Study on the Constraint Effect of Vegetation on Ecosystem Services in the Yellow River Basin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Region
2.2. Data Sources
2.2.1. The Original Data Source
2.2.2. Calculation Method
2.3. Analysis Methods
2.3.1. Theil–Sen Median Slope Analysis and Mann–Kendall Test
2.3.2. Constraint Line Extraction
3. Results
3.1. Spatio-Temporal Changes in Land Use in the YRB from 2010 to 2020
3.2. Varying Trend in the FVC in the YRB
3.3. Spatio-Temporal and Spatial Distributions of ESs
3.4. Spatio-Temporal Change Patterns of TES
3.5. Relationships between FVC and ESs
3.6. Relationship between FVC and TES
4. Discussion
4.1. Vegetation Cover Change and ESs Trends
4.2. Restraint Effect of FVC on ESs
4.3. Limitations of This Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Costanza, R.; d’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Daily, G.C. Nature’s Services: Societal Dependence on Natural Ecosystems (1997). In The Future of Nature; Robin, L., Sörlin, S., Warde, P., Eds.; Yale University Press: New Haven, CT, USA, 2013; pp. 454–464. [Google Scholar] [CrossRef]
- Millennium Ecosystem Assessment (Program) (Ed.) Ecosystems and Human Well-Being: Synthesis; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Scholes, R.; Reyers, B.; Biggs, R.; Spierenburg, M.; Duriappah, A. Multi-scale and cross-scale assessments of social–ecological systems and their ecosystem services. Curr. Opin. Environ. Sustain. 2013, 5, 16–25. [Google Scholar] [CrossRef]
- Gomes, E.; Inácio, M.; Bogdzevič, K.; Kalinauskas, M.; Karnauskaitė, D.; Pereira, P. Future land-use changes and its impacts on terrestrial ecosystem services: A review. Sci. Total Environ. 2021, 781, 146716. [Google Scholar] [CrossRef]
- Nolan, C.; Overpeck, J.T.; Allen, J.R.M.; Anderson, P.M.; Betancourt, J.L.; Binney, H.A.; Brewer, S.; Bush, M.B.; Chase, B.M.; Cheddadi, R.; et al. Past and future global transformation of terrestrial ecosystems under climate change. Science 2018, 361, 920–923. [Google Scholar] [CrossRef]
- Gao, J.; Zuo, L. Revealing ecosystem services relationships and their driving factors for five basins of Beijing. J. Geogr. Sci. 2021, 31, 111–129. [Google Scholar] [CrossRef]
- Shen, J.; Li, S.; Liang, Z.; Liu, L.; Li, D.; Wu, S. Exploring the heterogeneity and nonlinearity of trade-offs and synergies among ecosystem services bundles in the Beijing-Tianjin-Hebei urban agglomeration. Ecosyst. Serv. 2020, 43, 101103. [Google Scholar] [CrossRef]
- Wang, L.; Zheng, H.; Wen, Z.; Liu, L.; Robinson, B.E.; Li, R.; Li, C.; Kong, L. Ecosystem service synergies/trade-offs informing the supply-demand match of ecosystem services: Framework and application. Ecosyst. Serv. 2019, 37, 100939. [Google Scholar] [CrossRef]
- Li, C.; Zhang, S.; Cui, M.; Wan, J.; Rao, T.; Li, W.; Wang, X. Improved Vegetation Ecological Quality of the Three-North Shelterbelt Project region of China during 2000–2020 as evidenced from multiple remotely sensed indicators. Remote Sens. 2022, 14, 5708. [Google Scholar] [CrossRef]
- Celentano, D.; Moraes, M.; Ferreira, J.; Nahur, A.; Coutinho, B.; Rousseau, G.X.; Martins, M.B.; Vasconcelos, L.G.T.R.; Rodrigues, F.; Freire, R.; et al. Forest restoration to promote a fair post COVID-19 recovery in the Brazilian Amazon. Land Use Policy 2022, 116, 106076. [Google Scholar] [CrossRef]
- Reis, B.P.; Kövendi-Jakó, A.; Csákvári, E.; Szitár, K.; Török, K.; Sáradi, N.; Llumiquinga, Y.B.; Halassy, M. Early Sowing Is More Effective in the long-term for restoring sandy grassland than six years of mowing or carbon amendment. Ecol. Eng. 2023, 186, 106824. [Google Scholar] [CrossRef]
