Maximizing Thermal Energy Recovery from Drinking Water for Cooling Purpose
Abstract
:1. Introduction
2. Methodology
2.1. Cold Recovery Time Period
2.2. Cold Recovery and Carbon Footprint Reduction Potential
- P: cooling power (kW);
- Q: massflow rate of drinking water going through the heat exchanger (kg/s);
- cp: heat capacity of water (kJ/kg/K);
- ΔT: temperature difference between water before and after the heat exchanger (K);
- E: energy recovered during a certain period Δt (kWh);
- Δt: period in which the energy is recovered (h).
- CO2savings: GHG potential reduction of TED system (kg CO2/GJ cooling);
- COPref: coefficient of performance of the reference cooling method (GJ cooling/GJ electricity);
- COPTED: coefficient of performance of TED (GJ cooling/GJ electricity);
- GHGel: CO2 emission factor of electricity (kg CO2/kWh electricity);
- 1/0.0036: conversion factor between kWh and GJ.
2.3. Temperature Model
3. Results
3.1. Operational Period of TED
3.2. Theoretical Energy Potential of TED
3.3. Effect of Cooling Down Drinking Water during Transport after TED
4. Discussion
4.1. Potential Energy and Cooling Down of Drinking Water after Cold Recovery
4.2. TED as an Innovative and Sustainable Cooling Source
4.3. Practical Implications
5. Conclusions
- Higher water flows and higher Tmax (water temperature limit after cold recovery) will allow more energy recovery from drinking water for cooling purposes. In the Sanquin case, increasing Tmax from 15 °C to 30 °C resulted in an increase in energy recovery from 27 TJ/y to 157 TJ/y;
- The drinking water temperature of the water after cold recovery with Tmax of 15, 20, 25 and 30 °C will resemble the soil temperature within a distance of approximately 4 km. This means that cold recovery from drinking water hardly affects the temperature of the drinking water at the customers’ tap;
- Thermal energy recovered from drinking water, for cooling purposes, can either be used for free cooling or for enhancing the performance and efficiency of cooling units (either used as a pre-coolant in compression cooling machines or as a condensing fluid in chillers);
- TED systems having a higher coefficient of performance (COP) results in a reduction of greenhouse gas emissions by more than 90%, compared to traditional cooling methods, such as chillers, dry coolers, hybrid cooler and cooling towers.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
DWDNs | Drinking water distribution networks |
DWDSs | Drinking water distribution systems |
TED | Thermal energy recovery from drinking water |
ATES | Aquifer thermal energy storage |
Tmax | Maximum temperature standard after cold recovery |
GHG | Greenhouse gas |
AOC | Assimilable organic carbon |
Tfeed water | Incoming feed water temperature |
ΔT | Temperature difference between Tfeed water and Tmax |
COP | Coefficient of performance |
HE | Heat exchanger |
Treference | Reference temperature pipeline |
ATP | Adenosine triphosphate |
References
- Li, W.W.; Yu, H.Q.; Rittmann, B.E. Chemistry: Reuse water pollutants. Nature 2015, 528, 29–31. [Google Scholar] [CrossRef]
- Van der Hoek, J.P.; de Fooij, H.; Struker, A. Wastewater as a resource: Strategies to recover resources from Amsterdam’s wastewater. Resour. Conserv. Recycl. 2016, 113, 53–64. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; McCarty, P.L.; Liu, J.; Ren, N.-Q.; Lee, D.-J.; Yu, H.-Q.; Qian, Y.; Qu, J. Probabilistic evaluation of integrating resource recovery into wastewater treatment to improve environmental sustainability. Proc. Natl. Acad. Sci. USA 2015, 112, 1630. [Google Scholar] [CrossRef] [Green Version]
