google Scholar] [CrossRef]
- Seth, A.; Sherman, K.E. Fatty Liver Disease in Persons with HIV Infection. Top. Antivir. Med. 2019, 27, 75–82. [Google Scholar]
- Allen, A.M.; Talwalkar, J.A. Liver Disease Associated with Systemic Viral Infection. In Zakim and Boyer’s Hepatology; Elsevier: Amsterdam, The Netherlands, 2018; pp. 556–567.e3. ISBN 978-0-323-37591-7. [Google Scholar]
- Mauss, S.; Boesecke, C. Communicable and Noncommunicable Liver Disease in HIV. Curr. Opin. HIV AIDS 2021, 16, 152–155. [Google Scholar] [CrossRef]
- Alter, M.J. Epidemiology of Viral Hepatitis and HIV Co-Infection. J. Hepatol. 2006, 44, S6–S9. [Google Scholar] [CrossRef]
- Bosh, K.A.; Hall, H.I.; Eastham, L.; Daskalakis, D.C.; Mermin, J.H. Estimated Annual Number of HIV Infections—United States, 1981–2019. MMWR Morb. Mortal. Wkly. Rep. 2021, 70, 801–806. [Google Scholar] [CrossRef]
- Büttner, A. Hepatopathien und Drogenkonsum. Rechtsmedizin 2019, 29, 185–189. [Google Scholar] [CrossRef]
- Gervasoni, C.; Cattaneo, D.; Filice, C.; Galli, M. Drug-Induced Liver Steatosis in Patients with HIV Infection. Pharmacol. Res. 2019, 145, 104267. [Google Scholar] [CrossRef] [PubMed]
- Wohlfeiler, M.; Mounzer, K.; Brunet, L.; Fusco, J.; Vannappagari, V.; Curtis, L.; Payvandi, N.; Aboud, M.; Hsu, R.; Lackey, P.; et al. Antiretroviral Therapy and Liver Disorders in the OPERA® Cohort. Ther. Adv. Drug Saf. 2020, 11, 2042098620976953. [Google Scholar] [CrossRef]
- Farahani, M.; Mulinder, H.; Farahani, A.; Marlink, R. Prevalence and Distribution of Non-AIDS Causes of Death among HIV-Infected Individuals Receiving Antiretroviral Therapy: A Systematic Review and Meta-Analysis. Int. J. STD AIDS 2017, 28, 636–650. [Google Scholar] [CrossRef] [PubMed]
- Rinella, M.E.; Lazarus, J.V.; Ratziu, V.; Francque, S.M.; Sanyal, A.J.; Kanwal, F.; Romero, D.; Abdelmalek, M.F.; Anstee, Q.M.; Arab, J.P.; et al. A multisociety Delphi consensus statement on new fatty liver disease nomenclature. Hepatology 2023, 78, 1966–1986. [Google Scholar] [CrossRef] [PubMed]
- Powell, E.E.; Wong, V.W.-S.; Rinella, M. Non-Alcoholic Fatty Liver Disease. Lancet 2021, 397, 2212–2224. [Google Scholar] [CrossRef] [PubMed]
- European Association for the Study of the Liver (EASL); European Association for the Study of Diabetes (EASD); European Association for the Study of Obesity (EASO). EASL–EASD–EASO Clinical Practice Guidelines for the Management of Non-Alcoholic Fatty Liver Disease. J. Hepatol. 2016, 64, 1388–1402. [Google Scholar] [CrossRef]
- van Welzen, B.J.; Mudrikova, T.; El Idrissi, A.; Hoepelman, A.I.M.; Arends, J.E. A Review of Non-Alcoholic Fatty Liver Disease in HIV-Infected Patients: The Next Big Thing? Infect. Dis. Ther. 2019, 8, 33–50. [Google Scholar] [CrossRef]