- Feng, X.; Fu, B.; Piao, S.; Wang, S.; Ciais, P.; Zeng, Z.; Lü, Y.; Zeng, Y.; Li, Y.; Jiang, X.; et al. Revegetation in China’s Loess Plateau is approaching sustainable water resource limits. Nat. Clim. Chang. 2016, 6, 1019–1022. [Google Scholar] [CrossRef]
- Song, W.; Feng, Y.; Wang, Z. Ecological restoration programs dominate vegetation greening in China. Sci. Total Environ. 2022, 848, 157729. [Google Scholar] [CrossRef]
- Deng, Y.; Jia, L.; Guo, Y.; Li, H.; Yao, S.; Chu, L.; Lu, W.; Hou, M.; Mo, B.; Wang, Y.; et al. Evaluation of the ecological effects of ecological restoration programs: A case study of the sloping land conversion program on the Loess Plateau, China. Int. J. Environ. Res. Public Health 2022, 19, 7841. [Google Scholar] [CrossRef]
- Wang, J.; Peng, J.; Zhao, M.; Liu, Y.; Chen, Y. Significant trade-off for the impact of Grain-for-Green Programme on ecosystem services in North-Western Yunnan, China. Sci. Total Environ. 2017, 574, 57–64. [Google Scholar] [CrossRef]
- Pröbstl-Haider, U. Cultural ecosystem services and their effects on human health and well-being—A cross-disciplinary methodological review. J. Outdoor Recreat. Tour. 2015, 10, 1–13. [Google Scholar] [CrossRef]
- Quintas-Soriano, C.; Castro, A.J.; Castro, H.; García-Llorente, M. Impacts of land use change on ecosystem services and implications for human well-being in Spanish drylands. Land Use Policy 2016, 54, 534–548. [Google Scholar] [CrossRef]
- Núñez-Regueiro, M.M.; Fletcher, R.J.; Pienaar, E.F.; Branch, L.C.; Volante, J.N.; Rifai, S. Adding the temporal dimension to spatial patterns of payment for ecosystem services enrollment. Ecosyst. Serv. 2019, 36, 100906. [Google Scholar] [CrossRef]
- Wei, H.; Fan, W.; Wang, X.; Lu, N.; Dong, X.; Zhao, Y.; Ya, X.; Zhao, Y. Integrating supply and social demand in ecosystem services assessment: A review. Ecosyst. Serv. 2017, 25, 15–27. [Google Scholar] [CrossRef]
- Jopke, C.; Kreyling, J.; Maes, J.; Koellner, T. Interactions among ecosystem services across europe: Bagplots and cumulative correlation coefficients reveal synergies, trade-offs, and regional patterns. Ecol. Indic. 2015, 49, 46–52. [Google Scholar] [CrossRef]
- Horning, S.; Leung, P.; Fitzgerald, A.; Mrad, N. Operational readiness simulator: Optimizing operational availability using a virtual environment. Int. J. Aerosp. Eng. 2012, 2012, 425075. [Google Scholar] [CrossRef]
- Jiang, C.; Wang, X.; Zhang, H.; Labzovskii, L.; Wang, J.; Liu, T. Re-orienting ecological restoration in degraded drylands for a more sustainable soil–water relationship: Non-linear boundary of limited water resources in combating soil loss. J. Arid Environ. 2019, 167, 87–100. [Google Scholar] [CrossRef]
- Li, S.; Li, X.; Dou, H.; Dang, D.; Gong, J. Integrating constraint effects among ecosystem services and drivers on seasonal scales into management practices. Ecol. Indic. 2021, 125, 107425. [Google Scholar] [CrossRef]
- Liu, R.; Dong, X.; Wang, X.; Zhang, P.; Liu, M.; Zhang, Y. Study on the relationship among the urbanization process, ecosystem services and human well-being in an arid region in the context of carbon flow: Taking the Manas River Basin as an example. Ecol. Indic. 2021, 132, 108248. [Google Scholar] [CrossRef]
- Wang, N.; Jassogne, L.; van Asten, P.J.A.; Mukasa, D.; Wanyama, I.; Kagezi, G.; Giller, K.E. Evaluating coffee yield gaps and important biotic, abiotic, and management factors limiting coffee production in Uganda. Eur. J. Agron. 2015, 63, 1–11. [Google Scholar] [CrossRef]
