In Silico Screening of 1,3,4-Thiadiazole Derivatives as Inhibitors of Vascular Endothelial Growth Factor Receptor-2 (VEGFR-2)
Abstract
:1. Introduction
2. Result and Discussion
2.1. Pharmacophore Modeling
2.2. Molecular Docking
2.3. ADMET Studies
2.4. Density Functional Theory
2.5. Molecular Dynamics Simulation
2.5.1. Root Mean Square Deviation (RMSD)
2.5.2. Root Mean Square Fluctuation (RMSF)
2.6. Molecular Mechanics Generalized Born Surface Area (MM-GBSA)
3. Materials and Methods
3.1. Generating Pharmacophore Model
3.2. Molecular Docking
3.3. ADMET Profiling
3.4. DFT Calculations
3.5. MD Simulation
3.6. Molecular Mechanics Generalized Born Surface Area (MM-GBSA)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Wu, P.; Yang, Q.; Xie, Y.; He, C.; Yin, Z.; Yue, G.; Zou, Y.; Li, L.; Song, X.; et al. An update of new small-molecule anticancer drugs approved from 2015 to 2020. Eur. J. Med. Chem. 2021, 220, 113473. [Google Scholar] [CrossRef] [PubMed]
- Fu, R.; Sun, Y.; Sheng, W.; Liao, D. Designing multi-targeted agents: An emerging anticancer drug discovery paradigm. Eur. J. Med. Chem. 2017, 136, 195–211. [Google Scholar] [CrossRef]
- Sabe, V.; Ntombela, T.; Jhamba, L.; Maguire, G.; Govender, T.; Naicker, T.; Kruger, H. Current trends in computer aided drug design and highlight of drugs discovered via computational techniques: A review. Eur. J. Med. Chem. 2021, 224, 113705. [Google Scholar] [CrossRef]
- Li, L.; Liu, S.; Wang, B.; Liu, F.; Xu, S.; Li, P.; Chen, Y. An Updated Review on Developing Small Molecule Kinase Inhibitors Using Computer-Aided Drug Design Approaches. Int. J. Mol. Sci. 2023, 24, 13953. [Google Scholar] [CrossRef] [PubMed]
- Du, Z.; Lovly, C. Mechanisms of receptor tyrosine kinase activation in cancer. Mol. Cancer 2018, 17, 58. [Google Scholar] [CrossRef] [PubMed]
- Tan, A.; Vyse, S.; Huang, P. Exploiting receptor tyrosine kinase co-activation for cancer therapy. Drug Discov. Today. 2017, 22, 72–84. [Google Scholar] [CrossRef]
- Lin, Z.; Zhang, Q.; Luo, W. Angiogenesis inhibitors as therapeutic agents in cancer: Challenges and future directions. Eur. J. Pharmacol. 2016, 793, 76–81. [Google Scholar] [CrossRef]
- Qin, S.; Li, A.; Yi, M.; Yu, S.; Zhang, M.; Wu, K. Recent Advances on Anti-Angiogenesis Receptor Tyrosine Kinase Inhibitors in Cancer Therapy. J. Hematol. Oncol. 2019, 12, 27. [Google Scholar] [CrossRef]
- Musumeci, F.; Radi, M.; Brullo, C.; Schenone, S. Vascular Endothelial Growth Factor (VEGF) Receptors: Drugs and New Inhibitors. J. Med. Chem. 2012, 55, 10797–10822. [Google Scholar] [CrossRef]
- Abhinand, C.S.; Raju, R.; Soumya, S.J.; Arya, P.S.; Sudhakaran, P.R. VEGF-A/VEGFR2 Signaling Network in Endothelial Cells Relevant to Angiogenesis. J. Cell Commun. Signal. 2016, 10, 347–354. [Google Scholar] [CrossRef]
- Torres-Vergara, P.; Troncoso, F.; Acurio, J.; Kupka, E.; Bergman, L.; Wikstrom, A.; Escudero, C. Dysregulation of vascular endothelial growth factor receptor 2 phosphorylation is associated with disruption of the blood-brain barrier and brain endothelial cell apoptosis induced by plasma from women with preeclampsia. Biochim. Biophys. Acta Mol. Basis Dis. 2022, 1868, 166451. [Google Scholar] [CrossRef]
