Marine Alga Ulva fasciata-Derived Molecules for the Potential Treatment of SARS-CoV-2: An In Silico Approach
Abstract
:1. Introduction
1.1. Therapeutic Approaches against COVID-19
1.2. Antiviral Potential of Seaweed-Based Bioactive Compounds
2. Results
2.1. GC-MS Characterization and PubChem® Study
2.2. VEGA QSAR Study for Mutagenicity/Carcinogenicity/Toxicity of Therapeutic Agents
2.3. PASS Predictions of Therapeutic Compounds for Select Viruses
2.4. Docking Interaction Analysis of SARVS-CoV-2 Target Proteins by AutoDock Vina
2.5. Comparison of Binding Energies of SARS-CoV-2 Target Proteins with Standard Drugs
2.5.1. Docking Interactions between 3,7,11,15-Tetramethyl-2-hexadecen-1-ol, HCQ, CQ, MPN, IFN α-2b and Remdesivir
2.5.2. Binding Energies of 3,7,11,15-Tetramethyl-2-hexadecen-1-ol and 5 Other Standard Antiviral Drugs with SARS-CoV-2 Target Proteins
RMSD
RMSF
Protein–Ligand Contacts
2.6. Prediction of ADMET Properties for 3,7,11,15-Tetramethyl-2-hexadecen-1-ol
2.6.1. Heavy and Aromatic Atoms
2.6.2. Fraction Csp3
2.6.3. Rotatable Bonds
2.6.4. H-Bond Acceptors (HBA) and Donors (HBD)
2.6.5. Molecular Refractivity (MR)
2.6.6. Topological Polar Surface Area (TPSA)
2.6.7. Lipophilic Properties (Log P)
2.7. Water Solubility, Pharmacokinetics, Drug Likeness and Medicinal Chemistry
2.7.1. Water Solubility by ESOL and Silicos-It Classes
2.7.2. Pharmacokinetics
2.7.3. Permeability Glycoprotein
2.7.4. Cytochrome P Inhibition
2.7.5. Skin Permeability (Log Kp)
2.8. Drug Likeness
2.8.1. Lipinski Violations
2.8.2. Bioavailability
2.9. Medicinal Chemistry
2.10. Synthetic Accessibility (SA)
3. Discussion
4. Materials and Methods
4.1. Site Location and Sample Collection
4.2. Sample Preparation and Identification
4.3. Extract Preparation and GC-MS Characterization
4.4. PubChem® Study
4.5. VEGA QSAR Toxicity Prediction Study
4.6. PASS Predictions
4.7. SARS-CoV-2 Target Protein Selection
4.8. Selection of Standard Drugs and Docking Interaction Analysis
4.9. Molecular Dynamic Simulation Study
4.9.1. RMSD and RMSF Calculation
4.9.2. SSE and L-RMSF Determination
4.9.3. Protein-Ligand Contacts
4.9.4. Ligand Torsion Profile
4.9.5. Radius of Gyration (RoG)
4.10. Evaluation of Pharmacokinetics by Swiss ADME
4.11. Physicochemical Descriptors and Lipophilicity Properties
4.12. Water Solubility, Pharmacokinetics, Drug Likeness and Medicinal Chemistry
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Karthik, B. Current Trends in Seaweed Research–Overview. Int. J. Pharmacogn. Phytochem. Res. 2019, 11, 295–298. [Google Scholar]
- Park, B.S.; Li, Z. Taxonomy and Ecology of Marine Algae. J. Mar. Sci. Eng. 2022, 10, 105. [Google Scholar] [CrossRef]
- Chapman, R.L. Algae: The world’s most important “plants”—An introduction. Mitig. Adapt. Strateg. Glob. Chang. 2013, 18, 5–12. [Google Scholar] [CrossRef]
- Jimenez-Lopez, C.; Pereira, A.G.; Lourenço-Lopes, C.; García-Oliveira, P.; Cassani, L.; Fraga-Corral, M.; Prieto, M.A.; Simal-Gandara, J. Main bioactive phenolic compounds in marine algae and their mechanisms of action supporting potential health benefits. Food Chem. 2021, 341, 128262. [Google Scholar] [CrossRef]
- Kandale, A.; Meena, A.K.; Rao, M.M.; Panda, P.; Mangal, A.K.; Reddy, G.; Babu, R. Marine algae: An introduction, food value and medicinal uses. J. Pharm. Res. 2011, 4, 219–221. [Google Scholar]
- Kalasariya, H.S.; Yadav, V.K.; Yadav, K.K.; Tirth, V.; Algahtani, A.; Islam, S.; Gupta, N.; Jeon, B.H. Seaweed-based molecules and their potential biological activities: An eco-sustainable cosmetics. Molecules 2021, 26, 5313. [Google Scholar] [CrossRef]
- Taskin, E.; Taskin, E.; Öztürk, M.; da Silva, J.A. Natural compounds with bioactive properties from marine algae. Med. Aromat. Plant Sci. Biotechnol. 2010, 4, 5–9. [Google Scholar]
- Manzi, H.P.; Abou-Shanab, R.A.; Jeon, B.H.; Wang, J.; Salama, E.S. Algae: A frontline photosynthetic organism in the microplastic catastrophe. Trends Plant Sci. 2022, 3. [Google Scholar] [CrossRef]
- Kalasariya, H.S.; Patel, N.B.; Yadav, A.; Perveen, K.; Yadav, V.K.; Munshi, F.M.; Yadav, K.K.; Alam, S.; Jung, Y.K.; Jeon, B.H. Characterization of fatty acids, polysaccharides, amino acids, and minerals in marine macroalga chaetomorpha crassa and evaluation of their potentials in skin cosmetics. Molecules 2021, 26, 7515. [Google Scholar] [CrossRef]
- Pradhan, B.; Nayak, R.; Patra, S.; Bhuyan, P.P.; Dash, S.R.; Ki, J.S.; Adhikary, S.P.; Ragusa, A.; Jena, M. Cyanobacteria and Algae-Derived Bioactive Metabolites as Antiviral Agents: Evidence, Mode of Action, and Scope for Further Expansion; A Comprehensive Review in Light of the SARS-CoV-2 Outbreak. Antioxidants 2022, 11, 354. [Google Scholar] [CrossRef]
- Chen, N.; Zhou, M.; Dong, X.; Qu, J.; Gong, F.; Han, Y.; Qiu, Y.; Wang, J.; Liu, Y.; Wei, Y.; et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet 2020, 395, 507–513. [Google Scholar] [CrossRef]
- Drosten, C.; Günther, S.; Preiser, W.; Van Der Werf, S.; Brodt, H.R.; Becker, S.; Rabenau, H.; Panning, M.; Kolesnikova, L.; Fouchier, R.A.; et al. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N. Engl. J. Med. 2003, 348, 1967–1976. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.H.; Nitsche, A.; et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020, 181, 271–280. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Liu, Q.; Guo, D. Emerging coronaviruses: Genome structure, replication, and pathogenesis. J. Med. Virol. 2020, 92, 418–423. [Google Scholar] [CrossRef] [PubMed]
- Carossino, M.; Thiry, E.; de la Grandière, A.; Barrandeguy, M.E. Novel vaccination approaches against equine alphavirus encephalitides. Vaccine 2014, 32, 311–319. [Google Scholar] [CrossRef] [PubMed]
