Impact of Aurora Kinase A Polymorphism and Epithelial Growth Factor Receptor Mutations on the Clinicopathological Characteristics of Lung Adenocarcinoma
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Subjects and Ethics Statement
2.2. Genomic DNA Extraction and EGFR Sequencing
2.3. Genotyping of AURKA SNPs from Real-Time Polymerase Chain Reactions
2.4. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
List of abbreviations
References
- Barta, J.A.; Powell, C.A.; Wisnivesky, J.P. Global epidemiology of lung cancer. Ann. Glob. Health 2019, 85, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, T.Y.; Cramb, S.M.; Baade, P.D.; Youlden, D.R.; Nwogu, C.; Reid, M.E. The international epidemiology of lung cancer: Latest trends, disparities, and tumor characteristics. J. Thorac. Oncol. 2016, 11, 1653–1671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Youlden, D.R.; Cramb, S.M.; Baade, P.D. The international epidemiology of lung cancer: Geographical distribution and secular trends. J. Thorac. Oncol. 2008, 3, 819–831. [Google Scholar] [CrossRef] [PubMed]
- Molina, J.R.; Yang, P.; Cassivi, S.D.; Schild, S.E.; Adjei, A.A. Non-small cell lung cancer: Epidemiology, risk factors, treatment, and survivorship. Mayo Clin. Proc. 2008, 83, 584–594. [Google Scholar] [CrossRef]
- Mohammad, N.; Singh, S.V.; Malvi, P.; Chaube, B.; Athavale, D.; Vanuopadath, M.; Nair, S.S.; Nair, B.; Bhat, M.K. Strategy to enhance efficacy of doxorubicin in solid tumor cells by methyl-β-cyclodextrin: Involvement of p53 and fas receptor ligand complex. Sci. Rep. 2015, 5, 11853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muhammad, N.; Bhattacharya, S.; Steele, R.; Phillips, N.; Ray, R.B. Involvement of c-fos in the promotion of cancer stem-like cell properties in head and neck squamous cell carcinoma. Clin. Cancer Res. 2017, 23, 3120–3128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, B.; Chand, V.; Ram, A.; Usmani, D.; Muhammad, N. Oncogenic mutations in tumorigenesis and targeted therapy in breast cancer. Curr. Mol. Biol. Rep. 2020, 6, 116–125. [Google Scholar] [CrossRef]
- Siegelin, M.D.; Borczuk, A.C. Epidermal growth factor receptor mutations in lung adenocarcinoma. Lab. Investig. 2014, 94, 129–137. [Google Scholar] [CrossRef] [Green Version]
- Saito, M.; Shiraishi, K.; Kunitoh, H.; Takenoshita, S.; Yokota, J.; Kohno, T. Gene aberrations for precision medicine against lung adenocarcinoma. Cancer Sci. 2016, 107, 713–720. [Google Scholar] [CrossRef] [Green Version]
- Calvayrac, O.; Pradines, A.; Pons, E.; Mazières, J.; Guibert, N. Molecular biomarkers for lung adenocarcinoma. Eur. Respir. J. 2017, 49, 1601734. [Google Scholar] [CrossRef]