- Xiong, L.; Zhang, Y.; Wang, J.; Yu, M.; Huang, L.; Hou, Y.; Li, G.; Wang, L.; Li, Y. Novel small molecule inhibitors targeting renal cell carcinoma: Status, challenges, future directions. Eur. J. Med. Chem. 2024, 267, 116158. [Google Scholar] [CrossRef]
- Olgen, S. Overview on Anticancer Drug Design and Development. Curr. Med. Chem. 2018, 25, 1704–1719. [Google Scholar] [CrossRef] [PubMed]
- Passi, I.; Billowria, K.; Kumar, B.; Chawla, P. Tivozanib: A New Hope for Treating Renal Cell Carcinoma. Anticancer Agents Med. Chem. 2023, 23, 562–570. [Google Scholar] [CrossRef]
- Caquelin, L.; Gewily, M.; Mottais, W.; Tebaldi, C.; Laviolle, B.; Naudet, F.; Locher, C. Tivozanib in Renal Cell Carcinoma: A Systematic Review of the Evidence and Its Dissemination in the Scientific Literature. BMC Cancer 2022, 22, 381. [Google Scholar] [CrossRef] [PubMed]
- Sakellakis, M.; Zakopoulou, R. Current Status of Tivozanib in the Treatment of Patients with Advanced Renal Cell Carcinoma. Cureus 2023, 15, e35675. [Google Scholar] [CrossRef]
- Velavalapalli, V.M.; Maddipati, V.C.; Gurská, S.; Annadurai, N.; Lišková, B.; Katari, N.K.; Džubák, P.; Hajdúch, M.; Das, V.; Gundla, R. Novel 5-Substituted Oxindole Derivatives as Bruton’s Tyrosine Kinase Inhibitors: Design, Synthesis, Docking, Molecular Dynamics Simulation, and Biological Evaluation. ACS Omega 2024, 9, 8067–8081. [Google Scholar] [CrossRef] [PubMed]
- Ahsan, M. 1,3,4-Oxadiazole Containing Compounds as Therapeutic Targets for Cancer Therapy. Mini Rev. Med. Chem. 2022, 22, 164–197. [Google Scholar] [CrossRef]
- Hao, E.; Zhao, Y.; Yu, X.; Wang, K.; Su, F.; Liang, Y.; Wang, Y.; Guo, H. Discovery, Synthesis, and Activity Evaluation of Novel Five-Membered Sulfur-Containing Heterocyclic Nucleosides as Potential Anticancer Agents In Vitro and In Vivo. J. Med. Chem. 2024, 67, 12553–12570. [Google Scholar] [CrossRef]
- Alam, M.; Alam, O.; Naim, M.; Nawaz, F.; Manaithiya, A.; Imran, M.; Thabet, H.; Alshehri, S.; Ghoneim, M.; Alam, P.; et al. Recent Advancement in Drug Design and Discovery of Pyrazole Biomolecules as Cancer and Inflammation Therapeutics. Molecules 2022, 27, 8708. [Google Scholar] [CrossRef] [PubMed]
- Carranza-Aranda, A.S.; Diaz-Palomera, C.D.; Lepe-Reynoso, E.; Santerre, A.; Muñoz-Valle, J.F.; Viera-Segura, O. Evaluation of Potential Furin Protease Inhibitory Properties of Pioglitazone, Rosiglitazone, and Pirfenidone: An In-Silico Docking and Molecular Dynamics Simulation Approach. Curr. Issues Mol. Biol. 2024, 46, 8665–8684. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Yang, H.; Chen, Y.; Li, Q.; He, S.; Jiang, X.; Feng, F.; Qu, W.; Sun, H. The Development of Pharmacophore Modeling: Generation and Recent Applications in Drug Discovery. Curr. Pharm. Des. 2018, 24, 3424–3439. [Google Scholar] [CrossRef]