- Ikegame, S.; Siddiquey, M.; Hung, C.T.; Haas, G.; Brambilla, L.; Oguntuyo, K.; Kowdle, S.; Vilardo, A.; Edelstein, A.; Perandones, C.; et al. Neutralizing activity of Sputnik V vaccine sera against SARS-CoV-2 variants. Res. Sq. 2021, 12, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Liu, Y.; Yang, Y.; Zhang, P.; Zhong, W.; Wang, Y.; Wang, Q.; Xu, Y.; Li, M.; Li, X.; et al. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm. Sin. B 2020, 10, 766–788. [Google Scholar] [CrossRef] [PubMed]
- Lu, R.; Zhao, X.; Li, J.; Niu, P.; Yang, B.; Wu, H.; Wang, W.; Song, H.; Huang, B.; Zhu, N.; et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet 2020, 395, 565–574. [Google Scholar] [CrossRef]
- Prajapat, M.; Sarma, P.; Shekhar, N.; Avti, P.; Sinha, S.; Kaur, H.; Kumar, S.; Bhattacharyya, A.; Kumar, H.; Bansal, S.; et al. Drug targets for corona virus: A systematic review. Indian J. Pharmacol. 2020, 52, 56. [Google Scholar]
- Sami, N.; Ahmad, R.; Fatma, T. Exploring algae and cyanobacteria as a promising natural source of antiviral drug against SARS-CoV-2. Biomed. J. 2020, 44, 54–62. [Google Scholar] [CrossRef]
- Sethi, A.; Bach, H. Evaluation of current therapies for COVID-19 treatment. Microorganisms 2020, 8, 1097. [Google Scholar] [CrossRef] [PubMed]
- Matsoukas, J.; Apostolopoulos, V.; Zulli, A.; Moore, G.; Kelaidonis, K.; Moschovou, K.; Mavromoustakos, T. From angiotensin II to cyclic peptides and angiotensin receptor blockers (ARBs): Perspectives of ARBs in COVID-19 therapy. Molecules 2021, 26, 618. [Google Scholar] [CrossRef]
- Gerber, P.; Dutcher, J.D.; Adams, E.V.; Sherman, J.H. Protective effect of seaweed extracts for chicken embryos infected with influenza B or mumps virus. Proc. Soc. Exp. Biol. Med. 1958, 99, 590–593. [Google Scholar] [CrossRef]
- Kalasariya, H.S.; Pereira, L.; Patel, N.B. Pioneering role of marine macroalgae in cosmeceuticals. Phycology 2022, 2, 172–203. [Google Scholar] [CrossRef]
- Hans, N.; Malik, A.; Naik, S. Antiviral activity of sulfated polysaccharides from marine algae and its application in combating COVID-19: Mini review. Bioresour. Technol. Rep. 2021, 13, 100623. [Google Scholar] [CrossRef] [PubMed]
- Kwon, P.S.; Oh, H.; Kwon, S.J.; Jin, W.; Zhang, F.; Fraser, K.; Hong, J.J.; Linhardt, R.J.; Dordick, J.S. Sulfated polysaccharides effectively inhibit SARS-CoV-2 in vitro. Cell Discov. 2020, 6, 1–4. [Google Scholar] [CrossRef]
- Salih, A.E.; Thissera, B.; Yaseen, M.; Hassane, A.S.; El-Seedi, H.R.; Sayed, A.M.; Rateb, M.E. Marine sulfated polysaccharides as promising antiviral agents: A comprehensive report and modeling study focusing on SARS CoV-2. Mar. Drugs 2021, 19, 406. [Google Scholar] [CrossRef]
- Pereira, L.; Critchley, A.T. The COVID 19 novel coronavirus pandemic 2020: Seaweeds to the rescue? Why does substantial, supporting research about the antiviral properties of seaweed polysaccharides seem to go unrecognized by the pharmaceutical community in these desperate times? J. Appl. Phycol. 2020, 32, 1875–1877. [Google Scholar] [CrossRef]
- Zaporozhets, T.S.; Besednova, N.N. Biologically active compounds from marine organisms in the strategies for combating coronaviruses. AIMS Microbiol. 2020, 6, 470. [Google Scholar] [CrossRef]
- Chen, X.; Han, W.; Wang, G.; Zhao, X. Application prospect of polysaccharides in the development of anti-novel coronavirus drugs and vaccines. Int. J. Biol. Macromol. 2020, 164, 331–343. [Google Scholar] [CrossRef]
- Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B.; et al. PubChem in 2021: New data content and improved web interfaces. Nucleic Acids Res. 2021, 49, D1388–D1395. [Google Scholar] [CrossRef] [PubMed]
- Mendes, G.D.S.; Soares, A.R.; Martins, F.O.; Albuquerque, M.C.M.D.; Costa, S.S.; Yoneshigue-Valentin, Y.; Gestinari, L.M.D.S.; Santos, N.; Romanos, M.T.V. Antiviral activity of the green marine alga Ulva fasciata on the replication of human metapneumovirus. Rev. Inst. Med. Trop. São Paulo 2010, 52, 3–10. [Google Scholar] [CrossRef]
- Gomaa, H.H.; Elshoubaky, G.A. Antiviral activity of sulfated polysaccharides carrageenan from some marine seaweeds. Int. J. Curr. Pharm. Rev. Res. 2016, 7, 34–42. [Google Scholar]
- Elshabrawy, H.A. SARS-CoV-2: An update on potential antivirals in light of SARS-CoV antiviral drug discoveries. Vaccines 2020, 8, 335. [Google Scholar] [CrossRef] [PubMed]
- Millet, J.K.; Séron, K.; Labitt, R.N.; Danneels, A.; Palmer, K.E.; Whittaker, G.R.; Dubuisson, J.; Belouzard, S. Middle East respiratory syndrome coronavirus infection is inhibited by griffithsin. Antivir. Res. 2016, 133, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Lee, C. Griffithsin, a highly potent broad-spectrum antiviral lectin from red algae: From discovery to clinical application. Mar. Drugs 2019, 17, 567. [Google Scholar] [CrossRef]
- Alam, M.; Parra-Saldivar, R.; Bilal, M.; Afroze, C.A.; Ahmed, M.; Iqbal, H.; Xu, J. Algae-derived bioactive molecules for the potential treatment of sars-cov-2. Molecules 2021, 26, 2134. [Google Scholar] [CrossRef]
- Yim, S.K.; Kim, K.; Kim, I.; Chun, S.; Oh, T.; Kim, J.U.; Kim, J.; Jung, W.; Moon, H.; Ku, B.; et al. Inhibition of SARS-CoV-2 virus entry by the crude polysaccharides of seaweeds and abalone viscera in vitro. Mar. Drugs 2021, 19, 219. [Google Scholar] [CrossRef]
- Glen, R.C.; Bender, A.; Arnby, C.H.; Carlsson, L.; Boyer, S.; Smith, J. Circular fingerprints: Flexible molecular descriptors with applications from physical chemistry to ADME. IDrugs 2006, 9, 199–204. [Google Scholar]
- Goel, R.K.; Singh, D.; Lagunin, A.; Poroikov, V. PASS-assisted exploration of new therapeutic potential of natural products. Med. Chem. Res. 2010, 20, 1509–1514. [Google Scholar] [CrossRef]
