Forest Soil Profile Inversion and Mixing Change the Vertical Stratification of Soil CO2 Concentration without Altering Soil Surface CO2 Flux
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Design and Sample Analysis
2.3. Statistical Analysis
3. Results
3.1. Precipitation and Air Temperature
3.2. Variation of Soil Profile CO2 Concentration
3.3. Seasonal Variation of Soil Surface CO2 Flux
3.4. Soil Biogeochemical Properties in Different Columns
3.5. Correlations of Soil CO2 Concentration and Temperature
4. Discussion
4.1. Effects of Environment Variables on CO2 Concentration in Soil Profiles and Soil Surface CO2 Flux
4.2. Soil Properties and Soil CO2 Concentration Stratification
4.3. CO2 Profile Concentration and its Relationship to Soil Surface CO2 Flux
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Houghton, J.T.; Meira-Filho, L.G.; Callander, B.A.; Harris, N. Climate Change 1995: The Science of Climate Change; Kathenberg, N., Maskell, K., Eds.; Cambridge University Press: New York, NY, USA, 1996. [Google Scholar]
- Stocker, T.F.; Qin, D.; Plattner, G.K.; Tignor, M.; Allen, S.K.; Boschung, J.; Nauels, A.; Xia, Y. Climate Change: The Physical Science Basis; Bex, V., Midgley, P.M., Eds.; Cambridge University Press: New York, NY, USA, 2013. [Google Scholar]
- Grüning, M.M.; Germeshausen, F.; Thies, C.; L.-M.-Arnold, A. Increased forest soil CO2 and N2O emissions during insect infestation. Forests 2018, 9, 612. [Google Scholar] [CrossRef]
- Lee, S.; Yim, J.; Son, Y.; Son, Y.; Kim, R. Estimation of forest carbon stocks for national greenhouse gas inventory reporting in south Korea. Forests 2018, 9, 625. [Google Scholar] [CrossRef]
- Schlesinger, W.H.; Andrews, J.A. Soil respiration and the global carbon cycle. Biogeochemistry 2000, 48, 7–20. [Google Scholar] [CrossRef]
- Valentini, R.; Matteucci, G.; Dolman, A.J.; Schulze, E.D.; Rebmann, C.; Moors, E.J.; Granier, A.; Gross, P.; Jensen, N.O.; Pilegaard, K.; et al. Respiration as the main determinant of carbon balance in European forests. Nature 2000, 404, 861–865. [Google Scholar] [CrossRef] [PubMed]
- Raich, J.W.; Schlesinger, W.H. The global carbon-dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus B 1992, 44, 81–99. [Google Scholar] [CrossRef]
- Maier, M.; Schack-Kirchner, H.; Hildebrand, E.E.; Schindler, D. Soil CO2 efflux vs. soil respiration: Implications for flux models. Agric. For. Meteorol. 2011, 151, 1723–1730. [Google Scholar] [CrossRef]
- Pihlatie, M.; Pumpanen, J.; Rinne, J.; Ilvesniemi, H.; Simojoki, A.; Hari, P.; Vesala, T. Gas concentration driven fluxes of nitrous oxide and carbon dioxide in boreal forest soil. Tellus B 2007, 59, 458–469. [Google Scholar] [CrossRef] [Green Version]
- Wiaux, F.; Vanclooster, M.; Van-Oost, K. Vertical partitioning and controlling factors of gradient-based soil carbon dioxide fluxes in two contrasted soil profiles along a loamy hillslope. Biogeosciences 2015, 12, 4637–4649. [Google Scholar] [CrossRef] [Green Version]