- Inoue, T.; Matsumura, Y.; Araki, O.; Karube, Y.; Maeda, S.; Kobayashi, S.; Chida, M. Epidermal growth factor receptor gene mutation in pleural lavage cytology findings of primary lung adenocarcinoma cases. Ann. Thorac. Cardiovasc. Surg. 2018, 24, 1–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, L.; Lee, C.K.; Pang, H.; Chan, H.T.; Lo, I.L.; Lam, S.K.; Cheong, T.H.; Ho, J.C. Genetic predisposition to lung adenocarcinoma among never-smoking chinese with different epidermal growth factor receptor mutation status. Lung Cancer 2017, 114, 79–89. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.Y.; Hsieh, M.J.; Wu, W.J.; Chiang, W.L.; Liu, T.C.; Yang, S.F.; Tsao, T.C. Association of endothelial nitric oxide synthase (enos) polymorphisms with egfr-mutated lung adenocarcinoma in taiwan. J. Cancer 2018, 9, 2518–2524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, Y.Y.; Chiou, H.L.; Tsao, S.M.; Huang, C.C.; Lin, C.Y.; Lee, C.Y.; Tsao, T.C.; Yang, S.F.; Huang, Y.W. Association of carbonic anhydrase 9 polymorphism and the epithelial growth factor receptor mutations in lung adenocarcinoma patients. Diagnostics 2020, 10, 266. [Google Scholar] [CrossRef] [PubMed]
- Yan, M.; Wang, C.; He, B.; Yang, M.; Tong, M.; Long, Z.; Liu, B.; Peng, F.; Xu, L.; Zhang, Y.; et al. Aurora-a kinase: A potent oncogene and target for cancer therapy. Med. Res. Rev. 2016, 36, 1036–1079. [Google Scholar] [CrossRef]
- Chou, C.H.; Chou, Y.E.; Chuang, C.Y.; Yang, S.F.; Lin, C.W. Combined effect of genetic polymorphisms of aurka and environmental factors on oral cancer development in taiwan. PLoS ONE 2017, 12, e0171583. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.H.; Chen, C.J.; Chen, P.N.; Wang, S.S.; Chou, Y.E.; Hung, S.C.; Yang, S.F. Impacts of aurka genetic polymorphism on urothelial cell carcinoma development. J. Cancer 2019, 10, 1370–1374. [Google Scholar] [CrossRef]
- Wang, B.; Hsu, C.J.; Chou, C.H.; Lee, H.L.; Chiang, W.L.; Su, C.M.; Tsai, H.C.; Yang, S.F.; Tang, C.H. Variations in the aurka gene: Biomarkers for the development and progression of hepatocellular carcinoma. Int. J. Med. Sci. 2018, 15, 170–175. [Google Scholar] [CrossRef] [Green Version]
- Shah, K.N.; Bhatt, R.; Rotow, J.; Rohrberg, J.; Olivas, V.; Wang, V.E.; Hemmati, G.; Martins, M.M.; Maynard, A.; Kuhn, J.; et al. Aurora kinase a drives the evolution of resistance to third-generation egfr inhibitors in lung cancer. Nat. Med. 2019, 25, 111–118. [Google Scholar] [CrossRef]
- Otto, T.; Sicinski, P. Cell cycle proteins as promising targets in cancer therapy. Nat. Rev. Cancer 2017, 17, 93–115. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Li, B.; Yang, Q.; Zhang, P.; Wang, H. Prognostic value of aurora kinase a (aurka) expression among solid tumor patients: A systematic review and meta-analysis. Jpn. J. Clin. Oncol. 2015, 45, 629–636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, M.; Gao, K.; Chu, L.; Zheng, J.; Yang, J. The role of aurora-a in cancer stem cells. Int. J. Biochem. Cell Biol. 2018, 98, 89–92. [Google Scholar] [CrossRef] [PubMed]