- Kulik, L.; El-Serag, H.B. Epidemiology and Management of Hepatocellular Carcinoma. Gastroenterology 2019, 156, 477–491.e1. [Google Scholar] [CrossRef]
- Eslam, M.; Sanyal, A.J.; George, J. International Consensus Panel MAFLD: A Consensus-Driven Proposed Nomenclature for Metabolic Associated Fatty Liver Disease. Gastroenterology 2020, 158, 1999–2014.e1. [Google Scholar] [CrossRef] [PubMed]
- Ramai, D.; Facciorusso, A.; Vigandt, E.; Schaf, B.; Saadedeen, W.; Chauhan, A.; di Nunzio, S.; Shah, A.; Giacomelli, L.; Sacco, R. Progressive Liver Fibrosis in Non-Alcoholic Fatty Liver Disease. Cells 2021, 10, 3401. [Google Scholar] [CrossRef] [PubMed]
- Polyzos, S.A.; Kountouras, J.; Mantzoros, C.S. Obesity and Nonalcoholic Fatty Liver Disease: From Pathophysiology to Therapeutics. Metabolism 2019, 92, 82–97. [Google Scholar] [CrossRef] [PubMed]
- Targher, G.; Corey, K.E.; Byrne, C.D.; Roden, M. The Complex Link between NAFLD and Type 2 Diabetes Mellitus—Mechanisms and Treatments. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 599–612. [Google Scholar] [CrossRef] [PubMed]
- Koethe, J.R.; Lagathu, C.; Lake, J.E.; Domingo, P.; Calmy, A.; Falutz, J.; Brown, T.T.; Capeau, J. HIV and Antiretroviral Therapy-Related Fat Alterations. Nat. Rev. Dis. Primers 2020, 6, 48. [Google Scholar] [CrossRef] [PubMed]
- Park, E.; Jeong, J.-J.; Won, S.-M.; Sharma, S.P.; Gebru, Y.A.; Ganesan, R.; Gupta, H.; Suk, K.T.; Kim, D.J. Gut Microbiota-Related Cellular and Molecular Mechanisms in the Progression of Nonalcoholic Fatty Liver Disease. Cells 2021, 10, 2634. [Google Scholar] [CrossRef] [PubMed]
- Calza, L.; Colangeli, V.; Borderi, M.; Coladonato, S.; Tazza, B.; Fornaro, G.; Badia, L.; Guardigni, V.; Verucchi, G.; Viale, P. Improvement in Liver Steatosis after the Switch from a Ritonavir-Boosted Protease Inhibitor to Raltegravir in HIV-Infected Patients with Non-Alcoholic Fatty Liver Disease. Infect Dis Lond 2019, 51, 593–601. [Google Scholar] [CrossRef]
- Bischoff, J.; Gu, W.; Schwarze-Zander, C.; Boesecke, C.; Wasmuth, J.-C.; van Bremen, K.; Dold, L.; Rockstroh, J.K.; Trebicka, J. Stratifying the Risk of NAFLD in Patients with HIV under Combination Antiretroviral Therapy (cART). EClinicalMedicine 2021, 40, 101116. [Google Scholar] [CrossRef]
- Guaraldi, G.; Lonardo, A.; Maia, L.; Palella, F.J. Metabolic Concerns in Aging HIV-Infected Persons: From Serum Lipid Phenotype to Fatty Liver. AIDS 2017, 31 (Suppl. S2), S147–S156. [Google Scholar] [CrossRef]
- Lagathu, C.; Béréziat, V.; Gorwood, J.; Fellahi, S.; Bastard, J.-P.; Vigouroux, C.; Boccara, F.; Capeau, J. Metabolic Complications Affecting Adipose Tissue, Lipid and Glucose Metabolism Associated with HIV Antiretroviral Treatment. Expert. Opin. Drug Saf. 2019, 18, 829–840. [Google Scholar] [CrossRef]