- Traxler, P.; Green, J.; Mett, H.; Séquin, U.; Furet, P. Use of a Pharmacophore Model for the Design of EGFR Tyrosine Kinase Inhibitors: Isoflavones and 3-Phenyl-4(1H)-quinolones. J. Med. Chem. 1999, 42, 1018–1026. [Google Scholar] [CrossRef]
- Sunseri, J.; Koes, D. Pharmit: Interactive exploration of chemical space. Nucleic Acids Res. 2016, 44, W442–W448. [Google Scholar] [CrossRef] [PubMed]
- Marchand, J.-R.; Lolli, G.; Caflisch, A. Derivatives of 3-Amino-2-methylpyridine as BAZ2B Bromodomain Ligands: In Silico Discovery and in Crystallo Validation. J. Med. Chem. 2016, 59, 9919–9927. [Google Scholar] [CrossRef]
- Al-Rooqi, M.M.; Sadiq, A.; Obaid, R.J.; Ashraf, Z.; Nazir, Y.; Jassas, R.S.; Naeem, N.; Alsharif, M.A.; Shah, S.W.A.; Moussa, Z.; et al. Evaluation of 2,3-Dihydro-1,5-benzothiazepine Derivatives as Potential Tyrosinase Inhibitors: In Vitro and In Silico Studies. ACS Omega 2023, 8, 17195–17208. [Google Scholar] [CrossRef]
- Speck-Planche, A.; Cordeiro, M.N.D.S. Simultaneous Virtual Prediction of Anti-Escherichia coli Activities and ADMET Profiles: A Chemoinformatic Complementary Approach for High-Throughput Screening. ACS Comb. Sci. 2014, 16, 78–84. [Google Scholar] [CrossRef]
- Li, D.; Chen, L.; Li, Y.; Tian, S.; Sun, H.; Hou, T. ADMET Evaluation in Drug Discovery. 13. Development of in Silico Prediction Models for P-Glycoprotein Substrates. Mol. Pharm. 2014, 11, 716–726. [Google Scholar] [CrossRef]
- Luukkonen, S.; Belloni, L.; Borgis, D.; Levesque, M. Predicting Hydration Free Energies of the FreeSolv Database of Drug-like Molecules with Molecular Density Functional Theory. J. Chem. Inf. Model. 2020, 60, 3558–3565. [Google Scholar] [CrossRef]
- Bose, A.; Valdivia-Berroeta, G.A.; Gonnella, N.C. Predicting Autoxidation of Sulfides in Drug-like Molecules Using Quantum Mechanical/Density Functional Theory Methods. J. Chem. Inf. Model. 2024, 64, 128–137. [Google Scholar] [CrossRef]
- Barreto Gomes, D.E.; Galentino, K.; Sisquellas, M.; Monari, L.; Bouysset, C.; Cecchini, M. ChemFlow—From 2D Chemical Libraries to Protein–Ligand Binding Free Energies. J. Chem. Inf. Model. 2023, 63, 407–411. [Google Scholar] [CrossRef]
- Wang, J.; Ma, C.; Fiorin, G.; Carnevale, V.; Wang, T.; Hu, F.; Lamb, R.A.; Pinto, L.H.; Hong, M.; Klein, M.L.; et al. Molecular Dynamics Simulation Directed Rational Design of Inhibitors Targeting Drug-Resistant Mutants of Influenza A Virus M2. J. Am. Chem. Soc. 2011, 133, 12834–12841. [Google Scholar] [CrossRef]
- Kalinichenko, E.; Faryna, A.; Bozhok, T.; Golyakovich, A.; Panibrat, A. Novel Phthalic-Based Anticancer Tyrosine Kinase Inhibitors: Design, Synthesis and Biological Activity. Curr. Issues Mol. Biol. 2023, 45, 1820–1842. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Ceballos, A.; Caballero, N.A.; Castro, M.E.; Perez-Aguilar, J.M.; Mammino, L.; Melendez, F.J. In Silico Approach: Anti-Tuberculosis Activity of Caespitate in the H37Rv Strain. Curr. Issues Mol. Biol. 2024, 46, 6489–6507. [Google Scholar] [CrossRef] [PubMed]
- Schrödinger Release 2024-2: LigPrep; Schrödinger, LLC: New York, NY, USA, 2024.