- Levinson, N.M. The multifaceted allosteric regulation of aurora kinase a. Biochem. J. 2018, 475, 2025–2042. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magnaghi-Jaulin, L.; Eot-Houllier, G.; Gallaud, E.; Giet, R. Aurora a protein kinase: To the centrosome and beyond. Biomolecules 2019, 9, 28. [Google Scholar] [CrossRef] [Green Version]
- Otto, T.; Horn, S.; Brockmann, M.; Eilers, U.; Schüttrumpf, L.; Popov, N.; Kenney, A.M.; Schulte, J.H.; Beijersbergen, R.; Christiansen, H.; et al. Stabilization of n-myc is a critical function of aurora a in human neuroblastoma. Cancer Cell 2009, 15, 67–78. [Google Scholar] [CrossRef] [Green Version]
- Blas-Rus, N.; Bustos-Morán, E.; Martín-Cófreces, N.B.; Sánchez-Madrid, F. Aurora-a shines on t cell activation through the regulation of lck. Bioessays 2017, 39. [Google Scholar] [CrossRef]
- Ping, Y.; Liu, C.; Zhang, Y. T-cell receptor-engineered t cells for cancer treatment: Current status and future directions. Protein Cell 2018, 9, 254–266. [Google Scholar] [CrossRef] [Green Version]
- Kimura, M.T.; Mori, T.; Conroy, J.; Nowak, N.J.; Satomi, S.; Tamai, K.; Nagase, H. Two functional coding single nucleotide polymorphisms in stk15 (aurora-a) coordinately increase esophageal cancer risk. Cancer Res. 2005, 65, 3548–3554. [Google Scholar] [CrossRef] [Green Version]
- Ewart-Toland, A.; Briassouli, P.; de Koning, J.P.; Mao, J.H.; Yuan, J.; Chan, F.; MacCarthy-Morrogh, L.; Ponder, B.A.; Nagase, H.; Burn, J.; et al. Identification of stk6/stk15 as a candidate low-penetrance tumor-susceptibility gene in mouse and human. Nat. Genet. 2003, 34, 403–412. [Google Scholar] [CrossRef]
- Ruan, Y.; Song, A.P.; Wang, H.; Xie, Y.T.; Han, J.Y.; Sajdik, C.; Tian, X.X.; Fang, W.G. Genetic polymorphisms in aurka and brca1 are associated with breast cancer susceptibility in a chinese han population. J. Pathol. 2011, 225, 535–543. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, P.; Zhao, H. The association between aurka gene rs2273535 polymorphism and gastric cancer risk in a chinese population. Front. Physiol. 2018, 9, 1124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Necchi, A.; Pintarelli, G.; Raggi, D.; Giannatempo, P.; Colombo, F. Association of an aurora kinase a (aurka) gene polymorphism with progression-free survival in patients with advanced urothelial carcinoma treated with the selective aurora kinase a inhibitor alisertib. Invest. New Drugs 2017, 35, 524–528. [Google Scholar] [CrossRef] [PubMed]