- Wang, T.; Feng, L.; Mou, P.; Wu, J.; Smith, J.L.D.; Xiao, W.; Yang, H.; Dou, H.; Zhao, X.; Cheng, Y.; et al. Amur tigers and leopards returning to China: Direct evidence and a landscape conservation plan. Landsc. Ecol. 2016, 31, 491–503. [Google Scholar] [CrossRef]
- Zhao, Z.; Dai, E. Vegetation cover dynamics and its constraint effect on ecosystem services on the Qinghai-Tibet Plateau under ecological restoration projects. J. Environ. Manag. 2024, 356, 120535. [Google Scholar] [CrossRef]
- Gao, C.; Zhao, J.; Wang, Y.; Jin, G.; Wang, J.; Hu, X. Study on the constraint effect of natural vegetation on ecosystem services in the Shiyang River Basin. Acta Ecol. Sin. 2019, 40, 2851–2862. [Google Scholar]
- Li, J.; Sun, W.; Li, M.; Meng, L. Coupling coordination degree of production, living and ecological spaces and its influencing factors in the Yellow River Basin. J. Clean. Prod. 2021, 298, 126803. [Google Scholar] [CrossRef]
- Shao, Y.; Liu, Y.; Li, Y.; Yuan, X. Regional ecosystem services relationships and their potential driving factors in the Yellow River Basin, China. J. Geogr. Sci. 2023, 33, 863–884. [Google Scholar] [CrossRef]
- Omer, A.; Elagib, N.A.; Ma, Z.; Saleem, F.; Mohammed, A. Water scarcity in the Yellow River Basin under future climate change and human activities. Sci. Total Environ. 2020, 749, 141446. [Google Scholar] [CrossRef]
- Fang, L.; Wang, L.; Chen, W.; Sun, J.; Cao, Q.; Wang, S.; Wang, L. Identifying the impacts of natural and human factors on ecosystem service in the Yangtze and Yellow River Basins. J. Clean. Prod. 2021, 314, 127995. [Google Scholar] [CrossRef]
- Yang, L.; Jia, K.; Liang, S.; Liu, M.; Wei, X.; Yao, Y.; Zhang, X.; Liu, D. Spatio-temporal analysis and uncertainty of fractional vegetation cover change over Northern China during 2001–2012 based on multiple vegetation data sets. Remote Sens. 2018, 10, 549. [Google Scholar] [CrossRef]
- Fensholt, R.; Langanke, T.; Rasmussen, K.; Reenberg, A.; Prince, S.D.; Tucker, C.; Scholes, R.J.; Le, Q.B.; Bondeau, A.; Eastman, R.; et al. Greenness in Semi-Arid areas across the globe 1981–2007—An earth observing satellite based analysis of trends and drivers. Remote Sens. Environ. 2012, 121, 144–158. [Google Scholar] [CrossRef]
- Jiang, W.; Yuan, L.; Wang, W.; Cao, R.; Zhang, Y.; Shen, W. Spatio-temporal analysis of vegetation variation in the Yellow River Basin. Ecol. Indic. 2015, 51, 117–126. [Google Scholar] [CrossRef]
- Medinski, T.V.; Mills, A.J.; Esler, K.J.; Schmiedel, U.; Jürgens, N. Do soil properties constrain species richness? insights from boundary line analysis across several biomes in South Western Africa. J. Arid Environ. 2010, 74, 1052–1060. [Google Scholar] [CrossRef]
- Hua, W.; Chen, H.; Zhou, L.; Xie, Z.; Qin, M.; Li, X.; Ma, H.; Huang, Q.; Sun, S. Observational quantification of climatic and human influences on vegetation greening in China. Remote Sens. 2017, 9, 425. [Google Scholar] [CrossRef]
- Cai, Y.; Zhang, F.; Duan, P.; Yung Jim, C.; Weng Chan, N.; Shi, J.; Liu, C.; Wang, J.; Bahtebay, J.; Ma, X. Vegetation cover changes in China induced by Ecological Restoration-Protection Projects and land-use changes from 2000 to 2020. Catena 2022, 217, 106530. [Google Scholar] [CrossRef]
- Tian, F.; Liu, L.-Z.; Yang, J.-H.; Wu, J.-J. Vegetation greening in more than 94% of the Yellow River Basin (YRB) region in China during the 21st century caused jointly by warming and anthropogenic activities. Ecol. Indic. 2021, 125, 107479. [Google Scholar] [CrossRef]