- Sastry, G.M.; Adzhigirey, M.; Day, T.; Annabhimoju, R.; Sherman, W. Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. J. Comput. Aid. Mol. Des. 2013, 27, 221–234. [Google Scholar] [CrossRef]
- Schrödinger Release 2024-2: QikProp; Schrödinger, LLC: New York, NY, USA, 2024.
- Yang, Y.; Yao, K.; Repasky, M.P.; Leswing, K.; Abel, R.; Shoichet, B.K.; Jerome, S.V. Efficient exploration of chemical space with docking and deep learning. J. Chem. Theory Comput. 2021, 17, 7106–7119. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Zhou, Y.; Zhang, J.; Zhang, H.-X.; Jia, R. Molecular Dynamics Simulation Investigation of the Binding and Interaction of the EphA6–Odin Protein Complex. J. Phys. Chem. B 2022, 126, 4914–4924. [Google Scholar] [CrossRef]
- Bochevarov, A.D.; Harder, E.; Hughes, T.F.; Greenwood, J.R.; Braden, D.A.; Philipp, D.M.; Rinaldo, D.; Halls, M.D.; Zhang, J.; Friesner, R.A. Jaguar: A High-Performance Quantum Chemistry Software Program with Strengths in Life and Materials Sciences. Int. J. Quantum Chem. 2013, 113, 2110–2142. [Google Scholar] [CrossRef]
- Bowers, K.J.; Chow, E.; Xu, H.; Dror, R.O.; Eastwood, M.P.; Gregersen, B.A.; Klepeis, J.L.; Kolossvary, I.; Moraes, M.A.; Sacerdoti, F.D.; et al. Scalable algorithms for molecular dynamics simulations on commodity clusters. In Proceedings of the ACM/IEEE Conference on Supercomputing (SC06), Tampa, FL, USA, 11–17 November 2006. [Google Scholar]
Molecule | Molecular Formula | Docking Score (kcal/mol) |
---|---|---|
Tivozanib | C22H19ClN4O5 | −12.135 |
ZINC000008914312 | C22H16ClFN4OS2 | −9.036 |
ZINC000008739578 | C22H16Cl2N4OS2 | −9.011 |
ZINC08742427 | C23H19FN4OS2 | −8.938 |
ZINC09164985 | C23H19ClN4OS2 | −8.858 |
ZINC000008739659 | C22H16F2N4OS2 | −8.839 |
ZINC08856697 | C22H16Cl2N4OS2 | −8.739 |
ZINC17046028 | C23H20N4OS2 | −8.701 |
ZINC17159604 | C23H19FN4OS2 | −8.692 |
ZINC33258048 | C19H20N8O3S2 | −8.630 |
ZINC000033290624 | C25H31N5O2 | −8.542 |
ZINC000017138581 | C22H16F2N4OS2 | −8.520 |
ZINC000002346316 | C22H16ClFN4OS2 | −8.518 |
ZINC000008927502 | C22H16ClFN4OS2 | −8.286 |
ZINC65283170 | C20H23N7OS | −8.256 |
ZINC13550820 | C23H19ClN4O2S2 | −8.203 |
Compounds | Mol MW | Dipole † | #rotor | PSA | SASA | FOSA | FISA | PISA | WPSA |
---|---|---|---|---|---|---|---|---|---|
Tivozanib | 454.869 | 8.613 | 6 | 108.464 | 754.964 | 271.893 | 129.461 | 286.517 | 67.093 |
ZINC000008914312 | 470.966 | 4.068 | 5 | 76.258 | 744.387 | 32.267 | 113.559 | 427.657 | 170.903 |
ZINC000008739578 | 487.421 | 6.632 | 5 | 77.517 | 776.043 | 31.78 | 113.492 | 442.425 | 188.346 |