- Tang, J.W.; Baldocchi, D.D.; Qi, Y.; Xu, L.K. Assessing soil CO2 efflux using continuous measurements of CO2 profiles in soils with small solid-state sensors. Agric. For. Meteorol. 2003, 118, 207–220. [Google Scholar] [CrossRef]
- Maier, M.; Schack-Kirchner, H. Reply to comment on “Using the gradient method to determine soil gas flux: A review”. Agric. For. Meteorol. 2014, 197, 256–257. [Google Scholar] [CrossRef]
- Luo, Y.Q.; Zhou, X.H. Processes of CO2 transport from soil to the atmosphere. In Soil Respiration and the Environment; Elsevier Inc.: Amsterdam, The Netherlands, 2006; pp. 61–76. [Google Scholar]
- Hopkins, D.W.; Sparrow, A.D.; Shillam, L.L.; English, L.C.; Dennis, P.G.; Novis, P. Enzymatic activities and microbial communities in an antarctic dry valley soil: Responses to c and n supplementation. Soil Biol. Biochem. 2008, 40, 2130–2136. [Google Scholar] [CrossRef]
- Risk, D.; Kellman, L.; Beltrami, H. Carbon dioxide in soil profiles: Production and temperature dependence. Geophys. Res. Lett. 2002, 29, 111–114. [Google Scholar] [CrossRef]
- Jassal, R.; Black, A.; Novak, M.; Morgenstern, K.; Nesic, Z.; Gaumont-Guay, D. Relationship between soil CO2 concentrations and forest-floor CO2 effluxes. Agric. For. Meteorol. 2005, 130, 176–192. [Google Scholar] [CrossRef]
- Albanito, F.; Saunders, M.; Jones, M.B. Automated diffusion chambers to monitor diurnal and seasonal dynamics of the soil CO2 concentration profile. Eur. J. Soil Sci. 2009, 60, 507–514. [Google Scholar] [CrossRef]
- Billings, S.A.; Richter, D.D.; Yarie, J. Soil carbon dioxide fluxes and profile concentrations in two boreal forests. Can. J. For. Res. 1998, 28, 1773–1783. [Google Scholar] [CrossRef]
- Xu, M.; Qi, Y. Soil-surface CO2 efflux and its spatial and temporal variations in a young ponderosa pine plantation in northern California. Glob. Chang. Biol. 2001, 7, 667–677. [Google Scholar] [CrossRef]
- Zhang, Z.S.; Cao, C.G.; Guo, L.J.; Li, C.F. Emissions of CH4 and CO2 from paddy fields as affected by tillage practices and crop residues in central china. Paddy Water Environ. 2016, 14, 85–92. [Google Scholar] [CrossRef]
- Li, C.F.; Kou, Z.K.; Yang, J.H.; Cai, M.L.; Wang, J.P.; Cao, C.G. Soil CO2 fluxes from direct seeding rice fields under two tillage practices in central China. Atmos. Environ. 2010, 44, 2696–2704. [Google Scholar] [CrossRef]
- FAO. World Reference Base for Soil Resources 2006; World Soil Resources Report; FAO: Rome, Italy, 2006; p. 103. [Google Scholar]
- Wang, Y.S.; Wang, Y.H. Quick measurement of CH4, CO2 and N2O emissions from a short-plant ecosystem. Adv. Atmos. Sci. 2003, 20, 842–844. [Google Scholar]
- Larionova, A.A.; Rozonova, L.N.; Samoylov, T.I. Dynamics of gas exchange in the profile of a gray forest soil. Sov. Soil Sci. 1989, 24, 1359–1372. [Google Scholar]
