Brain Ischemic Tolerance Triggered by Preconditioning Involves Modulation of Tumor Necrosis Factor-α-Stimulated Gene 6 (TSG-6) in Mice Subjected to Transient Middle Cerebral Artery Occlusion
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
- (1)
- SHAM: SHAM surgery followed by sacrifice 24 h later (n = 9 for molecular biology analysis in plasma and brain);
- (2)
- PC: 15 min MCAo followed by 72 h of reperfusion (n = 9 for molecular biology analysis in plasma and brain);
- (3)
- MCAo: 1 h MCAo (preceded by SHAM surgery 72 h before) followed by 24 h of reperfusion (n = 9 for molecular biology analysis in plasma and brain + n = 9 for histology + n = 3 for immunofluorescence);
- (4)
- PC + MCAo: 15 min MCAo followed, 72 h later, by 1 h MCAo and 24 h of reperfusion (n = 9 for molecular biology analysis in plasma and brain + n = 9 for histology + n = 3 for immunofluorescence).
2.2. Surgical Procedure for MCAo
2.3. Western Blot Analysis
2.4. Real-Time Polymerase Chain Reaction (PCR)
2.5. Immunofluorescence
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Martin, S.S.; Aday, A.W.; Almarzooq, Z.I.; Anderson, C.A.M.; Arora, P.; Avery, C.L.; Baker-Smith, C.M.; Barone Gibbs, B.; Beaton, A.Z.; Boehme, A.K.; et al. 2024 Heart Disease and Stroke Statistics: A Report of US and Global Data from the American Heart Association. Circulation 2024, 149, e347–e913. [Google Scholar] [CrossRef] [PubMed]
- Steinmetz, J.D.; Seeher, K.M.; Schiess, N.; Nichols, E.; Cao, B.; Servili, C.; Cavallera, V.; Cousin, E.; Hagins, H.; Moberg, M.E.; et al. Global, Regional, and National Burden of Disorders Affecting the Nervous System, 1990–2021: A Systematic Analysis for the Global Burden of Disease Study 2021. Lancet Neurol. 2024, 23, 344–381. [Google Scholar] [CrossRef] [PubMed]
- Mehta, A.; Fifi, J.T.; Shoirah, H.; Singh, I.P.; Shigematsu, T.; Kellner, C.P.; De Leacy, R.; Mocco, J.; Majidi, S. National Trends in Utilization and Outcome of Endovascular Thrombectomy for Acute Ischemic Stroke in Elderly. J. Stroke Cerebrovasc. Dis. 2021, 30, 105505. [Google Scholar] [CrossRef] [PubMed]
- Stein, L.; Tuhrim, S.; Fifi, J.; Mocco, J.; Dhamoon, M. National Trends in Endovascular Therapy for Acute Ischemic Stroke: Utilization and Outcomes. J. Neurointerv. Surg. 2020, 12, 356–362. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Araque, M.E.; Rodriguez, C.; Vecino, R.; Cortijo Garcia, E.; de Lera Alfonso, M.; Sanchez Barba, M.; Colàs-Campàs, L.; Purroy, F.; Arenillas, J.F.; Almeida, A.; et al. The Neuronal Ischemic Tolerance Is Conditioned by the Tp53 Arg72Pro Polymorphism. Transl. Stroke Res. 2019, 10, 204–215. [Google Scholar] [CrossRef] [PubMed]
- Moncayo, J.; de Freitas, G.R.; Bogousslavsky, J.; Altieri, M.; van Melle, G. Do Transient Ischemic Attacks Have a Neuroprotective Effect? Neurology 2000, 54, 2089–2094. [Google Scholar] [CrossRef]
- Castillo, J.; Moro, M.Á.; Blanco, M.; Leira, R.; Serena, J.; Lizasoain, I.; Dávalos, A. The Release of Tumor Necrosis Factor-α Is Associated with Ischemic Tolerance in Human Stroke. Ann. Neurol. 2003, 54, 811–819. [Google Scholar] [CrossRef]
- Wang, W.-W.; Chen, D.-Z.; Zhao, M.; Yang, X.-F.; Gong, D.-R. Prior Transient Ischemic Attacks May Have a Neuroprotective Effect in Patients with Ischemic Stroke. Arch. Med. Sci. 2017, 5, 1057–1061. [Google Scholar] [CrossRef]
- Weih, M.; Kallenberg, K.; Bergk, A.; Dirnagl, U.; Harms, L.; Wernecke, K.D.; Einhäupl, K.M. Attenuated Stroke Severity after Prodromal TIA: A Role for Ischemic Tolerance in the Brain? Stroke 1999, 30, 1851–1854. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.G.; Choi, H.; Sohn, S.-Y.; Kim, D.-H.; Lee, S.J. Transient Ischemic Attacks Preceding Acute Lacunar Infarction. Eur. Neurol. 2016, 76, 278–283. [Google Scholar] [CrossRef]