- Luo, Y.; Lü, Y.; Fu, B.; Zhang, Q.; Li, T.; Hu, W.; Comber, A. Half century change of interactions among ecosystem services driven by ecological restoration: Quantification and policy implications at a watershed scale in the Chinese Loess Plateau. Sci. Total Environ. 2019, 651, 2546–2557. [Google Scholar] [CrossRef]
- Ma, Z.; Gong, J.; Hu, C.; Lei, J. An integrated approach to assess spatial and temporal changes in the contribution of the ecosystem to Sustainable Development Goals over 20 years in China. Sci. Total Environ. 2023, 903, 166237. [Google Scholar] [CrossRef]
- Wang, P.; Xu, M. Dynamics and interactions of water-related ecosystem services in the Yellow River Basin, China. J. Geogr. Sci. 2023, 33, 1681–1701. [Google Scholar] [CrossRef]
- Holt, A.R.; Alix, A.; Thompson, A.; Maltby, L. Food Production, Ecosystem services and biodiversity: We can’t have it all everywhere. Sci. Total Environ. 2016, 573, 1422–1429. [Google Scholar] [CrossRef]
- Yu, F.; Li, C.; Yuan, Z.; Luo, Y.; Yin, Q.; Wang, Q.; Hao, Z. How do mountain ecosystem services respond to changes in vegetation and climate? An evidence from the Qinling Mountains, China. Ecol. Indic. 2023, 154, 110922. [Google Scholar] [CrossRef]
- Wang, L.; Gao, J.; Shen, W.; Cai, M.; Chen, Y.; Xiao, T.; Zhang, X.; Tai, W. Vegetation quality and its change in the Three North Shelterbelt Forest region in China. Arid Land Res. Manag. 2024, 38, 285–298. [Google Scholar] [CrossRef]
- Jiang, L.; Liu, Y.; Xu, H. Variation in vegetation quality of terrestrial ecosystems in China: Coupling analysis based on remote sensing and typical stations monitoring data. Remote Sens. 2023, 15, 2276. [Google Scholar] [CrossRef]
- Zhou, Z.; Ding, Y.; Shi, H.; Cai, H.; Fu, Q.; Liu, S.; Li, T. Analysis and prediction of vegetation dynamic changes in China: Past, present and future. Ecol. Indic. 2020, 117, 106642. [Google Scholar] [CrossRef]
- Mendoza-Ponce, A.; Corona-Núñez, R.; Kraxner, F.; Leduc, S.; Patrizio, P. Identifying effects of land use Cover Changes and Climate Change on Terrestrial Ecosystems and Carbon Stocks in Mexico. Glob. Environ. Chang. 2018, 53, 12–23. [Google Scholar] [CrossRef]
- Dabney, S.M.; Yoder, D.C.; Vieira DA, N. The application of the revised universal soil loss equation, version 2, to evaluate the impacts of alternative climate change scenarios on runoff and sediment yield. J. Soil Water Conserv. 2012, 67, 343–353. [Google Scholar] [CrossRef]
- Xiao, Q.; Hu, D.; Xiao, Y. Assessing changes in soil conservation ecosystem services and causal factors in the Three Gorges Reservoir Region of China. J. Clean Prod. 2017, 163, S172–S180. [Google Scholar] [CrossRef]
- Xiang, H.; Wang, Z.; Mao, D.; Zhang, J.; Xi, Y.; Du, B.; Zhang, B. What did china’s national wetland conservation program achieve? Observations of changes in land cover and ecosystem services in the Sanjiang Plain. J. Environ. Manag. 2020, 267, 110623. [Google Scholar] [CrossRef]
- Zhang, L.; Hickel, K.; Dawes, W.R.; Chiew FH, S.; Western, A.W.; Briggs, P.R. A rational function approach for estimating mean annual evapotranspiration. Water Resour. Res. 2004, 40, W0250. [Google Scholar] [CrossRef]
- Lu, J.; Sun, G.; McNulty, S.G.; Amatya, D.M. A comparison of six potential evapotranspiration methods for regional use in the Southeastern united states. J. Am. Water Resour. Assoc. 2005, 41, 621–633. [Google Scholar] [CrossRef]
- Langemeyer, J.; Calcagni, F.; Baró, F. Mapping the intangible: Using geolocated social media data to examine landscape aesthetics. Land Use Policy 2018, 77, 542–552. [Google Scholar] [CrossRef]
- Frank, S.; Fürst, C.; Koschke, L.; Witt, A.; Makeschin, F. Assessment of landscape aesthetics—Validation of a landscape metrics-based assessment by visual estimation of the scenic beauty. Ecol. Indic. 2013, 32, 222–231. [Google Scholar] [CrossRef]