- Jian, J.S.; Steele, M.K.; Day, S.D.; Quinn, T.R.; Hodges, S.C. Measurement strategies to account for soil respiration temporal heterogeneity across diverse regions. Soil Biol. Biochem. 2018, 125, 167–177. [Google Scholar] [CrossRef]
- Zhou, C.Y.; Zhou, G.Y.; Zhang, D.Q.; Wang, Y.H.; Liu, S.Z. CO2 efflux from different forest soils and impact factors in Dinghu Mountain, China. Sci. China Ser. D 2005, 48, 198–206. [Google Scholar]
- Liu, G. Analysis of Soil Physical and Chemical Properties and Description of Soil Profiles; China Standard: Beijing, China, 1996. [Google Scholar]
- Bossio, D.A.; Scow, K.M. Impacts of carbon and flooding on soil microbial communities: Phospholipid fatty acid profiles and substrate utilization patterns. Microb. Ecol. 1998, 35, 265–278. [Google Scholar] [CrossRef] [PubMed]
- Frostegard, A.; Baath, E. The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biol. Fert. Soils 1996, 22, 59–65. [Google Scholar] [CrossRef]
- Baath, E.; Anderson, T.H. Comparison of soil fungal/bacterial ratios in a pH gradient using physiological and PLFA-based techniques. Soil Biol. Biochem. 2003, 35, 955–963. [Google Scholar] [CrossRef] [Green Version]
- Massman, W.J.; Sommerfeld, R.A.; Mosier, A.R.; Zeller, K.F.; Hehn, T.J.; Rochelle, S.G. A model investigation of turbulence-driven pressure-pumping effects on the rate of diffusion of CO2, N2O and CH4 through layered snow packs. J. Geophys. Res.-Atmos. 1997, 102, 18851–18863. [Google Scholar] [CrossRef]
- Bowling, D.R.; Massman, W.J. Persistent wind-induced enhancement of diffusive CO2 transport in a mountain forest snowpack. J. Geophys. Res.-Biogeo. 2011, 116, 352–370. [Google Scholar] [CrossRef]
Forest Type | Treatments | Profile | SWC (%) | SOC (g·kg−1) | TN (mg·L−1) | Bulk Density (g·cm−3) |
---|---|---|---|---|---|---|
CF | CK | 0–20 cm | 19.66 ± 4.00a | 13.09 ± 2.74a | 1.17 ± 0.14a | 1.40 ± 0.05a |
20–40 cm | 18.95 ± 2.54a | 7.62 ± 2.21b | 0.83 ± 0.18b | 1.48 ± 0.06a | ||
40–60 cm | 19.93 ± 2.97a | 5.75 ± 1.45b | 0.70 ± 0.10b | 1.48 ± 0.08a | ||
Inverted | 0–20 cm | 19.08 ± 3.21a | 5.98 ± 1.00b | 0.66 ± 0.15b | 1.49 ± 0.02a | |
20–40 cm | 20.04 ± 1.86a | 6.17 ± 1.76b | 0.71 ± 0.20b | 1.46 ± 0.11ab | ||
40–60 cm | 21.36 ± 2.58a | 10.12 ± 2.98a | 0.99 ± 0.20a | 1.35 ± 0.09b | ||
Mixed | 0–20 cm | 20.19 ± 2.63a | 10.89 ± 1.82a | 0.97 ± 0.18a | 1.31 ± 0.03a | |
20–40 cm | 21.04 ± 2.67a | 9.25 ± 1.35a | 0.94 ± 0.16a | 1.30 ± 0.05a | ||
40–60 cm | 21.80 ± 1.53a | 9.42 ± 0.69a | 0.90 ± 0.16a | 1.28 ± 0.09a | ||
BF | CK | 0–20 cm | 23.15 ± 1.82a | 17.25 ± 1.53a | 1.42 ± 0.41a | 1.39 ± 0.02b |
20–40 cm | 21.07 ± 2.15a | 6.97 ± 1.94b | 0.81 ± 0.29b | 1.55 ± 0.05a | ||
40–60 cm | 21.44 ± 1.60a | 4.76 ± 1.54b | 0.68 ± 0.33b | 1.48 ± 0.08a | ||
Inverted | 0–20 cm | 20.15 ± 1.82a | 5.51 ± 1.44b | 0.75 ± 0.41a | 1.39 ± 0.09a | |