- Niu, H.; Shin, H.; Gao, F.; Zhang, J.; Bahamon, B.; Danaee, H.; Melichar, B.; Schilder, R.J.; Coleman, R.L.; Falchook, G.; et al. Aurora a functional single nucleotide polymorphism (snp) correlates with clinical outcome in patients with advanced solid tumors treated with alisertib, an investigational aurora a kinase inhibitor. EBioMedicine 2017, 25, 50–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lykkesfeldt, A.E.; Iversen, B.R.; Jensen, M.B.; Ejlertsen, B.; Giobbie-Hurder, A.; Reiter, B.E.; Kirkegaard, T.; Rasmussen, B.B. Aurora kinase a as a possible marker for endocrine resistance in early estrogen receptor positive breast cancer. Acta Oncol. 2018, 57, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Kurup, S.; McAllister, B.; Liskova, P.; Mistry, T.; Fanizza, A.; Stanford, D.; Slawska, J.; Keller, U.; Hoellein, A. Design, synthesis and biological activity of n(4)-phenylsubstituted-7h-pyrrolo[2,3-d]pyrimidin-4-amines as dual inhibitors of aurora kinase a and epidermal growth factor receptor kinase. J. Enzym. Inhib. Med. Chem. 2018, 33, 74–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Erdem-Eraslan, L.; Gao, Y.; Kloosterhof, N.K.; Atlasi, Y.; Demmers, J.; Sacchetti, A.; Kros, J.M.; Sillevis Smitt, P.; Aerts, J.; French, P.J. Mutation specific functions of egfr result in a mutation-specific downstream pathway activation. Eur. J. Cancer 2015, 51, 893–903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Furuyama, K.; Harada, T.; Iwama, E.; Shiraishi, Y.; Okamura, K.; Ijichi, K.; Fujii, A.; Ota, K.; Wang, S.; Li, H.; et al. Sensitivity and kinase activity of epidermal growth factor receptor (egfr) exon 19 and others to egfr-tyrosine kinase inhibitors. Cancer Sci. 2013, 104, 584–589. [Google Scholar] [CrossRef] [Green Version]
- Isaka, T.; Nakayama, H.; Ito, H.; Yokose, T.; Yamada, K.; Masuda, M. Impact of the epidermal growth factor receptor mutation status on the prognosis of recurrent adenocarcinoma of the lung after curative surgery. BMC Cancer 2018, 18, 959. [Google Scholar] [CrossRef] [Green Version]
- Hayasaka, K.; Shiono, S.; Matsumura, Y.; Yanagawa, N.; Suzuki, H.; Abe, J.; Sagawa, M.; Sakurada, A.; Katahira, M.; Takahashi, S.; et al. Epidermal growth factor receptor mutation as a risk factor for recurrence in lung adenocarcinoma. Ann. Thorac. Surg. 2018, 105, 1648–1654. [Google Scholar] [CrossRef] [Green Version]
- Pallis, A.G.; Syrigos, K.N. Lung cancer in never smokers: Disease characteristics and risk factors. Crit. Rev. Oncol. Hematol. 2013, 88, 494–503. [Google Scholar] [CrossRef]
- Rivera, G.A.; Wakelee, H. Lung cancer in never smokers. Adv. Exp. Med. Biol. 2016, 893, 43–57. [Google Scholar] [PubMed]
- De Groot, P.; Munden, R.F. Lung cancer epidemiology, risk factors, and prevention. Radiol. Clin. N. Am. 2012, 50, 863–876. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Deng, W.; Zhang, Y.; Sun, S.; Zhao, S.; Chen, Y.; Zhao, X.; Liu, L.; Du, J. Mical2 promotes breast cancer cell migration by maintaining epidermal growth factor receptor (egfr) stability and egfr/p38 signalling activation. Acta Physiol. 2018, 222. [Google Scholar] [CrossRef] [PubMed]