- Ode, A.; Fry, G.; Tveit, M.S.; Messager, P.; Miller, D. Indicators of perceived naturalness as drivers of landscape preference. J. Environ. Manag. 2009, 90, 375–383. [Google Scholar] [CrossRef]
- Lyu, R.; Clarke, K.C.; Zhang, J.; Feng, J.; Jia, X.; Li, J. Spatial correlations among ecosystem services and their socio-ecological driving factors: A case study in the city belt along the Yellow River in Ningxia, China. Appl. Geogr. 2019, 108, 64–73. [Google Scholar] [CrossRef]
Data | Years | Data Sources | Resolution | Related Website |
---|---|---|---|---|
NDVI | 2010, 2015, 2020 | Resource Environmental Science and Data Center | 1 km | http://www.resdc.cn/, accessed on 26 November 2023 |
Precipitation | 2010, 2015, 2020 | National Qinghai-Tibet Plateau Scientific Data Center platform | 1 km | http://data.tpdc.ac.cn/, accessed on 26 November 2023 |
Land Use | 2010, 2015, 2020 | Resource Environmental Science and Data Center | 1 km | http://www.resdc.cn/, accessed on 26 November 2023 |
Evapotranspiration | 2010, 2015, 2020 | National Qinghai-Tibet Plateau Scientific Data Center platform | 1 km | http://data.tpdc.ac.cn/, accessed on 26 November 2023 |
Soil Date | - | Resource Environmental Science and Data Center | 1 km | http://www.resdc.cn/, accessed on 26 November 2023 |
Food Production | 2010, 2015, 2020 | State Statistics Bureau | 1 km | https://www.stats.gov.cn, accessed on 26 November 2023 |
DEM | - | National Cryosphere Desert Data Center | 1 km | http://www.ncdc.ac.cn/portal/, accessed on 26 November 2023 |
Temperature | 2010, 2015, 2020 | Resource Environmental Science and Data Center | 1 km | http://www.resdc.cn/, accessed on 26 November 2023 |
Service Category | Supply Indicators | Abbreviation | Methods | Description (Units) |
---|---|---|---|---|
Provisioning Services | Food Production | FP | — | (kg/km2) |
Regulating Services | Water Yield | WY | InVEST Model (Version 3.13.0) | The required parameters mainly include precipitation, soil depth, land use, potential evapotranspiration, and available water content of vegetation. (mm) |
Soil Conservation | SC | Universal Soil Loss Equation Model | It can reflect the erosion and expansion ability of the ecosystem to soil loss and the storage and retention ability of sediment. (t/ha) | |
Cultural services | Landscape Aesthetics | LA | Fragstats 4.2 software | Landscape aesthetics can be evaluated by naturalness and landscape diversity. (score) |
Land Use | 2010 | 2015 | 2020 | 2020–2010 Change (km2) |
---|---|---|---|---|
Crop land | 214,663 | 213,186 | 205,744 | −8919 |
Forest land | 106,009 | 106,075 | 107,089 | 1080 |
Grass land | 379,777 | 378,581 | 385,353 | 5576 |
Water | 14,062 | 14,402 | 15,089 | 1027 |
Construction land | 20,765 | 24,553 | 31,289 | 10,524 |
Unused | 73,531 | 72,010 | 64,340 | −9191 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gong, J.; Ma, Z.; Hu, C.; He, L.; Lei, J. Study on the Constraint Effect of Vegetation on Ecosystem Services in the Yellow River Basin. Forests 2024, 15, 1771. https://doi.org/10.3390/f15101771
Gong J, Ma Z, Hu C, He L, Lei J. Study on the Constraint Effect of Vegetation on Ecosystem Services in the Yellow River Basin. Forests. 2024; 15(10):1771. https://doi.org/10.3390/f15101771
Chicago/Turabian StyleGong, Jinyu, Zhiyuan Ma, Chen Hu, Linxuan He, and Jingpin Lei. 2024. "Study on the Constraint Effect of Vegetation on Ecosystem Services in the Yellow River Basin" Forests 15, no. 10: 1771. https://doi.org/10.3390/f15101771