- Du, X.; Li, Y.; Xia, Y.L.; Ai, S.M.; Liang, J.; Sang, P.; Ji, X.L.; Liu, S.Q. Insights into Protein-Ligand Interactions: Mechanisms, Models, and Methods. Int. J. Mol. Sci. 2016, 17, 144. [Google Scholar] [CrossRef] [PubMed]
- Tariq, A.; Mateen, R.M.; Afzal, M.S.; Saleem, M. Paromomycin: A potential dual targeted drug effectively inhibits both spike (S1) and main protease of COVID-19. Int. J. Infect. Dis. 2020, 98, 166–175. [Google Scholar] [CrossRef] [PubMed]
- Umesh; Kundu, D.; Selvaraj, C.; Singh, S.K.; Dubey, V.K. Identification of new anti-nCoV drug chemical compounds from Indian spices exploiting SARS-CoV-2 main protease as target. J. Biomol. Struct. Dyn. 2021, 39, 3428–3434. [Google Scholar] [CrossRef]
- Liu, J.; Wu, P.; Gao, F.; Qi, J.; Kawana-Tachikawa, A.; Xie, J.; Vavricka, C.J.; Iwamoto, A.; Li, T.; Gao, G.F. Novel immunodominant peptide presentation strategy: A featured HLA-A* 2402-restricted cytotoxic T-lymphocyte epitope stabilized by intrachain hydrogen bonds from severe acute respiratory syndrome coronavirus nucleocapsid protein. J. Virol. 2010, 84, 11849–11857. [Google Scholar] [CrossRef]
- Das, S.; Sarmah, S.; Lyndem, S.; Singha Roy, A. An investigation into the identification of potential inhibitors of SARS-CoV-2 main protease using molecular docking study. J. Biomol. Struct. Dyn. 2021, 39, 3347–3357. [Google Scholar] [CrossRef] [PubMed]
- Morrone, J.A.; Weber, J.K.; Huynh, T.; Luo, H.; Cornell, W.D. Combining docking pose rank and structure with deep learning improves protein–ligand binding mode prediction over a baseline docking approach. J. Chem. Inf. Model. 2020, 60, 4170–4179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feher, M.; Schmidt, J.M. Property distributions: Differences between drugs, natural products, and molecules from combinatorial chemistry. J. Chem. Inf. Comput. Sci. 2003, 43, 218–227. [Google Scholar] [CrossRef] [PubMed]
- Kingwell, K. Exploring the third dimension. Nat. Rev. Drug Discov. 2009, 8, 931. [Google Scholar] [CrossRef]
- Panwar, U.; Singh, S.K. Structure-based virtual screening toward the discovery of novel inhibitors for impeding the protein-protein interaction between HIV-1 integrase and human lens epithelium-derived growth factor (LEDGF/p75). J. Biomol. Struct. Dyn. 2018, 36, 3199–3217. [Google Scholar] [CrossRef]
- Bharathi, M.; Sivamaruthi, B.S.; Kesika, P.; Thangaleela, S.; Chaiyasut, C. In silico screening of bioactive compounds of representative seaweeds to inhibit SARS-CoV-2 ACE2-bound omicron B. 1.1. 529 spike protein trimer. Mar. Drugs 2022, 20, 148. [Google Scholar] [CrossRef]
- Prasanna, S.; Doerksen, R.J. Topological Polar Surface Area: A Useful Descriptor in 2D-QSAR. Curr. Med. Chem. 2020, 16, 21–41. [Google Scholar] [CrossRef] [PubMed]
- Finch, A.; Pillans, P. P-glycoprotein and its role in drug-drug interactions. Aust. Prescr. 2014, 37, 137–139. [Google Scholar] [CrossRef]
- Baell, J.B.; Holloway, G.A. New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J. Med. Chem. 2010, 53, 2719–2740. [Google Scholar] [CrossRef] [PubMed]
- Besednova, N.N.; Andryukov, B.G.; Zaporozhets, T.S.; Kryzhanovsky, S.P.; Fedyanina, L.N.; Kuznetsova, T.A.; Zvyagintseva, T.N.; Shchelkanov, M.Y. Antiviral Effects of Polyphenols from Marine Algae. Biomedicines 2021, 9, 200. [Google Scholar] [CrossRef] [PubMed]
- Riccio, G.; Ruocco, N.; Mutalipassi, M.; Costantini, M.; Zupo, V.; Coppola, D.; de Pascale, D.; Lauritano, C. Ten-Year Research Update Review: Antiviral Activities from Marine Organisms. Biomolecules 2020, 10, 1007. [Google Scholar] [CrossRef]
- Kumar, V.; Parate, S.; Yoon, S.; Lee, G.; Lee, K.W. Computational simulations identified marine-derived natural bioactive compounds as replication inhibitors of SARS-CoV-2. Front. Microbiol. 2021, 12, 647295. [Google Scholar] [CrossRef]
- Wijesekara, I.; Pangestuti, R.; Kim, S.K. Biological activities and potential health benefits of sulfated polysaccharides derived from marine algae. Carbohydr. Polym. 2011, 84, 14–21. [Google Scholar] [CrossRef]
- Liu, J.; Obaidi, I.; Nagar, S.; Scalabrino, G.; Sheridan, H. The antiviral potential of algal-derived Macromolecules. Curr. Res. Biotechnol. 2021, 3, 120–134. [Google Scholar] [CrossRef]
- Abiri, R.; Abdul-Hamid, H.; Sytar, O.; Abiri, R.; Bezerra de Almeida, E., Jr.; Sharma, S.K.; Bulgakov, V.P.; Arroo, R.R.J.; Malik, S. A Brief Overview of Potential Treatments for Viral Diseases Using Natural Plant Compounds: The Case of SARS-Cov. Molecules 2021, 26, 3868. [Google Scholar] [CrossRef]
- Da Silva, J.K.R.; Figueiredo, P.L.B.; Byler, K.G.; Setzer, W.N. Essential Oils as Antiviral Agents, Potential of Essential Oils to Treat SARS-CoV-2 Infection: An In-Silico Investigation. Int. J. Mol. Sci. 2020, 21, 3426. [Google Scholar] [CrossRef]
- Muteeb, G.; Alshoaibi, A.; Aatif, M.; Rehman, M.; Qayyum, M.Z. Screening marine algae metabolites as high-affinity inhibitors of SARS-CoV-2 main protease (3CLpro): An in silico analysis to identify novel drug candidates to combat COVID-19 pandemic. Appl. Biol. Chem. 2020, 63, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Hlima, H.B.; Farhat, A.; Akermi, S.; Khemakhem, B.; Halima, Y.B.; Michaud, P.; Fendri, I.; Abdelkafi, S. In silico evidence of antiviral activity against SARS-CoV-2 main protease of oligosaccharides from Porphyridium sp. Sci. Total Environ. 2022, 836, 155580. [Google Scholar] [CrossRef] [PubMed]
- Tassakka, A.C.M.A.; Sumule, O.; Massi, M.N.; Manggau, M.; Iskandar, I.W.; Alam, J.F.; Permana, A.D.; Liao, L.M. Potential bioactive compounds as SARS-CoV-2 inhibitors from extracts of the marine red alga Halymenia durvillei (Rhodophyta)–A computational study. Arab. J. Chem. 2021, 14, 103393. [Google Scholar] [CrossRef]