- Rockstroh, J.K. Non-Alcoholic Fatty Liver Disease (NAFLD) and Non-Alcoholic Steatohepatitis (NASH) in HIV. Curr. HIV/AIDS Rep. 2017, 14, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Pires, L.B.; Rocha, R.; Vargas, D.; Daltro, C.; Cotrim, H.P. Non-Alcoholic Fatty Liver Disease in Patients Infected with Human Immunodeficiency Virus: A Systematic Review. Rev. Assoc. Med. Bras. 2020, 66, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Coronel-Castillo, C.E.; Qi, X.; Contreras-Carmona, J.; Ramírez-Pérez, O.L.; Méndez-Sánchez, N. Nonalcoholic Fatty Liver Disease and Nonalcoholic Steatohepatitis in HIV Infection: A Metabolic Approach of an Infectious Disease. Expert. Rev. Gastroenterol. Hepatol. 2019, 13, 531–540. [Google Scholar] [CrossRef] [PubMed]
- Mayer, K.H.; Molina, J.-M.; Thompson, M.A.; Anderson, P.L.; Mounzer, K.C.; De Wet, J.J.; DeJesus, E.; Jessen, H.; Grant, R.M.; Ruane, P.J.; et al. Emtricitabine and Tenofovir Alafenamide vs. Emtricitabine and Tenofovir Disoproxil Fumarate for HIV Pre-Exposure Prophylaxis (DISCOVER): Primary Results from a Randomised, Double-Blind, Multicentre, Active-Controlled, Phase 3, Non-Inferiority Trial. Lancet 2020, 396, 239–254. [Google Scholar] [CrossRef] [PubMed]
- Wood, B.R.; Huhn, G.D. Excess Weight Gain With Integrase Inhibitors and Tenofovir Alafenamide: What Is the Mechanism and does It Matter? Open Forum Infect. Dis. 2021, 8, ofab542. [Google Scholar] [CrossRef] [PubMed]
- Surial, B.; Mugglin, C.; Calmy, A.; Cavassini, M.; Günthard, H.F.; Stöckle, M.; Bernasconi, E.; Schmid, P.; Tarr, P.E.; Furrer, H.; et al. Weight and Metabolic Changes after Switching from Tenofovir Disoproxil Fumarate to Tenofovir Alafenamide in People Living with HIV: A Cohort Study. Ann. Intern. Med. 2021, 174, 758–767. [Google Scholar] [CrossRef]
- Squillace, N.; Ricci, E.; Menzaghi, B.; De Socio, G.V.; Passerini, S.; Martinelli, C.; Mameli, M.S.; Maggi, P.; Falasca, K.; Cordier, L.; et al. The Effect of Switching from Tenofovir Disoproxil Fumarate (TDF) to Tenofovir Alafenamide (TAF) on Liver Enzymes, Glucose, and Lipid Profile. Drug Des. Dev. Ther. 2020, 14, 5515–5520. [Google Scholar] [CrossRef]
- Sax, P.E.; Erlandson, K.M.; Lake, J.E.; Mccomsey, G.A.; Orkin, C.; Esser, S.; Brown, T.T.; Rockstroh, J.K.; Wei, X.; Carter, C.C.; et al. Weight Gain following Initiation of Antiretroviral Therapy: Risk Factors in Randomized Comparative Clinical Trials. Clin. Infect. Dis. 2020, 71, 1379–1389. [Google Scholar] [CrossRef]
- Riebensahm, C.; Berzigotti, A.; Surial, B.; Günthard, H.F.; Tarr, P.E.; Furrer, H.; Rauch, A.; Wandeler, G. Swiss HIV Cohort Study Factors Associated with Liver Steatosis in People with Human Immunodeficiency Virus on Contemporary Antiretroviral Therapy. Open Forum Infect. Dis. 2022, 9, ofac538. [Google Scholar] [CrossRef]