- Stenzel-Poore, M.P.; Stevens, S.L.; Xiong, Z.; Lessov, N.S.; Harrington, C.A.; Mori, M.; Meller, R.; Rosenzweig, H.L.; Tobar, E.; Shaw, T.E.; et al. Effect of Ischaemic Preconditioning on Genomic Response to Cerebral Ischaemia: Similarity to Neuroprotective Strategies in Hibernation and Hypoxia-Tolerant States. Lancet 2003, 362, 1028–1037. [Google Scholar] [CrossRef]
- Dirnagl, U.; Becker, K.; Meisel, A. Preconditioning and Tolerance against Cerebral Ischaemia: From Experimental Strategies to Clinical Use. Lancet Neurol. 2009, 8, 398–412. [Google Scholar] [CrossRef]
- Thompson, J.W.; Dave, K.R.; Young, J.I.; Perez-Pinzon, M.A. Ischemic Preconditioning Alters the Epigenetic Profile of the Brain from Ischemic Intolerance to Ischemic Tolerance. Neurotherapeutics 2013, 10, 789–797. [Google Scholar] [CrossRef]
- Gidday, J.M. Cerebral Preconditioning and Ischaemic Tolerance. Nat. Rev. Neurosci. 2006, 7, 437–448. [Google Scholar] [CrossRef]
- Stenzel-Poore, M.P.; Stevens, S.L.; King, J.S.; Simon, R.P. Preconditioning Reprograms the Response to Ischemic Injury and Primes the Emergence of Unique Endogenous Neuroprotective Phenotypes. Stroke 2007, 38, 680–685. [Google Scholar] [CrossRef]
- Sisalli, M.J.; Annunziato, L.; Scorziello, A. Novel Cellular Mechanisms for Neuroprotection in Ischemic Preconditioning: A View from Inside Organelles. Front. Neurol. 2015, 6, 115. [Google Scholar] [CrossRef]
- Secondo, A.; Petrozziello, T.; Tedeschi, V.; Boscia, F.; Vinciguerra, A.; Ciccone, R.; Pannaccione, A.; Molinaro, P.; Pignataro, G.; Annunziato, L. ORAI1/STIM1 Interaction Intervenes in Stroke and in Neuroprotection Induced by Ischemic Preconditioning Through Store-Operated Calcium Entry. Stroke 2019, 50, 1240–1249. [Google Scholar] [CrossRef]
- Obrenovitch, T.P. Molecular Physiology of Preconditioning-Induced Brain Tolerance to Ischemia. Physiol. Rev. 2008, 88, 211–247. [Google Scholar] [CrossRef] [PubMed]
- Cuomo, O.; Vinciguerra, A.; Cerullo, P.; Anzilotti, S.; Brancaccio, P.; Bilo, L.; Scorziello, A.; Molinaro, P.; Di Renzo, G.; Pignataro, G. Ionic Homeostasis in Brain Conditioning. Front. Neurosci. 2015, 9, 277. [Google Scholar] [CrossRef]
- La Russa, D.; Frisina, M.; Secondo, A.; Bagetta, G.; Amantea, D. Modulation of Cerebral Store-Operated Calcium Entry-Regulatory Factor (SARAF) and Peripheral Orai1 Following Focal Cerebral Ischemia and Preconditioning in Mice. Neuroscience 2020, 441, 8–21. [Google Scholar] [CrossRef]
- Končekova, J.; Kotorova, K.; Gottlieb, M.; Bona, M.; Bonova, P. Remote Ischaemic Preconditioning Accelerates Brain to Blood Glutamate Efflux via EAATs-Mediated Transport. Neurochem. Res. 2023, 48, 3560–3570. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.-N.; Wu, Q.; Zhang, N.-N.; Chen, H.-S. Ischemic Preconditioning Alleviates Cerebral Ischemia–Reperfusion Injury by Interfering With Glycocalyx. Transl. Stroke Res. 2023, 14, 929–940. [Google Scholar] [CrossRef]
- Pignataro, G.; Brancaccio, P.; Laudati, G.; Valsecchi, V.; Anzilotti, S.; Casamassa, A.; Cuomo, O.; Vinciguerra, A. Sodium/Calcium Exchanger as Main Effector of Endogenous Neuroprotection Elicited by Ischemic Tolerance. Cell Calcium 2020, 87, 102183. [Google Scholar] [CrossRef]
- Dirnagl, U.; Simon, R.P.; Hallenbeck, J.M. Ischemic Tolerance and Endogenous Neuroprotection. Trends Neurosci. 2003, 26, 248–254. [Google Scholar] [CrossRef]
- Kirino, T. Ischemic Tolerance. J. Cereb. Blood Flow Metab. 2002, 22, 1283–1296. [Google Scholar] [CrossRef]
- Sol, J.; Colàs-Campàs, L.; Mauri-Capdevila, G.; Molina-Seguin, J.; Galo-Licona, J.D.; Torres-Querol, C.; Aymerich, N.; Ois, Á.; Roquer, J.; Tur, S.; et al. Ischemia Preconditioning Induces an Adaptive Response That Defines a Circulating Metabolomic Signature in Ischemic Stroke Patients. J. Cereb. Blood Flow Metab. 2022, 42, 2201–2215. [Google Scholar] [CrossRef]