- Lira, S.P.D.; Seleghim, M.H.; Williams, D.E.; Marion, F.; Hamill, P.; Jean, F.; Andersen, R.J.; Hajdu, E.; Berlinck, R.G. A SARS-coronovirus 3CL protease inhibitor isolated from the marine sponge Axinella cf. corrugata: Structure elucidation and synthesis. J. Braz. Chem. Soc. 2007, 18, 440–443. [Google Scholar] [CrossRef]
- Park, J.Y.; Kim, J.H.; Kwon, J.M.; Kwon, H.J.; Jeong, H.J.; Kim, Y.M.; Kim, D.; Lee, W.S.; Ryu, Y.B. Dieckol, a SARS-CoV 3CLpro inhibitor, isolated from the edible brown algae Ecklonia cava. Bioorg. Med. Chem. 2013, 21, 3730. [Google Scholar] [CrossRef] [PubMed]
- Abd El-Mageed, H.R.; Abdelrheem, D.A.; Ahmed, S.A.; Rahman, A.A.; Elsayed, K.N.; Ahmed, S.A.; El-Bassuony, A.A.; Mohamed, H.S. Combination and tricombination therapy to destabilize the structural integrity of COVID-19 by some bioactive compounds with antiviral drugs: Insights from molecular docking study. Struct. Chem. 2021, 32, 1415–1430. [Google Scholar] [CrossRef]
- Ray, B.; Schütz, M.; Mukherjee, S.; Jana, S.; Ray, S.; Marschall, M. Exploiting the amazing diversity of natural source-derived polysaccharides: Modern procedures of isolation, engineering, and optimization of antiviral activities. Polymers 2020, 13, 136. [Google Scholar] [CrossRef]
- El Hattab, M.; Culioli, G.; Piovetti, L.; Chitour, S.E.; Valls, R. Comparison of various extraction methods for identification and determination of volatile metabolites from the brown alga Dictyopteris membranacea. J. Chromatogr. A 2007, 1143, 1–7. [Google Scholar] [CrossRef]
- Pejin, B.; Savic, A.; Sokovic, M.; Glamoclija, J.; Ciric, A.; Nikolic, M.; Radotic, K.; Mojovic, M. Further in vitro evaluation of antiradical and antimicrobial activities of phytol. Nat. Prod. Res. 2014, 28, 372–376. [Google Scholar] [CrossRef]
- Rafiq, K.; Khan, A.; Ur Rehman, N.; Halim, S.A.; Khan, M.; Ali, L.; Hilal Al-Balushi, A.; Al-Busaidi, H.K.; Al-Harrasi, A. New Carbonic Anhydrase-II Inhibitors from Marine Macro Brown Alga Dictyopteris hoytii Supported by In Silico Studies. Molecules 2021, 26, 7074. [Google Scholar] [CrossRef]
- Xiao, X.H.; Yuan, Z.Q.; Li, G.K. Preparation of phytosterols and phytol from edible marine algae by microwave-assisted extraction and high-speed counter-current chromatography. Sep. Purif. Technol. 2013, 104, 284–289. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef]
- Bhatt, A.; Arora, P.; Prajapati, S. Can algal derived bioactive metabolites serve as potential therapeutics for the treatment of SARS-CoV-2 like viral infection? Front. Microbiol. 2020, 11, 596374. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.V.N.; Prabhu, S.M.; Shin, W.S.; Yadav, K.K.; Ahn, Y.; Abdellattif, M.H.; Jeon, B.H. Prospects of non-noble metal single atoms embedded in two-dimensional (2D) carbon and non-carbon-based structures in electrocatalytic applications. Coord. Chem. Rev. 2022, 467, 214613. [Google Scholar] [CrossRef]
- Kang, N.; Heo, S.-Y.; Cha, S.-H.; Ahn, G.; Heo, S.-J. In Silico Virtual Screening of Marine Aldehyde Derivatives from Seaweeds against SARS-CoV-2. Mar. Drugs 2022, 20, 399. [Google Scholar] [CrossRef] [PubMed]
- Gacem, A.; Rajendran, S.; Hasan, M.A.; Kakodiya, S.D.; Modi, S.; Yadav, K.K.; Awwad, N.S.; Islam, S.; Park, S.; Jeon, B.H. Plasmon Inspired 2D Carbon Nitrides: Structural, Optical and Surface Characteristics for Improved Biomedical Applications. Crystals 2022, 12, 1213. [Google Scholar] [CrossRef]
- Athulya, K.; Anitha, T. Evaluation of Algal Biodiversity along Western Coasts of India; A Review. Int. J. Adv. Res. Biol. Sci. 2019, 6, 59–64. [Google Scholar]
- Rao, P.S.; Periyasamy, C.; Kumar, K.S.; Rao, A.S.; Anantharaman, P. Seaweeds: Distribution, production and uses. Bioprospect. Algae 2018, 59–78. [Google Scholar]
- Dave, T.H.; Vaghela, D.T.; Chudasama, B.G. Status, distribution, and diversity of some macroalgae along the intertidal coast of Okha, Gulf of Kachchh, Gujarat in India. J. Entomol. Zool. Stud. 2019, 7, 327–331. [Google Scholar]
- Krishnan, M.; Subramanian, H.; Dahms, H.U.; Sivanandham, V.; Seeni, P.; Gopalan, S.; Mahalingam, A.; Rathinam, A.J. Biogenic corrosion inhibitor on mild steel protection in concentrated HCl medium. Sci. Rep. 2018, 8, 2609. [Google Scholar] [CrossRef]
- Jha, B.; Reddy, C.R.K.; Thakur, M.C.; Rao, M.U. Seaweeds of India: The Diversity and Distribution of Seaweeds of Gujarat Coast; Springer Science & Business Media: Berlin, Germany, 2009; Volume 3. [Google Scholar]
- Nayaka, S.R.; JV, S.A.; Shareef, S.M.; Usha, N.S. Gas Chromatography–Mass Spectroscopy (Gc-Ms) Analysis and Phytochemical Screening for Bioactive Compounds in Caulerpa peltata (Greenalga). Biomed. Pharmacol. J. 2020, 13, 1921–1926. [Google Scholar] [CrossRef]
- Xie, X.Q.S. Exploiting PubChem for virtual screening. Expert Opin. Drug Discov. 2010, 5, 1205–1220. [Google Scholar] [CrossRef] [PubMed]
- Benfenati, E.; Manganaro, A.; Gini, G.C. VEGA-QSAR: AI Inside a Platform for Predictive Toxicology. PAI@ AI* IA 2013, 1107, 21–28. [Google Scholar]
- Kumar, K.K.; Yugandhar, P.; Devi, B.U.; Kumar, T.S.; Savithramma, N.; Neeraja, P. Applications of in silico methods to analyze the toxicity and estrogen receptor-mediated properties of plant-derived phytochemicals. Food Chem. Toxicol. 2019, 125, 361–369. [Google Scholar] [CrossRef]
- Parasuraman, S. Prediction of activity spectra for substances. J. Pharmacol. Pharmacother. 2011, 2, 52. [Google Scholar] [PubMed]
- Poroikov, V.; Filimonov, D.; Gloriozova, T.; Lagunin, A.; Stepanchikova, A. Prediction of Biological Activity Spectra for Substances: In House Applications and Internet Feasibility. In Proceedings of the 2nd International Electronic Conference on Synthetic Organic Chemistry (ECSOC-2), Moscow, Russia, November 1998; pp. 1–30. Available online: http://www.akosgmbh.de/pass/PASS_Overview.htm (accessed on 29 June 2022).