- Eckard, A.R.; McComsey, G.A. Weight Gain and Integrase Inhibitors. Curr. Opin. Infect. Dis. 2020, 33, 10–19. [Google Scholar] [CrossRef]
- Venter, W.D.F.; Sokhela, S.; Simmons, B.; Moorhouse, M.; Fairlie, L.; Mashabane, N.; Serenata, C.; Akpomiemie, G.; Masenya, M.; Qavi, A.; et al. Dolutegravir with Emtricitabine and Tenofovir Alafenamide or Tenofovir Disoproxil Fumarate versus Efavirenz, Emtricitabine, and Tenofovir Disoproxil Fumarate for Initial Treatment of HIV-1 Infection (ADVANCE): Week 96 Results from a Randomised, Phase 3, Non-Inferiority Trial. Lancet HIV 2020, 7, e666–e676. [Google Scholar] [CrossRef] [PubMed]
- Carbonell Ballesteros, E. Molecular Mechanisms Involved in the Anti-Inflammatory and Hepatoprotective Effects of the Antiretroviral drug Rilpivirine. Ph.D. Thesis, Universitat Politècnica de València, València, Spain, 2022. [Google Scholar]
- Lucantoni, F.; Benedicto, A.M.; Gruevska, A.; Moragrega, Á.B.; Fuster-Martínez, I.; Esplugues, J.V.; Blas-García, A.; Apostolova, N. Implication of Autophagy in the Antifibrogenic Effect of Rilpivirine: When More Is Less. Cell Death Dis. 2022, 13, 385. [Google Scholar] [CrossRef] [PubMed]
- Molina, J.-M.; Squires, K.; Sax, P.E.; Cahn, P.; Lombaard, J.; DeJesus, E.; Lai, M.-T.; Rodgers, A.; Lupinacci, L.; Kumar, S.; et al. Doravirine versus Ritonavir-Boosted Darunavir in Antiretroviral-Naive Adults with HIV-1 (DRIVE-FORWARD): 96-Week Results of a Randomised, Double-Blind, Non-Inferiority, Phase 3 Trial. Lancet HIV 2020, 7, e16–e26. [Google Scholar] [CrossRef] [PubMed]
- Stockdale, A.J.; Khoo, S. Doravirine: Its Role in HIV Treatment. Curr. Opin. HIV AIDS 2022, 17, 4–14. [Google Scholar] [CrossRef] [PubMed]
- Mohan, J.; Ghazi, T.; Chuturgoon, A.A. A Critical Review of the Biochemical Mechanisms and Epigenetic Modifications in HIV- and Antiretroviral-Induced Metabolic Syndrome. Int. J. Mol. Sci. 2021, 22, 12020. [Google Scholar] [CrossRef] [PubMed]
- Calza, L.; Colangeli, V.; Borderi, M.; Coladonato, S.; Tazza, B.; Bon, I.; Re, M.C.; Viale, P. Improvement in Insulin Sensitivity and Serum Leptin Concentration after the Switch from a Ritonavir-Boosted PI to Raltegravir or Dolutegravir in Non-Diabetic HIV-Infected Patients. J. Antimicrob. Chemother. 2019, 74, 731–738. [Google Scholar] [CrossRef] [PubMed]
- Kajogoo, V.D.; Gorret Atim, M.; Amare, D.; Geleta, M.; Muchie, Y.; Tesfahunei, H.A.; Olomi, W.; Acam, J.; Manyazewal, T. HIV Protease Inhibitors and Insulin Sensitivity: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Front. Pharmacol. 2021, 12, 635089. [Google Scholar] [CrossRef]
- Scarsi, K.K.; Havens, J.P.; Podany, A.T.; Avedissian, S.N.; Fletcher, C.V. HIV-1 Integrase Inhibitors: A Comparative Review of Efficacy and Safety. Drugs 2020, 80, 1649–1676. [Google Scholar] [CrossRef]