- Schetters, M.J.A.; van der Hoek, J.P.; Kramer, O.J.I.; Kors, L.J.; Palmen, L.J.; Hofs, B.; Koppers, H. Circular economy in drinking water treatment: Reuse of ground pellets as seeding material in the pellet softening process. Water Sci. Technol. 2014, 71, 479–486. [Google Scholar] [CrossRef] [Green Version]
- Elías-Maxil, J.A.; Hofman, J.; Wols, B.; Clemens, F.; van der Hoek, J.P.; Rietveld, L. Development and performance of a parsimonious model to estimate temperature in sewer networks. Urban Water J. 2017, 14, 829–838. [Google Scholar] [CrossRef] [Green Version]
- Kehrein, P.; van Loosdrecht, M.; Osseweijer, P.; Garfí, M.; Dewulf, J.; Posada, J. A critical review of resource recovery from municipal wastewater treatment plants—Market supply potentials, technologies and bottlenecks. Environ. Sci. Water Res. Technol. 2020, 6, 877–910. [Google Scholar] [CrossRef] [Green Version]
- Diaz-Elsayed, N.; Rezaei, N.; Ndiaye, A.; Zhang, Q. Trends in the environmental and economic sustainability of wastewater-based resource recovery: A review. J. Clean. Prod. 2020, 265, 121598. [Google Scholar] [CrossRef]
- Van der Hoek, J.P. Climate change mitigation by recovery of energy from the water cycle: A new challenge for water management. Water Sci. Technol. 2012, 65, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Van der Hoek, J.P.; Mol, S.; Janse, T.; Klaversma, E.; Kappelhof, J. Selection and prioritization of mitigation measures to realize climate neutral operation of a water cycle company. J. Water Clim. Chang. 2015, 7, 29–38. [Google Scholar] [CrossRef] [Green Version]
- Lam, K.L.; van der Hoek, J.P. Low-Carbon Urban Water Systems: Opportunities beyond Water and Wastewater Utilities? Environ. Sci. Technol. 2020, 54, 14854–14861. [Google Scholar] [CrossRef] [PubMed]
- Deng, Z.; Mol, S.; van der Hoek, J.P. Shower heat exchanger: Reuse of energy from heated drinking water for CO2 reduction. Drink. Water Eng. Sci. 2016, 9, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, J.I.; Liu, G.; Van der Wielen, P.W.J.J.; Medema, G.; Van der Hoek, J.P. Effects of cold recovery technology on the microbial drinking water quality in unchlorinated distribution systems. Environ. Res. 2020, 183, 109175. [Google Scholar] [CrossRef] [PubMed]
- Stocker, T.; Qin, D.; Plattner, G.; Tignor, M.; Allen, S.; Boschung, J.; Nauels, A.; Xia, Y. IPCC, 2013: Summary for policymakers in climate change 2013: The physical science basis, contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Camb. Univ. Press Camb. 2013. [Google Scholar] [CrossRef]
- Adnot, J. Energy Efficiency and Certification of Central Air Conditioners (EECCAC); Armines: Paris, France, 2003. [Google Scholar]
- Van der Hoek, J.P.; Mol, S.; Giorgi, S.; Ahmad, J.I.; Liu, G.; Medema, G. Energy recovery from the water cycle: Thermal energy from drinking water. Energy 2018, 162, 977–987. [Google Scholar] [CrossRef]
- Mol, S.; Kornman, J.; Kerpershoek, A.; Van Der Helm, A. Opportunities for public water utilities in the market of energy from water. Water Sci. Technol. 2011, 63, 2909–2915. [Google Scholar] [CrossRef]
- Kubba, S. Chapter Nine—Impact of Energy and Atmosphere. In Handbook of Green Building Design and Construction, 2nd ed.; Kubba, S., Ed.; Butterworth-Heinemann: Cambridge, MA, USA, 2017; pp. 443–571. [Google Scholar]
- Wei, X.; Li, N.; Peng, J.; Cheng, J.; Hu, J.; Wang, M. Performance Analyses of Counter-Flow Closed Wet Cooling Towers Based on a Simplified Calculation Method. Energies 2017, 10, 282. [Google Scholar] [CrossRef] [Green Version]
- Chiang, C.-Y.; Yang, R.; Yang, K.-H. The Development and Full-Scale Experimental Validation of an Optimal Water Treatment Solution in Improving Chiller Performances. Sustainability 2016, 8, 615. [Google Scholar] [CrossRef] [Green Version]
- Van der Hoek, J.P. Towards a climate neutral water cycle. J. Water Clim. Chang. 2012, 3, 163–170. [Google Scholar] [CrossRef]