- Yu, R.; Chen, L.; Lan, R.; Shen, R.; Li, P. Computational screening of antagonists against the SARS-CoV-2 (COVID-19) coronavirus by molecular docking. Int. J. Antimicrob. Agents 2020, 56, 106012. [Google Scholar] [CrossRef] [PubMed]
- Gokhale, K.M.; Telvekar, V.N. Novel peptidomimetic peptide deformylase (PDF) inhibitors of Mycobacterium tuberculosis. Chem. Biol. Drug Des. 2021, 97, 148–156. [Google Scholar] [CrossRef] [PubMed]
- Anand, K.; Ziebuhr, J.; Wadhwani, P.; Mesters, J.R.; Hilgenfeld, R. Coronavirus main proteinase (3CLpro) structure: Basis for the design of anti-SARS drugs. Science 2003, 300, 1763–1767. [Google Scholar] [CrossRef]
- Barazorda-Ccahuana, H.L.; Nedyalkova, M.; Mas, F.; Madurga, S. Unveiling the Effect of Low pH on the SARS-CoV-2 Main Protease by Molecular Dynamics Simulations. Polymers 2021, 13, 3823. [Google Scholar] [CrossRef]
- Xia, S.; Liu, M.; Wang, C.; Xu, W.; Lan, Q.; Feng, S.; Qi, F.; Bao, L.; Du, L.; Liu, S.; et al. Inhibition of SARS-CoV-2 (previously 2019-nCoV) infection by a highly potent pan-coronavirus fusion inhibitor targeting its spike protein that harbors a high capacity to mediate membrane fusion. Cell Res. 2020, 30, 343–355. [Google Scholar] [CrossRef] [Green Version]
- Walls, A.C.; Park, Y.J.; Tortorici, M.A.; Wall, A.; McGuire, A.T.; Veesler, D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 2020, 181, 281–292. [Google Scholar] [CrossRef] [PubMed]
- Swift, T.; People, M. ACE2: Entry receptor for SARS-CoV-2. Science 2020, 367, 1444–1448. [Google Scholar]
- Douangamath, A.; Fearon, D.; Gehrtz, P.; Krojer, T.; Lukacik, P.; Owen, C.D.; Resnick, E.; Strain-Damerell, C.; Aimon, A.; Ábrányi-Balogh, P.; et al. Crystallographic and electrophilic fragment screening of the SARS-CoV-2 main protease. Nat. Commun. 2020, 11, 5047. [Google Scholar] [CrossRef]
- Berry, J.D.; Jones, S.; Drebot, M.A.; Andonov, A.; Sabara, M.; Yuan, X.Y.; Weingartl, H.; Fernando, L.; Marszal, P.; Gren, J.; et al. Development and characterisation of neutralising monoclonal antibody to the SARS-coronavirus. J. Virol. Methods 2004, 120, 87–96. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Zhao, Y.; Jin, Z.; Liu, X.; Yang, H.; Rao, Z. The crystal structure of COVID-19 main protease in apo form. Proc. Natl. Acad. Sci. USA 2020, 10, e2117142119. [Google Scholar] [CrossRef]
- Kneller, D.W.; Phillips, G.; O’Neill, H.M.; Jedrzejczak, R.; Stols, L.; Langan, P.; Joachimiak, A.; Coates, L.; Kovalevsky, A. Structural plasticity of SARS-CoV-2 3CL Mpro active site cavity revealed by room temperature X-ray crystallography. Nat. Commun. 2020, 11, 3202. [Google Scholar] [CrossRef]
- Eberhardt, J.; Santos-Martins, D.; Tillack, A.F.; Forli, S. AutoDock Vina 1.2. 0: New docking methods, expanded force field, and python bindings. J. Chem. Inf. Model. 2021, 61, 3891–3898. [Google Scholar] [CrossRef]
- Modi, S.; Inwati, G.K.; Gacem, A.; Saquib Abullais, S.; Prajapati, R.; Yadav, V.K.; Syed, R.; Alqahtani, M.S.; Yadav, K.K.; Islam, S.; et al. Nanostructured Antibiotics and Their Emerging Medicinal Applications: An Overview of Nanoantibiotics. Antibiotics 2022, 11, 708. [Google Scholar] [CrossRef]
- Ou, T.; Mou, H.; Zhang, L.; Ojha, A.; Choe, H.; Farzan, M. Hydroxychloroquine-mediated inhibition of SARS-CoV-2 entry is attenuated by TMPRSS2. PLoS Pathog. 2021, 17, e1009212. [Google Scholar] [CrossRef]
- Bukhari, M.H.; Mahmood, K.; Zahra, S.A. Over view for the truth of COVID-19 pandemic: A guide for the Pathologists, Health care workers and community’. Pak. J. Med. Sci. 2020, 36, S111. [Google Scholar] [CrossRef]
- Ranjbar, K.; Moghadami, M.; Mirahmadizadeh, A.; Fallahi, M.J.; Khaloo, V.; Shahriarirad, R.; Erfani, A.; Khodamoradi, Z.; Saadi, M.H.G. Methylprednisolone or dexamethasone, which one is superior corticosteroid in the treatment of hospitalized COVID-19 patients: A triple-blinded randomized controlled trial. BMC Infect. Dis. 2021, 21, 337. [Google Scholar] [CrossRef] [PubMed]
- Pandit, A.; Bhalani, N.; Bhushan, B.S.; Koradia, P.; Gargiya, S.; Bhomia, V.; Kansagra, K. Efficacy and safety of pegylated interferon alfa-2b in moderate COVID-19: A phase II, randomized, controlled, open-label study. Int. J. Infect. Dis. 2021, 105, 516–521. [Google Scholar] [CrossRef] [PubMed]
- Kokic, G.; Hillen, H.S.; Tegunov, D.; Dienemann, C.; Seitz, F.; Schmitzova, J.; Farnung, L.; Siewert, A.; Höbartner, C.; Cramer, P. Mechanism of SARS-CoV-2 polymerase stalling by remdesivir. Nat. Commun. 2021, 12, 279. [Google Scholar] [CrossRef] [PubMed]
- Naqvi, A.A.; Mohammad, T.; Hasan, G.M.; Hassan, M. Advancements in docking and molecular dynamics simulations towards ligand-receptor interactions and structure-function relationships. Curr. Top. Med. Chem. 2018, 18, 1755–1768. [Google Scholar] [CrossRef] [PubMed]
- Santos, L.H.; Ferreira, R.S.; Caffarena, E.R. Integrating molecular docking and molecular dynamics simulations. In Docking Screens Drug Discovery; Humana: New York, NY, USA, 2019; pp. 13–34. [Google Scholar]