- Bai, R.; Lv, S.; Wu, H.; Dai, L. Effects of Different Integrase Strand Transfer Inhibitors on Body Weight in Patients with HIV/AIDS: A Network Meta-Analysis. BMC Infect. Dis. 2022, 22, 118. [Google Scholar] [CrossRef]
- McMahon, C.; Trevaskis, J.L.; Carter, C.; Holsapple, K.; White, K.; Das, M.; Collins, S.; Martin, H.; Burns-Naas, L.A. Lack of an Association between Clinical INSTI-Related Body Weight Gain and Direct Interference with MC4 Receptor (MC4R), a Key Central Regulator of Body Weight. PLoS ONE 2020, 15, e0229617. [Google Scholar] [CrossRef]
- Kolakowska, A.; Maresca, A.F.; Collins, I.J.; Cailhol, J. Update on Adverse Effects of HIV Integrase Inhibitors. Curr. Treat. Options Infect. Dis. 2019, 11, 372–387. [Google Scholar] [CrossRef] [PubMed]
- Kirkegaard-Klitbo, D.M.; Thomsen, M.T.; Gelpi, M.; Bendtsen, F.; Nielsen, S.D.; Benfield, T. Hepatic Steatosis Associated With Exposure to Elvitegravir and Raltegravir. Clin. Infect. Dis. 2021, 73, e811–e814. [Google Scholar] [CrossRef] [PubMed]
- Navarro, J.; Curran, A.; Raventós, B.; García, J.; Suanzes, P.; Descalzo, V.; Álvarez, P.; Espinosa, N.; Montes, M.L.; Suárez-García, I.; et al. Prevalence of Non-Alcoholic Fatty Liver Disease in a Multicentre Cohort of People Living with HIV in Spain. Eur. J. Intern. Med. 2023, 110, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Landovitz, R.J.; Zangeneh, S.Z.; Chau, G.; Grinsztejn, B.; Eron, J.J.; Dawood, H.; Magnus, M.; Liu, A.Y.; Panchia, R.; Hosseinipour, M.C.; et al. Cabotegravir Is Not Associated with Weight Gain in Human Immunodeficiency Virus-Uninfected Individuals in HPTN 077. Clin. Infect. Dis. 2020, 70, 319–322. [Google Scholar] [CrossRef] [PubMed]
- Mills, A.; Richmond, G.J.; Newman, C.; Osiyemi, O.; Cade, J.; Brinson, C.; De Vente, J.; Margolis, D.A.; Sutton, K.C.; Wilches, V.; et al. Long-Acting Cabotegravir and Rilpivirine for HIV-1 Suppression: Switch to 2-Monthly Dosing after 5 Years of Daily Oral Therapy. AIDS 2022, 36, 195–203. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Martínez, L.; Ochoa-Callejero, L.; Rubio-Mediavilla, S.; Narro, J.; Bernardo, I.; Oteo, J.-A.; Blanco, J.-R. Maraviroc Improves Hepatic Triglyceride Content but Not Inflammation in a Murine Nonalcoholic Fatty Liver Disease Model Induced by a Chronic Exposure to High-Fat Diet. Transl. Res. 2018, 196, 17–30. [Google Scholar] [CrossRef]
- Pérez-Matute, P.; Pérez-Martínez, L.; Aguilera-Lizarraga, J.; Blanco, J.R.; Oteo, J.A. Maraviroc Modifies Gut Microbiota Composition in a Mouse Model of Obesity: A Plausible Therapeutic Option to Prevent Metabolic Disorders in HIV-Infected Patients. Rev. Esp. Quimioter. 2015, 28, 200–206. [Google Scholar]
- Long-Acting Lenacapavir in People with Multidrug-Resistant HIV-1: Week 52 Results. Available online: https://www.natap.org/2022/CROI/croi_08.htm (accessed on 8 April 2023).