- Blokker, E.J.M.; van Osch, A.M.; Hogeveen, R.; Mudde, C. Thermal energy from drinking water and cost benefit analysis for an entire city. J. Water Clim. Chang. 2013, 4, 11–16. [Google Scholar] [CrossRef]
- Vvan der Hoek, J.P.; Mol, S.; Ahmad, J.I.; Liu, G.; Medema, G. Thermal energy recovery from drinking water. In Proceedings of the 10th International Conference on Sustainable Energy and Environmental Protection: Renewable Energy Sources, Bled, Slovenia, 27–30 June 2017; pp. 23–32. [Google Scholar]
- Van der Wielen, P.W.J.J.; Italiaander, R.; Wullings, B.A.; Heijnen, L.; van der Kooij, D. Opportunistic pathogens in drinking water in the Netherlands. In Microbial Growth in Drinking-Water Supplies. Problems, Causes, Control and Research Needs, 1st ed.; van der Kooij, D., van der Wielen, P.W.J.J., Eds.; IWA Publishing: London, UK, 2013; pp. 177–205. [Google Scholar]
- Ahmad, J.I.; Dignum, M.; Liu, G.; Medema, G.; van der Hoek, J.P. Changes in biofilm composition and microbial water quality in drinking water distribution systems by temperature increase induced through thermal energy recovery. Environ. Res. 2021, 194, 110648. [Google Scholar] [CrossRef]
- Pellegrini, M.; Bianchini, A. The Innovative Concept of Cold District Heating Networks: A Literature Review. Energies 2018, 11, 236. [Google Scholar] [CrossRef] [Green Version]
- Guo, X.; Hendel, M. Urban water networks as an alternative source for district heating and emergency heat-wave cooling. Energy 2018, 145, 79–87. [Google Scholar] [CrossRef] [Green Version]
- Liu, F.; Tait, S.; Schellart, A.; Mayfield, M.; Boxall, J. Reducing carbon emissions by integrating urban water systems and renewable energy sources at a community scale. Renew. Sustain. Energy Rev. 2020, 123, 109767. [Google Scholar] [CrossRef]
- Zhou, X.; Ahmad, J.I.; van der Hoek, J.P.; Zhang, K. Thermal energy recovery from chlorinated drinking water distribution systems: Effect on chlorine and microbial water and biofilm characteristics. Environ. Res. 2020, 187, 109655. [Google Scholar] [CrossRef]
- Prest, E.I.; Hammes, F.; van Loosdrecht, M.C.M.; Vrouwenvelder, J.S. Biological Stability of Drinking Water: Controlling Factors, Methods, and Challenges. Front. Microbiol. 2016, 7, 45. [Google Scholar] [CrossRef]
- El-Chakhtoura, J.; Prest, E.; Saikaly, P.; Van Loosdrecht, M.; Hammes, F.; Vrouwenvelder, H. Dynamics of bacterial communities before and after distribution in a full-scale drinking water network. Water Res. 2015, 74, 180–190. [Google Scholar] [CrossRef] [PubMed]
- Van der Kooij, D. Assimilable organic carbon as an indicator of bacterial regrowth. J. Am. Water Work. Assoc. 1992, 84, 57–65. [Google Scholar] [CrossRef]
- Van der Kooij, D.; Van der Wielen, P.W. Microbial growth in drinking-water supplies: Problems, causes, control and research needs. Water Intell. Online 2013, 12, 9781780400419. [Google Scholar] [CrossRef]
- Smeets, P.; Medema, G.; Van Dijk, J. The Dutch secret: How to provide safe drinking water without chlorine in the Netherlands. Drink. Water Eng. Sci. 2009, 2, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Staatscourant. Staatscourant (State Journal in Dutch) 2011 Decree of 23 May 2011 Concerning the Regulations for the Production and Distribution of Drinking Water and the Organisation of the Public Drinking Water Supply. 293; Staatscourant: The Hague, The Netherlands, 2011. [Google Scholar]
- Blokker, E.J.M.; Pieterse-Quirijns, E.J. Modeling temperature in the drinking water distribution system. J. Am. Water Works Assoc. 2013, 105, E19–E28. [Google Scholar] [CrossRef]
- List Emission Factors (Lijst Emissiefactoren). Available online: https://www.co2emissiefactoren.nl/lijst-emissiefactoren/ (accessed on 6 July 2020).