- Gesuete, R.; Stevens, S.L.; Stenzel-Poore, M.P. Role of Circulating Immune Cells in Stroke and Preconditioning- Induced Protection. In Acta Neurochirurgica, Supplementum; Springer: Wien, Austria, 2016; Volume 121, pp. 39–44. [Google Scholar]
- McDonough, A.; Noor, S.; Lee, R.V.; Dodge, R.; Strosnider, J.S.; Shen, J.; Davidson, S.; Möller, T.; Garden, G.A.; Weinstein, J.R. Ischemic Preconditioning Induces Cortical Microglial Proliferation and a Transcriptomic Program of Robust Cell Cycle Activation. Glia 2020, 68, 76–94. [Google Scholar] [CrossRef]
- Pradillo, J.M.; Fernández-López, D.; García-Yébenes, I.; Sobrado, M.; Hurtado, O.; Moro, M.A.; Lizasoain, I. Toll-like Receptor 4 Is Involved in Neuroprotection Afforded by Ischemic Preconditioning. J. Neurochem. 2009, 109, 287–294. [Google Scholar] [CrossRef]
- Stevens, S.L.; Leung, P.Y.; Vartanian, K.B.; Gopalan, B.; Yang, T.; Simon, R.P.; Stenzel-Poore, M.P. Multiple Preconditioning Paradigms Converge on Interferon Regulatory Factor-Dependent Signaling to Promote Tolerance to Ischemic Brain Injury. J. Neurosci. 2011, 31, 8456–8463. [Google Scholar] [CrossRef]
- Lalancette-Hebert, M.; Gowing, G.; Simard, A.; Weng, Y.C.; Kriz, J. Selective Ablation of Proliferating Microglial Cells Exacerbates Ischemic Injury in the Brain. J. Neurosci. 2007, 27, 2596–2605. [Google Scholar] [CrossRef]
- Hamner, M.A.; Ye, Z.; Lee, R.V.; Colman, J.R.; Le, T.; Gong, D.C.; Ransom, B.R.; Weinstein, J.R. Ischemic Preconditioning in White Matter: Magnitude and Mechanism. J. Neurosci. 2015, 35, 15599–15611. [Google Scholar] [CrossRef]
- Amantea, D.; Bagetta, G. Drug Repurposing for Immune Modulation in Acute Ischemic Stroke. Curr. Opin. Pharmacol. 2016, 26, 124–130. [Google Scholar] [CrossRef] [PubMed]
- Fumagalli, S.; Perego, C.; Ortolano, F.; De Simoni, M.-G. CX3CR1 Deficiency Induces an Early Protective Inflammatory Environment in Ischemic Mice. Glia 2013, 61, 827–842. [Google Scholar] [CrossRef] [PubMed]
- Amantea, D.; La Russa, D.; Frisina, M.; Giordano, F.; Di Santo, C.; Panno, M.L.; Pignataro, G.; Bagetta, G. Ischemic Preconditioning Modulates the Peripheral Innate Immune System to Promote Anti-Inflammatory and Protective Responses in Mice Subjected to Focal Cerebral Ischemia. Front. Immunol. 2022, 13, 825834. [Google Scholar] [CrossRef] [PubMed]
- Hirayama, Y.; Ikeda-Matsuo, Y.; Notomi, S.; Enaida, H.; Kinouchi, H.; Koizumi, S. Astrocyte-Mediated Ischemic Tolerance. J. Neurosci. 2015, 35, 3794–3805. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Cao, H.; Xie, Y.; Zhang, Y.; Du, M.; Xu, X.; Ye, R.; Liu, X. Exosome-Shuttled MiR-92b-3p from Ischemic Preconditioned Astrocytes Protects Neurons against Oxygen and Glucose Deprivation. Brain Res. 2019, 1717, 66–73. [Google Scholar] [CrossRef] [PubMed]
- Narayanan, S.V.; Perez-Pinzon, M.A. Ischemic Preconditioning Treatment of Astrocytes Transfers Ischemic Tolerance to Neurons. Cond. Med. 2017, 1, 2–8. [Google Scholar] [PubMed]
- Wisniewski, H.G.; Maier, R.; Lotz, M.; Lee, S.; Klampfer, L.; Lee, T.H.; Vilcek, J. TSG-6: A TNF-, IL-1-, and LPS-Inducible Secreted Glycoprotein Associated with Arthritis. J. Immunol. 1993, 151, 6593–6601. [Google Scholar] [CrossRef]
- Klampfer, L.; Lee, T.H.; Hsu, W.; Vilcek, J.; Chen-Kiang, S. NF-IL6 and AP-1 Cooperatively Modulate the Activation of the TSG-6 Gene by Tumor Necrosis Factor Alpha and Interleukin-1. Mol. Cell. Biol. 1994, 14, 6561–6569. [Google Scholar] [CrossRef]
- Lee, T.H.; Wisniewski, H.G.; Vilcek, J. A Novel Secretory Tumor Necrosis Factor-Inducible Protein (TSG-6) Is a Member of the Family of Hyaluronate Binding Proteins, Closely Related to the Adhesion Receptor CD44. J. Cell Biol. 1992, 116, 545–557. [Google Scholar] [CrossRef]