- Long-Acting Lenacapavir in a Combination Regimen for Treatment NaÃŊve PWH: Week 80. Available online: https://www.natap.org/2023/CROI/croi_59.htm (accessed on 9 April 2023).
- Molina, J.-M.; Yazdanpanah, Y.; Afani Saud, A.; Bettacchi, C.; Chahin Anania, C.; Klopfer, S.O.; Grandhi, A.; Eves, K.; Hepler, D.; Robertson, M.N.; et al. Brief Report: Efficacy and Safety of Oral Islatravir Once Daily in Combination With Doravirine Through 96 Weeks for Treatment-Naive Adults With HIV-1 Infection Receiving Initial Treatment With Islatravir, Doravirine, and Lamivudine. J. Acquir. Immune Defic. Syndr. 2022, 91, 68–72. [Google Scholar] [CrossRef]
- Markowitz, M.; Grobler, J.A. Islatravir for the Treatment and Prevention of Infection with the Human Immunodeficiency Virus Type 1. Curr. Opin. HIV AIDS 2020, 15, 27–32. [Google Scholar] [CrossRef]
- Bernice, F.; Kilcrease, C. Novel and Investigational HIV Therapies for Treatment and Prevention: Focus on Cabotegravir, Islatravir, and Lenacapavir. Curr. Infect. Dis. Rep. 2022, 24, 1–8. [Google Scholar] [CrossRef]
- Cahn, P.; Madero, J.S.; Arribas, J.R.; Antinori, A.; Ortiz, R.; Clarke, A.E.; Hung, C.-C.; Rockstroh, J.K.; Girard, P.-M.; Sievers, J.; et al. Dolutegravir plus Lamivudine versus Dolutegravir plus Tenofovir Disoproxil Fumarate and Emtricitabine in Antiretroviral-Naive Adults with HIV-1 Infection (GEMINI-1 and GEMINI-2): Week 48 Results from Two Multicentre, Double-Blind, Randomised, Non-Inferiority, Phase 3 Trials. Lancet 2019, 393, 143–155. [Google Scholar] [CrossRef] [PubMed]
- Raffi, F.; Orkin, C.; Clarke, A.; Slama, L.; Gallant, J.; Daar, E.; Henry, K.; Santana-Bagur, J.; Stein, D.K.; Bellos, N.; et al. Brief Report: Long-Term (96-Week) Efficacy and Safety After Switching From Tenofovir Disoproxil Fumarate to Tenofovir Alafenamide in HIV-Infected, Virologically Suppressed Adults. J. Acquir. Immune Defic. Syndr. 2017, 75, 226–231. [Google Scholar] [CrossRef] [PubMed]
- Orkin, C.; DeJesus, E.; Ramgopal, M.; Crofoot, G.; Ruane, P.; LaMarca, A.; Mills, A.; Vandercam, B.; de Wet, J.; Rockstroh, J.; et al. Switching from Tenofovir Disoproxil Fumarate to Tenofovir Alafenamide Coformulated with Rilpivirine and Emtricitabine in Virally Suppressed Adults with HIV-1 Infection: A Randomised, Double-Blind, Multicentre, Phase 3b, Non-Inferiority Study. Lancet HIV 2017, 4, e195–e204. [Google Scholar] [CrossRef] [PubMed]
- Cohen, C.; Wohl, D.; Arribas, J.R.; Henry, K.; Van Lunzen, J.; Bloch, M.; Towner, W.; Wilkins, E.; Ebrahimi, R.; Porter, D.; et al. Week 48 Results from a Randomized Clinical Trial of Rilpivirine/Emtricitabine/Tenofovir Disoproxil Fumarate vs. Efavirenz/Emtricitabine/Tenofovir Disoproxil Fumarate in Treatment-Naive HIV-1-Infected Adults. AIDS 2014, 28, 989–997. [Google Scholar] [CrossRef]
- Center for Drug Evaluation and Research. Human Immunodeficiency Virus-1 Infection: Developing Antiretroviral Drugs for Treatment. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/human-immunodeficiency-virus-1-infection-developing-antiretroviral-drugs-treatment (accessed on 15 March 2023).