- Reinstra, O.; Mark, R.V.d. Heating and Cooling Demonstration Monitoring, Drinking Water Cooling, Efficiency Upgrade; D7.3; European Union: Amsterdam, The Netherlands, 2019; p. 65. [Google Scholar]
- Rossman, L.A. Epanet 2 Users Manual; U.S. Environmental Protection Agency: Washington, DC, USA, 2000. [Google Scholar]
- Visser, P.W.; Kooi, H.; Bense, V.; Boerma, E. Impacts of progressive urban expansion on subsurface temperatures in the city of Amsterdam (The Netherlands). Hydrogeol. J. 2020, 28, 1755–1772. [Google Scholar] [CrossRef] [Green Version]
- Agudelo-Vera, C.; Avvedimento, S.; Boxall, J.; Creaco, E.; de Kater, H.; Di Nardo, A.; Djukic, A.; Douterelo, I.; Fish, E.K.; Iglesias Rey, L.P.; et al. Drinking Water Temperature around the Globe: Understanding, Policies, Challenges and Opportunities. Water 2020, 12, 1049. [Google Scholar] [CrossRef] [Green Version]
- Kojok, F.; Fardoun, F.; Younes, R.; Outbib, R. Hybrid cooling systems: A review and an optimized selection scheme. Renew. Sustain. Energy Rev. 2016, 65, 57–80. [Google Scholar] [CrossRef]
- Yu, F.W.; Chan, K.T.; Sit, R.K.Y.; Yang, J. Review of Standards for Energy Performance of Chiller Systems Serving Commercial Buildings. Energy Procedia 2014, 61, 2778–2782. [Google Scholar] [CrossRef] [Green Version]
- Liberati, P.; De Antonellis, S.; Leone, C.; Joppolo, C.M.; Bawa, Y. Indirect Evaporative cooling systems: Modelling and performance analysis. Energy Procedia 2017, 140, 475–485. [Google Scholar] [CrossRef]
- Shah, V.P.; Debella, D.C.; Ries, R.J. Life cycle assessment of residential heating and cooling systems in four regions in the United States. Energy Build. 2008, 40, 503–513. [Google Scholar] [CrossRef]
- Sambito, M.; Freni, G. LCA Methodology for the Quantification of the Carbon Footprint of the Integrated Urban Water System. Water 2017, 9, 395. [Google Scholar] [CrossRef] [Green Version]
Cooling Method | Coefficient of Performance (COP) |
---|---|
Cooling tower | 80 |
Dry cooler | 20 |
Hybrid cooler | 35 |
Chiller | 7 |
TED | 100 |
Year | Months | Average Tfeed water (°C) ± S.D | Tmax 15 °C | Tmax 20 °C | Tmax 25 °C | Tmax 30 °C |
---|---|---|---|---|---|---|
ΔT (°C) ± S.D | ΔT (°C) ± S.D | ΔT (°C) ± S.D | ΔT (°C) ± S.D | |||
2018 | Jan–Apr | 8.8 ± 2.2 | 6.4 ± 2.1 | 11.1 ± 2.3 | 16.1 ± 2.3 | 21.2 ± 2.3 |
May–Aug | 16.6 ± 1.49 | 1.8 ± 1.1 | 3.4 ± 1.5 | 8.3 ± 1.5 | 13.3 ± 1.5 | |
Sep–Dec | 12.5 ± 2.8 | 4.5 ± 2.1 | 7.4 ± 2.8 | 12.4 ± 2.8 | 17.4 ± 2.8 | |
2019 | Jan–Apr | 9.6 ± 1.8 | 5.4 ± 1.8 | 10.4 ± 1.8 | 15.4 ± 1.8 | 20.4 ± 1.8 |
May–Aug | 16.5 ± 2.3 | 2.1 ± 0.7 | 3.8 ± 2.1 | 8.5 ± 2.2 | 13.5 ± 2.2 | |
Sep–Dec | 12.5 ± 2.9 | 4.3 ± 1.7 | 7.5 ± 2.9 | 12.5 ± 2.9 | 17.5 ± 2.9 |
Cooling Method | COP | CO2 Emission (kg CO2/GJ) | CO2 Savings of TED in Comparison (kg CO2/GJ) | CO2 Savings of TED in Comparison (%) |
---|---|---|---|---|
Cooling tower | 80 | 1.6 | 0.3 | 20% |
Dry cooler | 20 | 6.6 | 5.3 | 80% |
Hybrid cooler | 35 | 3.8 | 2.5 | 65% |
Chiller | 7 | 18.8 | 17.5 | 93% |
TED | 100 | 1.3 | - | - |
TED System | Savings CO2 Emission Compared to Alternative Cooling Method (ton CO2/y) | ||||
---|---|---|---|---|---|
Tmax (°C) | Energy Recovered (TJ/y) | Cooling Tower | Dry Cooler | Hybrid Cooler | Chiller |
15 | 27 | 9 | 143 | 66 | 473 |
20 | 56 | 18 | 296 | 137 | 982 |
25 | 113 | 37 | 596 | 277 | 1981 |
30 | 157 | 52 | 829 | 385 | 2752 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmad, J.I.; Giorgi, S.; Zlatanovic, L.; Liu, G.; van der Hoek, J.P. Maximizing Thermal Energy Recovery from Drinking Water for Cooling Purpose. Energies 2021, 14, 2413. https://doi.org/10.3390/en14092413
Ahmad JI, Giorgi S, Zlatanovic L, Liu G, van der Hoek JP. Maximizing Thermal Energy Recovery from Drinking Water for Cooling Purpose. Energies. 2021; 14(9):2413. https://doi.org/10.3390/en14092413
Chicago/Turabian StyleAhmad, Jawairia Imtiaz, Sara Giorgi, Ljiljana Zlatanovic, Gang Liu, and Jan Peter van der Hoek. 2021. "Maximizing Thermal Energy Recovery from Drinking Water for Cooling Purpose" Energies 14, no. 9: 2413. https://doi.org/10.3390/en14092413