- Zlibut, A.; Bocsan, I.C.; Agoston-Coldea, L. Pentraxin-3 and Endothelial Dysfunction. Adv. Clin. Chem. 2019, 91, 163–179. [Google Scholar] [CrossRef] [PubMed]
- Shekhar, S.; Cunningham, M.W.; Pabbidi, M.R.; Wang, S.; Booz, G.W.; Fan, F. Targeting Vascular Inflammation in Ischemic Stroke: Recent Developments on Novel Immunomodulatory Approaches. Eur. J. Pharmacol. 2018, 833, 531–544. [Google Scholar] [CrossRef] [PubMed]
- Larsson, S.C.; Markus, H.S. Does Treating Vascular Risk Factors Prevent Dementia and Alzheimer’s Disease? A Systematic Review and Meta-Analysis. J. Alzheimer’s Dis. 2018, 64, 657–668. [Google Scholar] [CrossRef] [PubMed]
- Chaurasia, B.; Chavda, V.; Lu, B.; Garg, K.; Montemurro, N. Cognitive Deficits and Memory Impairments after COVID-19 (Covishield) Vaccination. Brain Behav. Immun.-Health 2022, 22, 100463. [Google Scholar] [CrossRef] [PubMed]
- Chavda, V.; Chaurasia, B.; Fiorindi, A.; Umana, G.E.; Lu, B.; Montemurro, N. Ischemic Stroke and SARS-CoV-2 Infection: The Bidirectional Pathology and Risk Morbidities. Neurol. Int. 2022, 14, 391–405. [Google Scholar] [CrossRef] [PubMed]
- Giannouli, V.; Tsolaki, M. Liberating Older Adults from the Bonds of Vascular Risk Factors: What Is Their Impact on Financial Capacity in Amnestic Mild Cognitive Impairment? Psychiatry Clin. Neurosci. 2022, 76, 246–250. [Google Scholar] [CrossRef] [PubMed]
- Di Santo, C.; La Russa, D.; Greco, R.; Persico, A.; Zanaboni, A.M.; Bagetta, G.; Amantea, D. Characterization of the Involvement of Tumour Necrosis Factor (TNF)-α-Stimulated Gene 6 (TSG-6) in Ischemic Brain Injury Caused by Middle Cerebral Artery Occlusion in Mouse. Int. J. Mol. Sci. 2023, 24, 5800. [Google Scholar] [CrossRef]
- La Russa, D.; Di Santo, C.; Lizasoain, I.; Moraga, A.; Bagetta, G.; Amantea, D. Tumor Necrosis Factor (TNF)-α-Stimulated Gene 6 (TSG-6): A Promising Immunomodulatory Target in Acute Neurodegenerative Diseases. Int. J. Mol. Sci. 2023, 24, 1162. [Google Scholar] [CrossRef]
- Cui, S.; Ke, L.; Wang, H.; Li, L. TSG-6 Alleviates Cerebral Ischemia/Reperfusion Injury and Blood-Brain Barrier Disruption by Suppressing ER Stress-Mediated Inflammation. Brain Res. 2023, 1817, 148466. [Google Scholar] [CrossRef]
- Day, A.J.; Milner, C.M. TSG-6: A Multifunctional Protein with Anti-Inflammatory and Tissue-Protective Properties. Matrix Biol. 2019, 78–79, 60–83. [Google Scholar] [CrossRef] [PubMed]
- Roura, S.; Monguió-Tortajada, M.; Munizaga-Larroudé, M.; Clos-Sansalvador, M.; Franquesa, M.; Rosell, A.; Borràs, F.E. Potential of Extracellular Vesicle-Associated TSG-6 from Adipose Mesenchymal Stromal Cells in Traumatic Brain Injury. Int. J. Mol. Sci. 2020, 21, 6761. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, J.; Shetty, A.K.; Hattiangady, B.; Kim, D.-K.; Foraker, J.E.; Nishida, H.; Prockop, D.J. Administration of TSG-6 Improves Memory after Traumatic Brain Injury in Mice. Neurobiol. Dis. 2013, 59, 86–99. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Liu, Y.; Yan, K.; Chen, L.; Chen, X.-R.; Li, P.; Chen, F.-F.; Jiang, X.-D. Anti-Inflammatory and Immunomodulatory Mechanisms of Mesenchymal Stem Cell Transplantation in Experimental Traumatic Brain Injury. J. Neuroinflamm. 2013, 10, 106. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.-S.; Jeong, S.-Y.; Yang, J.; Kim, S.-D.; Zhang, B.; Yoo, H.S.; Song, S.U.; Jeon, M.-S.; Song, Y.S. Neuroprotective Effect of Mesenchymal Stem Cell through Complement Component 3 Downregulation after Transient Focal Cerebral Ischemia in Mice. Neurosci. Lett. 2016, 633, 227–234. [Google Scholar] [CrossRef]