ZINC08742427 | 450.548 | 5.579 | 5 | 76.425 | 760.036 | 119.101 | 114.214 | 427.923 | 98.798 |
ZINC09164985 | 467.002 | 5.567 | 5 | 76.419 | 776.446 | 119.786 | 113.926 | 418.314 | 124.419 |
ZINC000008739659 | 454.511 | 4.139 | 5 | 76.301 | 727.805 | 32.263 | 113.854 | 436.024 | 145.664 |
ZINC08856697 | 487.421 | 6.824 | 5 | 78.281 | 779.301 | 33.203 | 119.991 | 451.682 | 174.424 |
ZINC17046028 | 432.557 | 3.424 | 4 | 76.407 | 752.667 | 119.842 | 114.309 | 466.094 | 52.422 |
ZINC17159604 | 450.548 | 2.351 | 5 | 76.376 | 769.059 | 109.391 | 114.263 | 471.005 | 74.4 |
ZINC33258048 | 472.539 | 8.782 | 4 | 145.634 | 759.2 | 336.487 | 195.748 | 147.052 | 79.913 |
ZINC000033290624 | 433.552 | 5.637 | 4 | 88.761 | 789.923 | 445.19 | 94.704 | 250.029 | 0 |
ZINC000017138581 | 454.511 | 4.254 | 5 | 76.295 | 726.902 | 33.605 | 114.204 | 460.62 | 118.473 |
ZINC000002346316 | 470.966 | 7.198 | 5 | 78.369 | 753.422 | 31.315 | 113.766 | 454.693 | 153.647 |
ZINC000008927502 | 470.966 | 3.229 | 5 | 76.544 | 792.253 | 21.848 | 114.547 | 509.322 | 146.537 |
ZINC65283170 | 409.508 | 6.083 | 4 | 88.425 | 729.109 | 279.055 | 113.089 | 288.991 | 47.974 |
ZINC13550820 | 483.002 | 5.346 | 6 | 84.453 | 776.602 | 128.349 | 114.338 | 410.419 | 123.495 |
ZINC08913827 | 466.547 | 5.522 | 6 | 84.675 | 769.247 | 126.335 | 114.288 | 429.205 | 99.419 |
Compounds | QPlogPw | QPlogPo/w | QPlogS | CIQPlogS | QPlogHERG | QPPCaco | QPlogBB |
---|---|---|---|---|---|---|---|
Tivozanib | 13.934 | 3.820 | −6.163 | −6.420 | −5.166 | 400.837 | −1.071 |
ZINC000008914312 | 12.863 | 5.252 | −7.345 | −7.645 | −5.712 | 593.714 | −0.554 |
ZINC000008739578 | 13.265 | 5.591 | −7.887 | −7.983 | −6.047 | 563.062 | −0.564 |
ZINC08742427 | 12.943 | 5.106 | −7.282 | −7.226 | −5.839 | 576.431 | −0.763 |
ZINC09164985 | 12.916 | 5.384 | −7.691 | −7.563 | −5.875 | 581.257 | −0.714 |
ZINC000008739659 | 12.889 | 4.976 | −6.933 | −7.307 | −5.661 | 587.572 | −0.602 |
ZINC08856697 | 13.317 | 5.546 | −7.911 | −7.983 | −6.103 | 495.654 | −0.674 |
ZINC17046028 | 13.177 | 4.885 | −6.945 | −6.858 | −5.988 | 574.101 | −0.871 |
ZINC17159604 | 13.222 | 5.061 | −7.349 | −7.226 | −6.19 | 579.808 | −0.854 |
ZINC33258048 | 16.337 | 2.357 | −5.782 | −5.74 | −4.453 | 94.666 | −1.638 |
ZINC000033290624 | 13.556 | 4.315 | −6.981 | −5.727 | −5.022 | 944.084 | −0.734 |
ZINC000017138581 | 13.056 | 4.872 | −6.794 | −7.307 | −5.790 | 581.815 | −0.674 |
ZINC000002346316 | 13.347 | 5.270 | −7.304 | −7.645 | −5.938 | 551.051 | −0.618 |
ZINC000008927502 | 13.606 | 5.579 | −8.061 | −7.645 | −6.544 | 570.418 | −0.716 |
ZINC65283170 | 14.867 | 3.422 | −5.72 | −5.182 | −4.994 | 550.325 | −0.779 |