Subject Characteristics | EGFR Wild Type (n = 105) | EGFR Mutation Type (n = 167) | p Value |
---|---|---|---|
Age, n (%) | |||
Mean ± SD (years) | 65.52 ⩲ 13.47 | 65.74 ⩲ 13.61 | 0.897 |
Gender, n (%) | |||
Male | 61 (58.1%) | 60 (35.9%) | <0.001 |
Female | 44 (41.9%) | 107 (64.1%) | |
Cigarette smoking, n (%) | |||
Nonsmoker | 48 (45.7%) | 129 (77.2%) | <0.001 |
Ever-smoker | 57 (54.3%) | 38 (22.8%) | |
Stage, n (%) | |||
I + II | 24 (22.9%) | 47 (28.1%) | 0.334 |
III + IV | 81 (77.1%) | 120 (71.9%) | |
Tumor T status, n (%) | |||
T1 + T2 | 59 (56.2%) | 106 (63.5%) | 0.231 |
T3 + T4 | 46 (43.8%) | 61 (36.5%) | |
Lymph node status, n (%) | |||
Negative | 27 (25.7%) | 52 (31.1%) | 0.337 |
Positive | 78 (74.3%) | 115 (68.9%) | |
Distant Metastasis, n (%) | |||
Negative | 52 (49.5%) | 80 (47.9%) | 0.795 |
Positive | 53 (50.5%) | 87 (52.1%) | |
Cell differentiation, n (%) | |||
Well | 8 (7.6%) | 20 (12.0%) | 0.005 |
Moderately | 78 (74.3%) | 137 (82.0%) | |
Poorly | 19 (18.1%) | 10 (6.0%) |
Genotype SNP | EGFR Wild Type (n = 105) | EGFR Mutation Type (n = 167) | AOR (95% CI) | p Value |
---|---|---|---|---|
rs1047972 | ||||
CC | 76 (72.4%) | 137 (82.0%) | 1.00 | |
CT | 29 (27.6%) | 29 (17.4%) | 0.458 (0.243–0.862) | 0.015 |
TT | 0 (0.0%) | 1 (0.6%) | - | - |
CT + TT | 29 (27.6%) | 30 (18.0%) | 0.471 (0.251–0.884) | 0.019 |
rs2273535 | ||||
TT | 46 (43.8%) | 78 (46.7%) | 1.00 | |
TA | 49 (46.7%) | 76 (45.5%) | 0.782 (0.450–1.360) | 0.383 |
AA | 10 (9.5%) | 13 (7.8%) | 0.688 (0.258–1.837) | 0.455 |
TA + AA | 59 (56.2%) | 89 (53.3%) | 0.766 (0.451–1.302) | 0.325 |
rs6024836 | ||||
AA | 49 (46.7%) | 70 (41.9%) | 1.00 | |
AG | 41 (39.0%) | 74 (44.3%) | 1.060 (0.602–1.868) | 0.839 |
GG | 15 (14.3%) | 23 (13.8%) | 0.903 (0.405–2.012) | 0.803 |
AG + GG | 56 (53.3%) | 97 (58.1%) | 1.018 (0.601–1.726) | 0.946 |
rs2064863 | ||||
TT | 72 (68.6%) | 113 (67.7%) | 1.00 | |
TG | 28 (26.7%) | 47 (28.1%) | 1.069 (0.590–1.935) | 0.826 |
GG | 5 (4.7%) | 7 (4.2%) | 0.893 (0.246–3.245) | 0.863 |
TG + GG | 33 (31.4%) | 54 (32.3%) | 1.043 (0.593–1.834) | 0.883 |
Genotype SNP | Male (n = 121) | Female (n = 151) | ||||
---|---|---|---|---|---|---|
EGFR Wild Type (n = 61) | EGFR Mutation Type (n = 60) | p Value | EGFR Wild Type (n = 44) | EGFR Mutation Type (n = 107) | p Value | |
rs1047972 | ||||||
CC | 48 (78.7%) | 50 (83.3%) | 28 (63.6%) | 87 (81.3%) | ||
CT | 13 (21.3%) | 9 (15.0%) | 0.240 | 16 (36.4%) | 20 (18.7%) | 0.008 a |
TT | 0 (0.0%) | 1 (1.7%) | - | 0 (0.0%) | 0 (0.0%) | - |
CT + TT | 13 (21.3%) | 10 (16.7%) | 0.298 | 16 (36.4%) | 20 (18.7%) | 0.008 b |
rs2273535 | ||||||
TT | 30 (49.2%) | 30 (50.0%) | 16 (36.4%) | 48 (44.9%) | ||
TA | 25 (41.0%) | 22 (36.7%) | 0.608 | 24 (54.5%) | 54 (50.5%) | 0.167 |
AA | 6 (9.8%) | 8 (13.3%) | 0.723 | 4 (9.1%) | 5 (4.7%) | 0.145 |