- Percie du Sert, N.; Hurst, V.; Ahluwalia, A.; Alam, S.; Avey, M.T.; Baker, M.; Browne, W.J.; Clark, A.; Cuthill, I.C.; Dirnagl, U.; et al. The ARRIVE Guidelines 2.0: Updated Guidelines for Reporting Animal Research*. J. Cereb. Blood Flow Metab. 2020, 40, 1769–1777. [Google Scholar] [CrossRef]
- La Russa, D.; Montesano, D.; Pellegrino, D.; Frisina, M.; Bagetta, G.; Fallarino, F.; Amantea, D. Systemic Administration of Sunflower Oil Exerts Neuroprotection in a Mouse Model of Transient Focal Cerebral Ischaemia. J. Pharm. Pharmacol. 2022, 74, 1776–1783. [Google Scholar] [CrossRef] [PubMed]
- Greco, R.; Mangione, A.S.; Amantea, D.; Bagetta, G.; Nappi, G.; Tassorelli, C. IkappaB-Alpha Expression Following Transient Focal Cerebral Ischemia Is Modulated by Nitric Oxide. Brain Res. 2011, 1372, 145–151. [Google Scholar] [CrossRef]
- Petrelli, F.; Muzzi, M.; Chiarugi, A.; Bagetta, G.; Amantea, D. Poly(ADP-Ribose) Polymerase Is Not Involved in the Neuroprotection Exerted by Azithromycin against Ischemic Stroke in Mice. Eur. J. Pharmacol. 2016, 791, 518–522. [Google Scholar] [CrossRef]
- Tettamanti, M.; Beretta, S.; Pignataro, G.; Fumagalli, S.; Perego, C.; Sironi, L.; Pedata, F.; Amantea, D.; Bacigalluppi, M. Multi-Center Translational Trial of Remote Ischemic Conditioning in Acute Ischemic Stroke (TRICS). Protocol of a Multi-Center, Parallel Group, Randomized, Preclinical Trial in Female and Male Rat and Mouse from the Italian Stroke Organization (ISO) Basic. Br. Med. J. Open Sci. 2020, 44, e100063. [Google Scholar]
- Zhang, J.; Yang, Z.-J.; Klaus, J.A.; Koehler, R.C.; Huang, J. Delayed Tolerance With Repetitive Transient Focal Ischemic Preconditioning in the Mouse. Stroke 2008, 39, 967–974. [Google Scholar] [CrossRef] [PubMed]
- Lusardi, T.A.; Farr, C.D.; Faulkner, C.L.; Pignataro, G.; Yang, T.; Lan, J.; Simon, R.P.; Saugstad, J.A. Ischemic Preconditioning Regulates Expression of MicroRNAs and a Predicted Target, MeCP2, in Mouse Cortex. J. Cereb. Blood Flow Metab. 2010, 30, 744–756. [Google Scholar] [CrossRef] [PubMed]
- Amantea, D.; Certo, M.; Petrelli, F.; Tassorelli, C.; Micieli, G.; Corasaniti, M.T.; Puccetti, P.; Fallarino, F.; Bagetta, G. Azithromycin Protects Mice against Ischemic Stroke Injury by Promoting Macrophage Transition towards M2 Phenotype. Exp. Neurol. 2016, 275, 116–125. [Google Scholar] [CrossRef] [PubMed]
- Paxinos, G.; Franklin, K.B.J. Paxinos and Franklin’s the Mouse Brain in Stereotaxic Coordinates; Academic Press: Cambridge, MA, USA, 2012; ISBN 9780128161609. [Google Scholar]
- Viscomi, M.T.; Florenzano, F.; Latini, L.; Amantea, D.; Bernardi, G.; Molinari, M. Methylprednisolone Treatment Delays Remote Cell Death after Focal Brain Lesion. Neuroscience 2008, 154, 1267–1282. [Google Scholar] [CrossRef] [PubMed]
- Certo, M.; Endo, Y.; Ohta, K.; Sakurada, S.; Bagetta, G.; Amantea, D. Activation of RXR/PPARγ Underlies Neuroprotection by Bexarotene in Ischemic Stroke. Pharmacol. Res. 2015, 102, 298–307. [Google Scholar] [CrossRef] [PubMed]
- Mutoji, K.N.; Sun, M.; Nash, A.; Puri, S.; Hascall, V.; Coulson-Thomas, V.J. Anti-Inflammatory Protein TNFα-Stimulated Gene-6 (TSG-6) Reduces Inflammatory Response after Brain Injury in Mice. BMC Immunol. 2021, 22, 52. [Google Scholar] [CrossRef]
- Coulson-Thomas, V.J.; Lauer, M.E.; Soleman, S.; Zhao, C.; Hascall, V.C.; Day, A.J.; Fawcett, J.W. Tumor Necrosis Factor-Stimulated Gene-6 (TSG-6) Is Constitutively Expressed in Adult Central Nervous System (CNS) and Associated with Astrocyte-Mediated Glial Scar Formation Following Spinal Cord Injury. J. Biol. Chem. 2016, 291, 19939–19952. [Google Scholar] [CrossRef]
- Al’Qteishat, A. Changes in Hyaluronan Production and Metabolism Following Ischaemic Stroke in Man. Brain 2006, 129, 2158–2176. [Google Scholar] [CrossRef]