ZINC13550820 | 13.376 | 5.111 | −7.274 | −7.598 | −5.796 | 577.1 | −0.772 |
ZINC08913827 | 13.525 | 4.941 | −7.017 | −7.262 | −5.864 | 570.856 | −0.826 |
Compounds | Homo (Hartrees) | Lumo (Hartrees) | Energy Gap (ΔE) |
---|---|---|---|
Tivozanib | −0.216894 | −0.042793 | −0.174101 |
ZINC000008914312 | −0.213681 | −0.051261 | −0.16242 |
ZINC000008739578 | −0.217723 | −0.05236 | −0.165363 |
ZINC08742427 | −0.209531 | −0.047738 | −0.161793 |
ZINC09164985 | −0.211543 | −0.048911 | −0.162632 |
ZINC000008739659 | −0.212022 | −0.049825 | −0.162197 |
ZINC08856697 | −0.209859 | −0.046649 | −0.16321 |
ZINC17046028 | −0.208002 | −0.04429 | −0.163712 |
ZINC17159604 | −0.207501 | −0.039642 | −0.167859 |
ZINC33258048 | −0.215602 | −0.046696 | −0.168906 |
ZINC000033290624 | −0.194522 | −0.04751 | −0.147012 |
ZINC000017138581 | −0.212671 | −0.042962 | −0.169709 |
ZINC000002346316 | −0.215549 | −0.051477 | −0.164072 |
ZINC000008927502 | −0.209926 | −0.04891 | −0.161016 |
ZINC65283170 | −0.198739 | −0.046147 | −0.152592 |
ZINC13550820 | −0.211271 | −0.048374 | −0.162897 |
ZINC08913827 | −0.209046 | −0.047262 | −0.161784 |
Compounds | ΔG Bind | ΔG Bind Coulomb | ΔG Bind Covalent | ΔG Bind Hbond | ΔG Bind Lipo | ΔG Bind Packing |
ΔG Bind Solv GB | ΔG Bind vdW |
---|---|---|---|---|---|---|---|---|
Tivozanib | −21.95 | −5.49 | 6.13 | −0.78 | −7.28 | −2.73 | 15.7 | −27.5 |
ZINC000008914312 | −58.95 | −16 | 1.73 | −1.66 | −23.01 | −1.58 | 38.22 | −56.66 |
ZINC000008739578 | −64.75 | −11.22 | 5.57 | −1.45 | −31.96 | −2.05 | 24.45 | −48.11 |
ZINC000017138581 | −67.37 | −19.8 | 6 | −1.18 | −25 | −1.49 | 27.78 | −53.68 |
ZINC000008927502 | −69.81 | −19.57 | 5.83 | −1.14 | −25.78 | −1.5 | 28.35 | −55.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ewell, S.M.; Burton, H.; Mochona, B. In Silico Screening of 1,3,4-Thiadiazole Derivatives as Inhibitors of Vascular Endothelial Growth Factor Receptor-2 (VEGFR-2). Curr. Issues Mol. Biol. 2024, 46, 11220-11235. https://doi.org/10.3390/cimb46100666
Ewell SM, Burton H, Mochona B. In Silico Screening of 1,3,4-Thiadiazole Derivatives as Inhibitors of Vascular Endothelial Growth Factor Receptor-2 (VEGFR-2). Current Issues in Molecular Biology. 2024; 46(10):11220-11235. https://doi.org/10.3390/cimb46100666
Chicago/Turabian StyleEwell, Steven M., Hannah Burton, and Bereket Mochona. 2024. "In Silico Screening of 1,3,4-Thiadiazole Derivatives as Inhibitors of Vascular Endothelial Growth Factor Receptor-2 (VEGFR-2)" Current Issues in Molecular Biology 46, no. 10: 11220-11235. https://doi.org/10.3390/cimb46100666