TA + AA | 31 (50.8%) | 30 (50.0%) | 0.765 | 28 (63.6%) | 59 (55.1%) | 0.116 |
rs6024836 | ||||||
AA | 32 (52.5%) | 22 (36.7%) | 17 (38.6%) | 48 (44.9%) | ||
AG | 23 (37.7%) | 28 (46.7%) | 0.559 | 18 (40.9%) | 46 (43.0%) | 0.495 |
GG | 6 (9.8%) | 10 (16.6%) | 0.173 | 9 (20.5%) | 13 (12.1%) | 0.157 |
AG + GG | 29 (47.5%) | 38 (63.3%) | 0.308 | 27 (61.4%) | 59 (55.1%) | 0.278 |
rs2064863 | ||||||
TT | 41 (67.2%) | 40 (66.7%) | 31 (70.5%) | 73 (68.2%) | ||
TG | 18 (29.5%) | 15 (25.0%) | 0.811 | 10 (22.7%) | 32 (29.9%) | 0.687 |
GG | 2 (3.3%) | 5 (8.3%) | 0.222 | 3 (6.8%) | 2 (1.9%) | 0.357 |
TG + GG | 20 (32.8%) | 20 (33.3%) | 0.816 | 13 (29.5%) | 34 (31.8%) | 0.127 |
Genotype SNP | Non-Smoking (n = 177) | Smoking (n = 95) | ||||
---|---|---|---|---|---|---|
EGFR Wild Type (n = 48) | EGFR Mutation Type (n = 129) | p Value | EGFR Wild Type (n = 57) | EGFR Mutation Type (n = 38) | p Value | |
rs1047972 | ||||||
CC | 29 (60.4%) | 105 (81.4%) | 47 (82.5%) | 32 (84.2%) | ||
CT | 19 (39.6%) | 23 (17.8%) | 0.004 a | 10 (17.5%) | 6 (15.8%) | 0.694 |
TT | 0 (0.0%) | 1 (0.8%) | - | 0 (0.0%) | 0 (0.0%) | - |
CT + TT | 19 (39.6%) | 24 (18.6%) | 0.006 b | 10 (17.5%) | 6 (15.8%) | 0.694 |
rs2273535 | ||||||
TT | 17 (35.4%) | 60 (46.5%) | 29 (50.9%) | 18 (47.4%) | ||
TA | 25 (52.1%) | 60 (46.5%) | 0.167 | 24 (42.1%) | 16 (42.1%) | 0.697 |
AA | 6 (12.5%) | 9 (7.0%) | 0.181 | 4 (7.0%) | 4 (10.5%) | 0.512 |
TA + AA | 31 (64.6%) | 69 (53.5%) | 0.110 | 28 (49.1%) | 20 (52.6%) | 0.905 |
rs6024836 | ||||||
AA | 17 (35.4%) | 54 (41.9%) | 32 (56.1%) | 16 (42.1%) | ||
AG | 22 (45.8%) | 59 (45.7%) | 0.400 | 19 (33.3%) | 15 (39.5%) | 0.673 |
GG | 9 (18.8%) | 16 (12.4%) | 0.171 | 6 (10.5%) | 7 (18.4%) | 0.171 |
AG + GG | 31 (64.6%) | 75 (58.1%) | 0.242 | 25 (43.9%) | 22 (57.9%) | 0.351 |
rs2064863 | ||||||
TT | 34 (70.8%) | 88 (68.2%) | 38 (66.7%) | 25 (65.8%) | ||
TG | 11 (22.9%) | 37 (28.7%) | 0.547 | 17 (29.8%) | 10 (26.3%) | 0.732 |
GG | 3 (6.3%) | 4 (3.1%) | 0.286 | 2 (3.5%) | 3 (7.9%) | 0.357 |
TG + GG | 14 (29.2%) | 41 (31.8%) | 0.820 | 19 (33.3%) | 13 (34.2%) | 0.986 |
Variable | ALL (n = 272) | |||
AA (n = 119) | AG + GG (n = 153) | OR (95% CI) | p Value | |
Stages | ||||
I + II | 25 (21.0%) | 46 (30.1%) | 1.00 | p = 0.092 |
III + IV | 94 (79.0%) | 107 (69.9%) | 0.619 (0.353–1.083) | |
Tumor T status | ||||
T1 + T2 | 70 (58.8%) | 95 (62.1%) | 1.00 | P = 0.584 |
T3 + T4 | 49 (41.2%) | 58 (37.9%) | 0.872 (0.534–1.423) | |
Lymph node status | ||||
Negative | 30 (25.2%) | 49 (32.0%) | 1.00 | p = 0.219 |
Positive | 89 (74.8%) | 104 (68.0%) | 0.715 (0.419–1.222) | |
Distant metastasis | ||||
Negative | 56 (47.1%) | 76 (49.7%) | 1.00 | p = 0.669 |
Positive | 63 (52.9%) | 77 (50.3%) | 0.901 (0.557–1.455) | |
Cell differentiation | ||||
Well/Moderately | 104 (87.4%) | 139 (90.8%) | 1.00 | p = 0.360 |
Poorly | 15 (12.6%) | 14 (9.2%) | 0.698 (0.323–1.510) | |