- Qu, Y.; Yang, F.; Meng, F.; Chen, X.; Zhang, Q.; Yu, T.; Wen, S.; Pan, Y. Plasma Concentration of Tumor Necrosis Factor-Stimulated Gene-6 as a Novel Diagnostic and 3-Month Prognostic Indicator in Non-Cardioembolic Acute Ischemic Stroke. Front. Immunol. 2022, 13, 713379. [Google Scholar] [CrossRef]
- Bogdani, M.; Johnson, P.Y.; Potter-Perigo, S.; Nagy, N.; Day, A.J.; Bollyky, P.L.; Wight, T.N. Hyaluronan and Hyaluronan-Binding Proteins Accumulate in Both Human Type 1 Diabetic Islets and Lymphoid Tissues and Associate With Inflammatory Cells in Insulitis. Diabetes 2014, 63, 2727–2743. [Google Scholar] [CrossRef]
- Tan, K.; McGrouther, D.; Day, A.; Milner, C.; Bayat, A. Characterization of Hyaluronan and TSG-6 in Skin Scarring: Differential Distribution in Keloid Scars, Normal Scars and Unscarred Skin. J. Eur. Acad. Dermatol. Venereol. 2011, 25, 317–327. [Google Scholar] [CrossRef]
- Zhang, S.; He, H.; Day, A.J.; Tseng, S.C.G. Constitutive Expression of Inter-α-Inhibitor (IαI) Family Proteins and Tumor Necrosis Factor-Stimulated Gene-6 (TSG-6) by Human Amniotic Membrane Epithelial and Stromal Cells Supporting Formation of the Heavy Chain-Hyaluronan (HC-HA) Complex. J. Biol. Chem. 2012, 287, 12433–12444. [Google Scholar] [CrossRef] [PubMed]
- Milner, C.M.; Day, A.J. TSG-6: A Multifunctional Protein Associated with Inflammation. J. Cell Sci. 2003, 116, 1863–1873. [Google Scholar] [CrossRef] [PubMed]
- Lesley, J.; Gál, I.; Mahoney, D.J.; Cordell, M.R.; Rugg, M.S.; Hyman, R.; Day, A.J.; Mikecz, K. TSG-6 Modulates the Interaction between Hyaluronan and Cell Surface CD44. J. Biol. Chem. 2004, 279, 25745–25754. [Google Scholar] [CrossRef] [PubMed]
- Kota, D.J.; Wiggins, L.L.; Yoon, N.; Lee, R.H. TSG-6 Produced by HMSCs Delays the Onset of Autoimmune Diabetes by Suppressing Th1 Development and Enhancing Tolerogenicity. Diabetes 2013, 62, 2048–2058. [Google Scholar] [CrossRef]
- Baranova, N.S.; Nilebäck, E.; Haller, F.M.; Briggs, D.C.; Svedhem, S.; Day, A.J.; Richter, R.P. The Inflammation-Associated Protein TSG-6 Cross-Links Hyaluronan via Hyaluronan-Induced TSG-6 Oligomers. J. Biol. Chem. 2011, 286, 25675–25686. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.; Lee, R.H.; Bazhanov, N.; Oh, J.Y.; Prockop, D.J. Anti-Inflammatory Protein TSG-6 Secreted by Activated MSCs Attenuates Zymosan-Induced Mouse Peritonitis by Decreasing TLR2/NF-ΚB Signaling in Resident Macrophages. Blood 2011, 118, 330–338. [Google Scholar] [CrossRef]
- Baranova, N.S.; Inforzato, A.; Briggs, D.C.; Tilakaratna, V.; Enghild, J.J.; Thakar, D.; Milner, C.M.; Day, A.J.; Richter, R.P. Incorporation of Pentraxin 3 into Hyaluronan Matrices Is Tightly Regulated and Promotes Matrix Cross-Linking. J. Biol. Chem. 2014, 289, 30481–30498. [Google Scholar] [CrossRef]
- Baranova, N.S.; Foulcer, S.J.; Briggs, D.C.; Tilakaratna, V.; Enghild, J.J.; Milner, C.M.; Day, A.J.; Richter, R.P. Inter-α-Inhibitor Impairs TSG-6-Induced Hyaluronan Cross-Linking. J. Biol. Chem. 2013, 288, 29642–29653. [Google Scholar] [CrossRef]
- Coulson-Thomas, V.J.; Gesteira, T.F.; Hascall, V.; Kao, W. Umbilical Cord Mesenchymal Stem Cells Suppress Host Rejection. J. Biol. Chem. 2014, 289, 23465–23481. [Google Scholar] [CrossRef]
- Lauer, M.E.; Loftis, J.; de la Motte, C.; Hascall, V.C. Analysis of the Heavy-Chain Modification and TSG-6 Activity in Pathological Hyaluronan Matrices. In Glycosaminoglycans: Chemistry and Biology; Springer: New York, NY, USA, 2015; pp. 543–548. [Google Scholar]
- Liao, Z.; Wang, W.; Deng, W.; Zhang, Y.; Song, A.; Deng, S.; Zhao, H.; Zhang, S.; Li, Z. Human Umbilical Cord Mesenchymal Stem Cells-Secreted TSG-6 Is Anti-Inflammatory and Promote Tissue Repair After Spinal Cord Injury. ASN Neuro 2021, 13, 175909142110106. [Google Scholar] [CrossRef]