- EACS Guidelines 2022. Available online: https://eacs.sanfordguide.com (accessed on 9 April 2023).
- Fitch, K.V. Contemporary Lifestyle Modification Interventions to Improve Metabolic Comorbidities in HIV. Curr. HIV/AIDS Rep. 2019, 16, 482–491. [Google Scholar] [CrossRef]
- Zelber-Sagi, S.; Godos, J.; Salomone, F. Lifestyle Changes for the Treatment of Nonalcoholic Fatty Liver Disease: A Review of Observational Studies and Intervention Trials. Ther. Adv. Gastroenterol. 2016, 9, 392–407. [Google Scholar] [CrossRef]
Group of ARV Agents | Agents | Metabolic Effects | Additional Information | |
---|---|---|---|---|
NRTIs | First generation | ddC, ddI, d4T, and AZT | High mitochondrial toxicity due to the inhibition of mitochondrial gamma polymerase | No longer in common use |
Second generation | TDF | Appetite suppression, improvement of lipid profile | ||
TAF | No effect or increase of serum lipids; weight gain—peculiarly when switched from another NRTI agent, especially from TDF; effects particularly possible in combination with INSTIs | |||
ABC | Probable weight suppression effect | |||
NNRTIs | First generation | NVP | Hepatic and mitochondrial toxicity; hypersensitivity reactions; suggested DAMP pathway in hepatocyte death | No longer in common use |
EFV | Suggested PXR-dependent manner of causing steatosis; accumulation of FAs and TGs in cytoplasm; has been connected with appetite suppression | No longer in common use | ||
Second generation | RPV | Relatively good metabolic safety, potential hepatoprotective effect (due to mitigation of hepatic stellate cell activation) and even possible improvement in the lipid profile (prevents excessive lipid droplet accumulation) | ||
Third generation | DOR | Provides slight improvement in the lipid profile, comparable weight gain with DRV | ||
PIs | First generation and older second generation | INV, IDV, RTV, LPV, and ATV | Mitochondrial dysfunction, increased ROS production; impairment of GLUTs—resulting in IR development | No longer in common use, except for RTV as a booster |
Newer second generation | DRV | No or non-significant impact on IR; possible GIT toxicity causing weight loss | ||
INSTIs | DTG, EVG, and RAL | Potential changes in adipocyte metabolism and adipokine secretion; increase of IR; lack of GIT AEs—good appetite and greater calorie intake | DTG seems to show the greatest weight gain; higher weight gain, in particular, when used in combination with TAF | |
CAB | Shows favourable metabolic profile (no interference with weight gain or glucose and lipid profile); possibly no effect on liver steatosis induction |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Biały, M.; Czarnecki, M.; Inglot, M. Impact of Combination Antiretroviral Treatment on Liver Metabolic Health in HIV-Infected Persons. Viruses 2023, 15, 2432. https://doi.org/10.3390/v15122432
Biały M, Czarnecki M, Inglot M. Impact of Combination Antiretroviral Treatment on Liver Metabolic Health in HIV-Infected Persons. Viruses. 2023; 15(12):2432. https://doi.org/10.3390/v15122432
Chicago/Turabian StyleBiały, Michał, Marcin Czarnecki, and Małgorzata Inglot. 2023. "Impact of Combination Antiretroviral Treatment on Liver Metabolic Health in HIV-Infected Persons" Viruses 15, no. 12: 2432. https://doi.org/10.3390/v15122432
APA StyleBiały, M., Czarnecki, M., & Inglot, M. (2023). Impact of Combination Antiretroviral Treatment on Liver Metabolic Health in HIV-Infected Persons. Viruses, 15(12), 2432. https://doi.org/10.3390/v15122432