EGFR Wild Type (n = 105) | ||||
AA (n = 49) | AG + GG (n = 56) | OR (95% CI) | p Value | |
Stages | ||||
I + II | 12 (24.5%) | 12 (21.4%) | 1.00 | p = 0.709 |
III + IV | 37 (75.5%) | 44 (78.6%) | 1.189 (0.478–2.960) | |
Tumor T status | ||||
T1 + T2 | 30 (61.2%) | 29 (51.8%) | 1.00 | p = 0.331 |
T3 + T4 | 19 (38.8%) | 27 (48.2%) | 1.470 (0.675–3.200) | |
Lymph node status | ||||
Negative | 12 (24.5%) | 15 (26.8%) | 1.00 | p = 0.788 |
Positive | 37 (75.5%) | 41 (73.2%) | 0.886 (0.368–2.136) | |
Distant metastasis | ||||
Negative | 28 (57.1%) | 24 (42.9%) | 1.00 | p = 0.144 |
Positive | 21 (42.9%) | 32 (57.1%) | 1.778 (0.819–3.858) | |
Cell differentiation | ||||
Well/Moderately | 37 (75.5%) | 49 (87.5%) | 1.00 | p = 0.111 |
Poorly | 12 (24.5%) | 7 (12.5%) | 0.440 (0.158–1.228) | |
EGFR Mutation (n = 167) | ||||
AA (n = 70) | AG + GG (n = 97) | OR (95% CI) | p Value | |
Stages | ||||
I + II | 13 (18.6%) | 34 (35.1%) | 1.00 | p = 0.019 |
III + IV | 57 (81.4%) | 63 (64.9%) | 0.423 (0.203–0.879) | |
Tumor T status | ||||
T1 + T2 | 40 (57.1%) | 66 (68.0%) | 1.00 | p = 0.149 |
T3 + T4 | 30 (42.9%) | 31 (32.0%) | 0.626 (0.331–1.185) | |
Lymph node status | ||||
Negative | 18 (25.7%) | 34 (35.1%) | 1.00 | p = 0.199 |
Positive | 52 (74.3%) | 63 (64.9%) | 0.641 (0.325–1.265) | |
Distant metastasis | ||||
Negative | 28 (40.0%) | 52 (53.6%) | 1.00 | p = 0.082 |
Positive | 42 (60.0%) | 45 (46.4%) | 0.577 (0.309–1.075) | |
Cell differentiation | ||||
Well/Moderately | 67 (95.7%) | 90 (92.8%) | 1.00 | p = 0.431 |
Poorly | 3 (4.3%) | 7 (7.2%) | 1.737 (0.433–6.967) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, P.-J.; Hsieh, M.-J.; Lee, C.-I.; Yen, C.-H.; Wang, H.-L.; Chiang, W.-L.; Liu, T.-C.; Tsao, T.C.-Y.; Lee, C.-Y.; Yang, S.-F. Impact of Aurora Kinase A Polymorphism and Epithelial Growth Factor Receptor Mutations on the Clinicopathological Characteristics of Lung Adenocarcinoma. Int. J. Environ. Res. Public Health 2020, 17, 7350. https://doi.org/10.3390/ijerph17197350
Yang P-J, Hsieh M-J, Lee C-I, Yen C-H, Wang H-L, Chiang W-L, Liu T-C, Tsao TC-Y, Lee C-Y, Yang S-F. Impact of Aurora Kinase A Polymorphism and Epithelial Growth Factor Receptor Mutations on the Clinicopathological Characteristics of Lung Adenocarcinoma. International Journal of Environmental Research and Public Health. 2020; 17(19):7350. https://doi.org/10.3390/ijerph17197350
Chicago/Turabian StyleYang, Po-Jen, Ming-Ju Hsieh, Chun-I Lee, Chi-Hua Yen, Hsiang-Ling Wang, Whei-Ling Chiang, Tu-Chen Liu, Thomas Chang-Yao Tsao, Chia-Yi Lee, and Shun-Fa Yang. 2020. "Impact of Aurora Kinase A Polymorphism and Epithelial Growth Factor Receptor Mutations on the Clinicopathological Characteristics of Lung Adenocarcinoma" International Journal of Environmental Research and Public Health 17, no. 19: 7350. https://doi.org/10.3390/ijerph17197350