- Tang, B.; Song, M.; Xie, X.; Le, D.; Tu, Q.; Wu, X.; Chen, M. Tumor Necrosis Factor-Stimulated Gene-6 (TSG-6) Secreted by BMSCs Regulates Activated Astrocytes by Inhibiting NF-ΚB Signaling Pathway to Ameliorate Blood Brain Barrier Damage After Intracerebral Hemorrhage. Neurochem. Res. 2021, 46, 2387–2402. [Google Scholar] [CrossRef]
- Li, R.; Liu, W.; Yin, J.; Chen, Y.; Guo, S.; Fan, H.; Li, X.; Zhang, X.; He, X.; Duan, C. TSG-6 Attenuates Inflammation-Induced Brain Injury via Modulation of Microglial Polarization in SAH Rats through the SOCS3/STAT3 Pathway. J. Neuroinflamm. 2018, 15, 231. [Google Scholar] [CrossRef]
- Lin, Q.; Zhao, S.; Zhou, L.; Fang, X.; Fu, Y.; Huang, Z. Mesenchymal Stem Cells Transplantation Suppresses Inflammatory Responses in Global Cerebral Ischemia: Contribution of TNF-α-Induced Protein 6. Acta Pharmacol. Sin. 2013, 34, 784–792. [Google Scholar] [CrossRef]
- Lin, Q.; Lin, S.; Lv, Y.; Zhou, L.; Fu, Y.; Fang, X.; Chen, F.; Huang, Z. Suppression of Inflammatory Damage to the Brain after Global Cerebral Ischemia by Transplanted Mesenchymal Stem Cells via Secretion of TSG-6. Neurol. Asia 2016, 21, 113–122. [Google Scholar]
- Ding, M.; Jin, L.; Wei, B.; Cheng, W.; Liu, W.; Li, X.; Duan, C. Tumor Necrosis Factor-Stimulated Gene-6 Ameliorates Early Brain Injury after Subarachnoid Hemorrhage by Suppressing NLRC4 Inflammasome-Mediated Astrocyte Pyroptosis. Neural Regen. Res. 2024, 19, 1064–1071. [Google Scholar] [CrossRef]
- Liu, J.; Guo, Y.; Zhang, Y.; Zhao, X.; Fu, R.; Hua, S.; Xu, S. Astrocytes in Ischemic Stroke: Crosstalk in Central Nervous System and Therapeutic Potential. Neuropathology 2024, 44, 3–20. [Google Scholar] [CrossRef]
- Reed, M.J.; Damodarasamy, M.; Pathan, J.L.; Chan, C.K.; Spiekerman, C.; Wight, T.N.; Banks, W.A.; Day, A.J.; Vernon, R.B.; Keene, C.D. Increased Hyaluronan and TSG-6 in Association with Neuropathologic Changes of Alzheimer’s Disease. J. Alzheimer’s Dis. 2019, 67, 91–102. [Google Scholar] [CrossRef]
- Bertling, F.; Bendix, I.; Drommelschmidt, K.; Wisniewski, H.G.; Felderhoff-Mueser, U.; Keller, M.; Prager, S. Tumor Necrosis Factor-Inducible Gene 6 Protein: A Novel Neuroprotective Factor against Inflammation-Induced Developmental Brain Injury. Exp. Neurol. 2016, 279, 283–289. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Liu, W.; Li, R.; Guo, S.; Fan, H.; Wei, B.; Zhang, X.; He, X.; Duan, C. TSG-6 Attenuates Oxidative Stress-Induced Early Brain Injury in Subarachnoid Hemorrhage Partly by the HO-1 and Nox2 Pathways. J. Stroke Cerebrovasc. Dis. 2020, 29, 104986. [Google Scholar] [CrossRef]
- Maina, V.; Cotena, A.; Doni, A.; Nebuloni, M.; Pasqualini, F.; Milner, C.M.; Day, A.J.; Mantovani, A.; Garlanda, C. Coregulation in Human Leukocytes of the Long Pentraxin PTX3 and TSG-6. J. Leukoc. Biol. 2009, 86, 123–132. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, D.; Xu, L.; Dong, L.; Zheng, J.; Lin, Y.; Huang, J.; Zhang, Y.; Tao, Y.; Zang, X.; et al. Cell–Cell Contact with Proinflammatory Macrophages Enhances the Immunotherapeutic Effect of Mesenchymal Stem Cells in Two Abortion Models. Cell. Mol. Immunol. 2019, 16, 908–920. [Google Scholar] [CrossRef] [PubMed]
- Mittal, M.; Tiruppathi, C.; Nepal, S.; Zhao, Y.-Y.; Grzych, D.; Soni, D.; Prockop, D.J.; Malik, A.B. TNFα-Stimulated Gene-6 (TSG6) Activates Macrophage Phenotype Transition to Prevent Inflammatory Lung Injury. Proc. Natl. Acad. Sci. USA 2016, 113, E8151–E8158. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Li, X.; Shi, Z.; Wu, P.; Fu, J.; Tang, J.; Qing, L. Exosomes from LPS-Preconditioned Bone Marrow MSCs Accelerated Peripheral Nerve Regeneration via M2 Macrophage Polarization: Involvement of TSG-6/NF-ΚB/NLRP3 Signaling Pathway. Exp. Neurol. 2022, 356, 114139. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, R.; Watanabe, H.; Takahashi, Y.; Kojima, M.; Konii, H.; Watanabe, K.; Shirai, R.; Sato, K.; Matsuyama, T.; Ishibashi-Ueda, H.; et al. Atheroprotective Effects of Tumor Necrosis Factor–Stimulated Gene-6. JACC Basic Transl. Sci. 2016, 1, 494–509. [Google Scholar] [CrossRef]