20–40 cm | 20.62 ± 2.51a | 5.31 ± 1.49b | 0.76 ± 0.31a | 1.48 ± 0.10a | ||
40–60 cm | 23.29 ± 1.83a | 12.79 ± 5.54a | 1.15 ± 0.29a | 1.39 ± 0.02a | ||
Mixed | 0–20 cm | 21.80 ± 2.31a | 9.43 ± 2.16a | 0.97 ± 0.33a | 1.32 ± 0.08a | |
20–40 cm | 22.22 ± 1.57a | 9.18 ± 3.01a | 0.92 ± 0.21a | 1.35 ± 0.03a | ||
40–60 cm | 22.50 ± 3.93a | 8.33 ± 2.22a | 0.96 ± 0.40a | 1.32 ± 0.04a |
Forest Type | Treatments | Profile | PLFA (nmol·g−1) | Fun (mol%) | Bac (mol%) | F/B% |
---|---|---|---|---|---|---|
CF | CK | 0–20 cm | 6.34 ± 3.52a | 4.14 ± 1.34a | 28.64 ± 5.76a | 14.69 ± 4.23a |
20–40 cm | 4.07 ± 2.24a | 1.99 ± 0.98ab | 21.33 ± 8.61b | 10.75 ± 6.12a | ||
40–60 cm | 4.15 ± 2.30a | 1.53 ± 1.12b | 17.86 ± 4.93b | 8.89 ± 5.83a | ||
Inverted | 0–20 cm | 5.45 ± 2.66a | 3.52 ± 3.39a | 17.39 ± 3.31b | 19.64 ± 18.31a | |
20–40 cm | 4.72 ± 2.25a | 1.18 ± 0.72a | 17.06 ± 3.36b | 7.34 ± 4.67b | ||
40–60 cm | 5.10 ± 1.90a | 2.94 ± 0.51a | 27.51 ± 6.05a | 11.18 ± 4.54a | ||
Mixed | 0–20 cm | 7.31 ± 4.60a | 5.01 ± 2.60a | 27.25 ± 3.00a | 17.43 ± 8.86a | |
20–40 cm | 5.57 ± 2.73a | 3.21 ± 0.89a | 25.28 ± 3.84a | 12.09 ± 3.37a | ||
40–60 cm | 5.45 ± 1.77a | 2.76 ± 0.56a | 25.83 ± 2.10a | 10.19 ± 2.06a | ||
BF | CK | 0–20 cm | 10.55 ± 1.92a | 3.35 ± 1.90a | 24.24 ± 6.24a | 13.04 ± 5.24a |
20–40 cm | 7.75 ± 1.94a | 2.05 ± 0.74a | 20.83 ± 3.85a | 9.79 ± 4.14a | ||
40–60 cm | 6.23 ± 1.05b | 0.98 ± 0.60a | 14.37 ± 3.15b | 7.32 ± 4.10a | ||
Inverted | 0–20 cm | 6.54 ± 1.55a | 3.71 ± 4.90a | 16.79 ± 3.93a | 8.46 ± 4.25a | |
20–40 cm | 6.83 ± 2.49a | 1.39 ± 0.41a | 18.38 ± 3.64a | 8.81 ± 3.39a | ||
40–60 cm | 7.11 ± 0.96a | 1.74 ± 0.48a | 21.24 ± 1.06a | 8.93 ± 1.67a | ||
Mixed | 0–20 cm | 7.05 ± 2.27a | 2.21 ± 2.04a | 20.96 ± 4.47a | 9.88 ± 8.07a | |
20–40 cm | 8.49 ± 2.37a | 1.44 ± 1.30a | 16.15 ± 6.37a | 8.19 ± 5.49a | ||
40–60 cm | 9.10 ± 3.08a | 1.32 ± 1.11a | 16.32 ± 4.66a | 7.93 ± 4.95a |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Fu, S.; Li, J.; Zou, X.; Zhang, W.; Xia, H.; Lin, Y.; Tian, Q.; Zhou, L. Forest Soil Profile Inversion and Mixing Change the Vertical Stratification of Soil CO2 Concentration without Altering Soil Surface CO2 Flux. Forests 2019, 10, 192. https://doi.org/10.3390/f10020192
Wang X, Fu S, Li J, Zou X, Zhang W, Xia H, Lin Y, Tian Q, Zhou L. Forest Soil Profile Inversion and Mixing Change the Vertical Stratification of Soil CO2 Concentration without Altering Soil Surface CO2 Flux. Forests. 2019; 10(2):192. https://doi.org/10.3390/f10020192
Chicago/Turabian StyleWang, Xiaoling, Shenglei Fu, Jianxiong Li, Xiaoming Zou, Weixin Zhang, Hanping Xia, Yongbiao Lin, Qian Tian, and Lixia Zhou. 2019. "Forest Soil Profile Inversion and Mixing Change the Vertical Stratification of Soil CO2 Concentration without Altering Soil Surface CO2 Flux" Forests 10, no. 2: 192. https://doi.org/10.3390/f10020192