- Sarma, P.; Shekhar, N.; Prajapat, M.; Avti, P.; Kaur, H.; Kumar, S.; Singh, S.; Kumar, H.; Prakash, A.; Dhibar, D.P.; et al. In-silico homology assisted identification of inhibitor of RNA binding against 2019-nCoV N-protein (N terminal domain). J. Biomol. Struct. Dyn. 2021, 39, 2724–2732. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Wang, H.; Foster, E.R.; Nikolov, Z.L.; Fernando, S.D.; King, M.D. Binding behavior of spike protein and receptor binding domain of the SARS-CoV-2 virus at different environmental conditions. Sci. Rep. 2022, 12, 789. [Google Scholar] [CrossRef]
- Abdalla, M.; Eltayb, W.A.; El-Arabey, A.A.; Singh, K.; Jiang, X. Molecular dynamic study of SARS-CoV-2 with various S protein mutations and their effect on thermodynamic properties. Comput. Biol. Med. 2022, 141, 105025. [Google Scholar] [CrossRef]
- Yoshino, R.; Yasuo, N.; Sekijima, M. Identification of key interactions between SARS-CoV-2 main protease and inhibitor drug candidates. Sci. Rep. 2020, 10, 12493. [Google Scholar] [CrossRef]
- Sarkar, C.; Abdalla, M.; Mondal, M.; Khalipha, A.B.R.; Ali, N. Ebselen suitably interacts with the potential SARS-CoV-2 targets: An in-silico approach. J. Biomol. Struct. Dyn. 2021, 1–16. [Google Scholar] [CrossRef]
- Mao, F.; Ni, W.; Xu, X.; Wang, H.; Wang, J.; Ji, M.; Li, J. Chemical Structure-Related Drug-Like Criteria of Global Approved Drugs. Molecules 2016, 21, 75. [Google Scholar] [CrossRef]
- Ayipo, Y.O.; Ahmad, I.; Najib, Y.S.; Sheu, S.K.; Patel, H.; Mordi, M.N. Molecular modelling and structure-activity relationship of a natural derivative of o-hydroxybenzoate as a potent inhibitor of dual NSP3 and NSP12 of SARS-CoV-2: In silico study. J. Biomol. Struct. Dyn. 2022, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Arnott, J.A.; Planey, S.L. The influence of lipophilicity in drug discovery and design. Expert Opin. Drug Discov. 2012, 7, 863–875. [Google Scholar] [CrossRef] [PubMed]
- Lagorce, D.; Douguet, D.; Miteva, M.A.; Villoutreix, B.O. Computational analysis of calculated physicochemical and ADMET properties of protein-protein interaction inhibitors. Sci. Rep. 2017, 7, 46277. [Google Scholar] [CrossRef] [PubMed]
- Yadav, V.K.; Choudhary, N.; Tirth, V.; Kalasariya, H.; Gnanamoorthy, G.; Algahtani, A.; Yadav, K.K.; Soni, S.; Islam, S.; Yadav, S.; et al. A short review on the utilization of incense sticks ash as an emerging and overlooked material for the synthesis of zeolites. Crystals 2021, 11, 1255. [Google Scholar] [CrossRef]
- Pajouhesh, H.; Lenz, G.R. Medicinal chemical properties of successful central nervous system drugs. NeuroRx 2005, 2, 541–553. [Google Scholar] [CrossRef]
- Benet, L.Z.; Hosey, C.M.; Ursu, O.; Oprea, T.I. BDDCS, the rule of 5 and drugability. Adv. Drug Deliv. Rev. 2016, 101, 89–98. [Google Scholar] [CrossRef] [PubMed]
- Lobo, S. Is there enough focus on lipophilicity in drug discovery? Expert Opin. Drug Discov. 2020, 15, 261–263. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. iLOGP: A simple, robust, and efficient description of n-octanol/water partition coefficient for drug design using the GB/SA approach. J. Chem. Inf. Model. 2014, 54, 3284–3301. [Google Scholar] [CrossRef]
- Cheng, T.; Zhao, Y.; Li, X.; Lin, F.; Xu, Y.; Zhang, X.; Li, Y.; Wang, R.; Lai, L. Computation of octanol− water partition coefficients by guiding an additive model with knowledge. J. Chem. Inf. Model. 2007, 47, 2140–2148. [Google Scholar] [CrossRef]
- Adamu, R.M.; Malik, B.K. Molecular Modeling and Docking Assessment of Thymic Stromal Lymphopoietin for the Development of Natural Anti Allergic Drugs. J. Young Pharm. 2018, 10, 178. [Google Scholar] [CrossRef]
- Chui, C.K. The LogP and MLogP models for parallel image processing with multi-core microprocessor. In Proceedings of the 2010 Symposium on Information and Communication Technology, Hanoi, Vietnam, 27–28 August 2010; pp. 23–27. [Google Scholar]
- De Winter, H. “Silicos-it”, Wijnegem, Belgium, 28 Sep 2014. Available online: https://silicos-it.be.s3-website-eu-west-1.amazonaws.com/index.html (accessed on 10 July 2022).
- Lobell, M.; Hendrix, M.; Hinzen, B.; Keldenich, J.; Meier, H.; Schmeck, C.; Schohe-Loop, R.; Wunberg, T.; Hillisch, A. In Silico ADMET Traffic Lights as a Tool for the Prioritization of HTS Hits. ChemMedChem 2006, 1, 1229–1236. [Google Scholar] [CrossRef] [PubMed]
- Potts, R.O.; Guy, R.H. Predicting skin permeability. Pharm. Res. 1992, 9, 663–669. [Google Scholar] [CrossRef] [PubMed]
- Daina, A.; Zoete, V. A boiled-egg to predict gastrointestinal absorption and brain penetration of small molecules. ChemMedChem 2016, 11, 1117. [Google Scholar] [CrossRef] [PubMed]
- McDonnell, A.M.; Dang, C.H. Basic review of the cytochrome p450 system. J. Adv. Pract. Oncol. 2013, 4, 263. [Google Scholar] [PubMed]
- Niederberger, E.; Pamham, M.J. The Impact of Diet and Exercise on Drug Responses. Int. J. Mol. Sci. 2021, 22, 7692. [Google Scholar] [CrossRef]
- Daly, A.K. Pharmacogenetics: A general review on progress to date. Br. Med. Bull. 2017, 124, 65–79. [Google Scholar] [CrossRef] [PubMed]
- Di, L. The role of drug metabolizing enzymes in clearance. Expert Opin. Drug Metab. Toxicol. 2014, 10, 379–393. [Google Scholar] [CrossRef]