- Bartosh, T.J.; Ylöstalo, J.H.; Mohammadipoor, A.; Bazhanov, N.; Coble, K.; Claypool, K.; Lee, R.H.; Choi, H.; Prockop, D.J. Aggregation of Human Mesenchymal Stromal Cells (MSCs) into 3D Spheroids Enhances Their Antiinflammatory Properties. Proc. Natl. Acad. Sci. USA 2010, 107, 13724–13729. [Google Scholar] [CrossRef]
- Qi, Y.; Jiang, D.; Sindrilaru, A.; Stegemann, A.; Schatz, S.; Treiber, N.; Rojewski, M.; Schrezenmeier, H.; Vander Beken, S.; Wlaschek, M.; et al. TSG-6 Released from Intradermally Injected Mesenchymal Stem Cells Accelerates Wound Healing and Reduces Tissue Fibrosis in Murine Full-Thickness Skin Wounds. J. Investig. Dermatol. 2014, 134, 526–537. [Google Scholar] [CrossRef]
- Kwon, H.Y.; Yoon, Y.; Hong, J.-E.; Rhee, K.-J.; Sohn, J.H.; Jung, P.Y.; Kim, M.Y.; Baik, S.K.; Ryu, H.; Eom, Y.W. Role of TGF-β and P38 MAPK in TSG-6 Expression in Adipose Tissue-Derived Stem Cells In Vitro and In Vivo. Int. J. Mol. Sci. 2023, 25, 477. [Google Scholar] [CrossRef]
- Huang, H.; Lu, H.; Liang, L.; Zhi, Y.; Huo, B.; Wu, L.; Xu, L.; Shen, Z. MicroRNA-744 Inhibits Proliferation of Bronchial Epithelial Cells by Regulating Smad3 Pathway via Targeting Transforming Growth Factor-Β1 (TGF-Β1) in Severe Asthma. Med. Sci. Monit. 2019, 25, 2159–2168. [Google Scholar] [CrossRef]
- Huang, W.; Chen, Q.; Dai, J.; Zhang, Y.; Yi, Y.; Wei, X.; Wu, Z. MiR-744-5p Suppresses Tumor Proliferation and Metastasis by Targeting Transforming Growth Factor-Beta 1 (TGF-Β1) in Hepatocellular Carcinoma (HCC). J. Gastrointest. Oncol. 2021, 12, 1811–1822. [Google Scholar] [CrossRef]
- Liu, L.; Cheng, M.; Zhang, T.; Chen, Y.; Wu, Y.; Wang, Q. Mesenchymal Stem Cell-Derived Extracellular Vesicles Prevent Glioma by Blocking M2 Polarization of Macrophages through a MiR-744-5p/TGFB1-Dependent Mechanism. Cell Biol. Toxicol. 2022, 38, 649–665. [Google Scholar] [CrossRef]
- Martin, J.; Jenkins, R.H.; Bennagi, R.; Krupa, A.; Phillips, A.O.; Bowen, T.; Fraser, D.J. Post-Transcriptional Regulation of Transforming Growth Factor Beta-1 by MicroRNA-744. PLoS ONE 2011, 6, e25044. [Google Scholar] [CrossRef] [PubMed]
- Jing, G.; Yin, S. Expression and Related Mechanism of MiR-744 in Ischemia-Reperfusion Rat Model. Cell. Mol. Biol. 2023, 69, 203–208. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Santo, C.; Siniscalchi, A.; La Russa, D.; Tonin, P.; Bagetta, G.; Amantea, D. Brain Ischemic Tolerance Triggered by Preconditioning Involves Modulation of Tumor Necrosis Factor-α-Stimulated Gene 6 (TSG-6) in Mice Subjected to Transient Middle Cerebral Artery Occlusion. Curr. Issues Mol. Biol. 2024, 46, 9970-9983. https://doi.org/10.3390/cimb46090595
Di Santo C, Siniscalchi A, La Russa D, Tonin P, Bagetta G, Amantea D. Brain Ischemic Tolerance Triggered by Preconditioning Involves Modulation of Tumor Necrosis Factor-α-Stimulated Gene 6 (TSG-6) in Mice Subjected to Transient Middle Cerebral Artery Occlusion. Current Issues in Molecular Biology. 2024; 46(9):9970-9983. https://doi.org/10.3390/cimb46090595
Chicago/Turabian StyleDi Santo, Chiara, Antonio Siniscalchi, Daniele La Russa, Paolo Tonin, Giacinto Bagetta, and Diana Amantea. 2024. "Brain Ischemic Tolerance Triggered by Preconditioning Involves Modulation of Tumor Necrosis Factor-α-Stimulated Gene 6 (TSG-6) in Mice Subjected to Transient Middle Cerebral Artery Occlusion" Current Issues in Molecular Biology 46, no. 9: 9970-9983. https://doi.org/10.3390/cimb46090595