- Ogilvie, B.W.; Usuki, E.; Yerino, P.; Parkinson, A.C. In Vitro Approaches for Studying the Inhibition of Drug-Metabolizing Enzymes and Identifying the Drug-Metabolizing Enzymes Responsible for the Metabolism of Drugs (Reaction Phenotyping) with Emphasis on Cytochrome P450. In Drug-Drug Interactions, 2nd ed.; Rodrigues, A.D., Ed.; CRC Press: Boca Raton, FL, USA, 2008; pp. 231–358. ISBN 978-0-8493-7593-4. [Google Scholar]
- Kimura, T.; Higaki, K. Gastrointestinal and Drug Absorption. Biol. Pharm. Bull. 2002, 25, 149–164. [Google Scholar] [CrossRef]
- Abuhelwa, A.Y.; Williams, D.B.; Upton, R.N.; Foster, D.J. Food, gastrointestinal pH, and models of oral drug absorption. Eur. J. Pharm. Biopharm. 2017, 112, 234–248. [Google Scholar] [CrossRef]
- Levine, R.R. Factors affecting gastrointestinal absorption of drugs. Am. J. Dig. Dis. 1970, 15, 171–188. [Google Scholar] [CrossRef]
- Sietsema, W.K. The absolute oral bioavailability of selected drugs. Int. J. Clin. Pharmacol. Ther. Toxicol. 1989, 27, 179–211. [Google Scholar] [PubMed]
- Lipinski, C.A. Rule of five in 2015 and beyond: Target and ligand structural limitations, ligand chemistry structure and drug discovery project decisions. Adv. Drug Deliv. Rev. 2016, 101, 34–41. [Google Scholar] [CrossRef] [PubMed]
Compound | PubChem® ID | Mol. Formula | Mol. Weight | CAS ID | SMILE Structure |
---|---|---|---|---|---|
Azelaic acid | 2266 | C9H16O4 | 188.22 g/mol | 123-99-9 27825-99-6 26776-28-3 | C(CCCC(=O)O)CCCC(=O)O |
NI | 935 | Ni | 58.693 g/mol | 7440-02-0 14903-34-5 | [Ni] |
n-Pentadecanoic acid | 13849 | C15H30O2 | 242.4 g/mol | 1002-84-2 | CCCCCCCCCCCCCCC(=O)O |
Hexahydro farnesyl acetone | 10408 | C18H36O | 268.5 g/mol | 502-69-2 16825-16-4 | CC(C)CCCC(C)CCCC(C)CCCC(=O)C |
Palmitic acid | 985 | C16H32O2 | 256.42 g/mol | 57-10-3 67701-02-4 | CCCCCCCCCCCCCCCC(=O)O |
Palmitic acid ethyl ester | 12366 | C18H36O2 | 284.5 g/mol | 628-97-7 | CCCCCCCCCCCCCCCC(=O)OCC |
Trichloromethyl-oxirane | 18321 | C3H3Cl3O | 161.41 g/mol | 3083-23-6 | C1C(O1)C(Cl)(Cl)Cl |
3,3,5-Trimethylhexahydro-azepine | 118239 | C9H19N | 141.25 g/mol | 35466-89-8 | CC1CCNCC(C1)(C)C |
2-Butyl-1-octanol | 19800 | C12H26O | 186.33 g/mol | 3913-02-8 | CCCCCCC(CCCC)CO |
3,7,11,15-Tetramethyl-2-hexadecen-1-ol | 5366244 | C20H40O | 296.5 g/mol | 7541-49-3 | CC(C)CCCC(C)CCCC(C)CCCC(=CCO)C |
Phytol | 5280435 | C20H40O | 296.5 g/mol | 150-86-7 | CC(C)CCCC(C)CCCC(C)CCCC(=CCO)C |
Docosanoic acid, methylester | 13584 | C23H46O2 | 354.6 g/mol | 929-77-1 | CCCCCCCCCCCCCCCCCCCCCC(=O)OC |
Therapeutic Compound | Mutagenicity (Ames Test) CONSENSUS Model 1.0.3 | Mutagenicity (Ames Test) Model (CAESAR) 2.1.13 | Carcinogenicity Model (CAESAR) 2.1.9 | Carcinogenicity Oral Classification Model (IRFMN) 1.0.0 | Developmental Toxicity Model (CAESAR) 2.1.7 | Developmental/ Reproductive Toxicity Library (PG) 1.1.0 |
---|---|---|---|---|---|---|
Azelaic acid | NM (0.9) | NM (0.922) | NC (0.748) | NC (0.851) | NT (0.816) | NT (0.883) |
NI | NM (0.2) | NM (−) | Not calculated | Not calculated | NT (0.38) | NT (0.426) |
n-Pentadecanoic acid | NM (0.9) | NM (0.969) | NC (0.575) | NC (0.757) | NT (0.848) | NT (0.887) |
Hexahydro-farnesyl acetone | NM (0.675) | NM (0.84) | NC (0.502) | NC (0.744) | NT (0.767) | NT (0.794) |
Palmitic acid | NM (1) | NM (0.965) | NC (0.575) | NC (0.753) | NT (0.846) | NT (0.874) |
Palmitic acid ethyl ester | NM (0.825) | NM (0.914) | NC (0.77) | NC (0.802) | NT (0.847) | NT (0.851) |
Trichloromethyl-oxirane | NM (1) | NM (1) | C (0.826) | C (0.815) | T (0.628) | T (0.824) |
3,3,5-Trimethylhexa-hydroazepine | NM (0.825) | NM (0.862) | NC (0.59) | C (0.797) | NT (0.718) | NT (0.871) |
2-Butyl-1-octanol | NM (0.825) | NM (0.925) | NC (0.945) | C (0.776) | T (0.82) | T (0.882) |
3,7,11,15-Tetramethyl-2-hexadecen-1-ol | NM (0.825) | NM (0.814) | C (0.655) | NC (0.691) | NT (0.807) | NT (0.799) |
Phytol | NM (0.825) | NM (0.814) | C (0.655) | NC (0.691) | NT (0.807) | NT (0.799) |
Docosanoic acid, methyl ester | NM (0.75) | NM (0.893) | NC (0.87) | NC (0.795) | T (0.808) | NT (0.813) |
PubChem Name | PubChem ID | *Pa | +Pi | Viruses |
---|---|---|---|---|
Azelaic acid | 2266 | 0.670 | 0.008 | Picornavirus |
0.641 | 0.013 | Poxvirus | ||
0.596 | 0.007 | Rhinovirus | ||
0.524 | 0.019 | Influenza | ||
0.508 | 0.005 | Adenovirus | ||
Pentadecanoic acid | 13849 | 0.671 | 0.008 | Picornavirus |
0.611 | 0.005 | Rhinovirus | ||
0.608 | 0.014 | Poxvirus | ||
0.565 | 0.016 | Influenza | ||
0.519 | 0.005 | Adenovirus | ||
0.502 | 0.003 | Cytomegalovirus | ||
Palmitic acid | 985 | 0.671 | 0.008 | Picornavirus |
0.611 | 0.005 | Rhinovirus | ||
0.608 | 0.014 | Poxvirus | ||
0.565 | 0.016 | Influenza | ||
0.519 | 0.005 | Adenovirus | ||
0.502 | 0.003 | Cytomegalovirus | ||
Ethyl palmitate | 12366 | 0.695 | 0.006 | Picornavirus |
0.691 | 0.003 | Rhinovirus | ||
0.556 | 0.004 | Adenovirus | ||
0.523 | 0.002 | Cytomegalovirus | ||
0.508 | 0.021 | Influenza | ||
Hexahydro-farnesyl acetone | 10408 | 0.464 | 0.040 | Rhinovirus |
0.449 | 0.076 | Picornavirus | ||
0.383 | 0.036 | Adenovirus | ||
0.368 | 0.057 | Influenza | ||
0.303 | 0.027 | Cytomegalovirus | ||
0.270 | 0.078 | Poxvirus |
SARS-CoV-2 Target Protein | 985 | 2266 | 10408 | 13584 | 13849 | 18321 | 19800 | 118239 | 12366 | 5280435 | 5366244 |
---|---|---|---|---|---|---|---|---|---|---|---|
PDB ID: | |||||||||||
1P9S | −4.9 | −4.7 | −5.5 | −4.7 | −4.6 | −3.6 | −4.8 | −5.3 | −4.7 | −5.3 | −5.7 |
2BX4 | −3.5 | −3.5 | −4.3 | −4.0 | −3.9 | −2.9 | −3.8 | −4.3 | −3.3 | −4.7 | −4.5 |
3I6L | −3.4 | −5.1 | −4.2 | −3.5 | −4.8 | −3.5 | −3.9 | −4.6 | −3.1 | −4.1 | −3.6 |
6LXT | −2.8 | −3.7 | −3.3 | −2.6 | −3.3 | −4.4 | −3.4 | −4.7 | −2.5 | −2.7 | −4.1 |
6VXX | −4.7 | −5.5 | −5.3 | −5.3 | −4.8 | −3.5 | −5.4 | −5.2 | −4.4 | −5.6 | −5.0 |
6VYB | −4.7 | −4.5 | −5.2 | −5.0 | −4.5 | −3.4 | −4.3 | −5.0 | −4.3 | −5.4 | −4.8 |
6M17 | −4.2 | −4.3 | −4.8 | −4.2 | −4.5 | −3.2 | −4.1 | −5.2 | −4.0 | −4.6 | −5.0 |
5RE4 | −3.1 | −3.7 | −3.7 | −3.7 | −4.5 | −3.4 | −4.0 | −4.6 | −3.1 | −4.3 | −3.8 |
6VSB | −4.6 | −4.3 | −4.5 | −4.1 | −4.9 | −3.3 | −4.3 | −4.5 | −4.2 | −4.8 | −5.2 |
6LU7 | −3.9 | −4.1 | −4.1 | −3.8 | −3.9 | −3.4 | −3.9 | −4.9 | −3.7 | −3.9 | −4.4 |
6M03 | −3.9 | −4.3 | −4.1 | −4.8 | −4.7 | −3.5 | −4.3 | −4.8 | −3.3 | −5.2 | −4.4 |
5R7Z | −3.2 | −4.5 | −3.8 | −3.5 | −3.5 | −3.5 | −4.0 | −4.7 | −3.1 | −3.8 | −4.1 |
5R81 | −3.6 | −4.1 | −4.4 | −3.2 | −4.0 | −3.4 | −3.8 | −4.7 | −3.3 | −4.9 | −4.2 |
6YB7 | −5.5 | −4.8 | −4.8 | −4.4 | −4.7 | −3.5 | −4.6 | −5.3 | −5.1 | −5.1 | −4.9 |
6Y84 | −4.8 | −4.8 | −4.9 | −4.9 | −4.4 | −3.3 | −4.6 | −5.0 | −4.4 | −5.7 | −5.9 |
- | 3,7,11,15-Tetramethyl-2-hexadecen-1-ol |
---|---|
Physicochemical Properties | |
Heavy atoms | 21 |
Aromatic heavy atoms | 0 |
Fraction Csp3 | 0.90 |
Rotatable bonds | 13 |
H-bond acceptors | 1 |
H-bond donors | 1 |
MR | 98.94 |
TPSA | 20.23 Å2 |
Lipophilic Properties | |
iLOGP | 4.71 |
XLOGP3 | 8.19 |
WLOGP | 6.36 |
MLOGP | 5.25 |
Silicos-it Log P | 6.57 |
Consensus Log P | 6.22 |
3,7,11,15-Tetramethyl-2-hexadecen-1-ol | |
---|---|
Water solubility | |
ESOL class | Moderately soluble −5.98 |
Silicos-it class | Moderately soluble −5.51 |
Pharmaco-kinetics | |
GI absorption | Low |
P-gp substrate | Yes |
CYP2C19 inhibitor | No (0.96) |
CYP2C9 inhibitor | No (0.827) |
CYP2D6 inhibitor | No (0.842) |
CYP3A4 inhibitor | No (0.99) |
Skin permeability log Kp (cm/s) | −2.29 cm/s |
Drug Likeness | |
Lipinski Rule of 5 | 1 |
Bioavailability score | 0.55 |
Medicinal Chemistry | |
PAINS alerts | 0 |
Synthetic accessibility | 4.30 |
Protein ID | Protein Structure and Function Characteristics | References |
---|---|---|
1P9S | Main proteinase (3CLpro) structure | [90] |
2BX4 | Crystal structure of main proteinase (P21212) | [91] |
3I6L | Epitope N1 derived from SARS-CoV N protein complexed with HLA-A*2402 | [44] |
6LXT | Post-fusion core of 2019-nCoV S2 subunit | [92] |
6VXX | SARS-CoV-2 spike glycoprotein (closed state) | [93] |
6VYB | SARS-CoV-2 spike ectodomain (open state) | [93] |
6M17 | RBD/ACE2-B0AT1 complex | [94] |
5RE4 | SARS-CoV-2 main protease in complex with Z1129283193 | [95] |
6VSB | Prefusion 2019-nCoV spike glycoprotein with a single receptor-binding domain up | [96] |
6LU7 | Crystal structure main protease in complex with an inhibitor N3 | [45] |
6M03 | Crystal structure of main protease in apo form | [97] |
5R7Z | SARS-CoV-2 main protease in complex with Z1220452176 | [96] |
5R81 | Crystal structure of main protease in complex with Z1367324110 | [96] |
6YB7 | SARS-CoV-2 main protease with unliganded active site | [98] |
6Y84 | SARS-CoV-2 main protease with unliganded active site | [98] |
Drugs | PubChem® ID | Molecular Formula | Molecular Weight | CAS ID | SMILE |
---|---|---|---|---|---|
Hydroxychloroquine | 3652 | C18H26ClN3O | 335.9 | 118-42-3 | CCN(CCCC(C)NC1=C2C=CC(=CC2=NC=3C1)Cl)CCO |
Chloroquine | 2719 | C18H26ClN3 | 319.9 | 54-05-7 | CCN(CC)CCCC(C)NC1=C2C=CC(=CC2=NC=C1)Cl |
Methyl-prednisolone | 6741 | C22H30O5 | 374.5 | 83-43-2 | CC1CC2C3CCC(C3(CC(C2C4(C1=CC(=O)C=C4)C)O)C)(C(=O)CO)O |
Interferon α-2b | 71306834 | C16H17Cl3I2N3NaO5S | 746.5 | 98530-12-2 | CCCN(CCOC1=C(C=C(C=C1Cl)Cl)Cl)C(=O)N2C=CN=C2.C(S(=O)(=O)[O-])(I)I.[Na+] |
Remdesivir | 121304016 | C27H35N6O8P | 602.6 | 1809249-37-3 | CCC(CC)COC(=O)C(C)NP(=O)(OCC1C(C(C(O1)(C#N)C2=CC=C3N2N=CN=C3N)O)O)OC4=CC=CC=C4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalasariya, H.S.; Patel, N.B.; Gacem, A.; Alsufyani, T.; Reece, L.M.; Yadav, V.K.; Awwad, N.S.; Ibrahium, H.A.; Ahn, Y.; Yadav, K.K.; et al. Marine Alga Ulva fasciata-Derived Molecules for the Potential Treatment of SARS-CoV-2: An In Silico Approach. Mar. Drugs 2022, 20, 586. https://doi.org/10.3390/md20090586
Kalasariya HS, Patel NB, Gacem A, Alsufyani T, Reece LM, Yadav VK, Awwad NS, Ibrahium HA, Ahn Y, Yadav KK, et al. Marine Alga Ulva fasciata-Derived Molecules for the Potential Treatment of SARS-CoV-2: An In Silico Approach. Marine Drugs. 2022; 20(9):586. https://doi.org/10.3390/md20090586
Chicago/Turabian StyleKalasariya, Haresh S., Nikunj B. Patel, Amel Gacem, Taghreed Alsufyani, Lisa M. Reece, Virendra Kumar Yadav, Nasser S. Awwad, Hala A. Ibrahium, Yongtae Ahn, Krishna Kumar Yadav, and et al. 2022. "Marine Alga Ulva fasciata-Derived Molecules for the Potential Treatment of SARS-CoV-2: An In Silico Approach" Marine Drugs 20, no. 9: 586. https://doi.org/10.3390/md20090586