A Multi-Scale Self-Supervision Approach for Bearing Anomaly Detection Using Sensor Data Under Multiple Operating Conditions
Abstract
:1. Introduction
- (1)
- To address the issue of scarce or nonexistent abnormal samples in real industrial data, this paper presents an ADBR unsupervised model. Based on the BYOL contrastive structure, this model effectively trains the anomaly detection model while completely eliminating the reliance on negative sample pairs, which is common in other unsupervised models.
- (2)
- To address the frequent variations in operating conditions, the proposed ADBR model learns global features while retaining and reconstructing local details, enabling it to focus on both the overall structure and local nuances of the signals. By combining global- and local-scale learning strategies, the model comprehensively captures data features under different operating conditions, achieving superior accuracy in bearing anomaly detection compared to related methods across various conditions.
- (3)
- Experiments on the widely used CWRU multi-condition bearing fault dataset demonstrate that our method achieves an average fault detection accuracy of 96.97%. Moreover, the experimental results show that on the full-cycle IMS dataset, our method detects early faults at least 2.3 h earlier than the other unsupervised methods. Furthermore, the validation results for the full-cycle XJTU-SY dataset further demonstrate its excellent generalization ability.
2. Methodology
2.1. Ricker Wavelet Transform
2.2. BYOL-Based Network Structure
2.3. Reconstruction Structure
2.4. Objective Function
Algorithm 1: ADBR |
Input: Input: Randomly select two samples and from Output: Data: Initialize: all parameters 1. Training: 2. 3. 4. 5. 6. 7. |
3. Experimental Setup
3.1. Preparation of Data
3.1.1. Abnormal Bearing Dataset
3.1.2. Full-Cycle IMS Bearing Dataset
3.1.3. Full-Cycle XJTU-SY Dearing Dataset
4. Data Preprocessing
5. Experimental Results and Discussion
5.1. Results on Abnormal Bearing Dataset
5.2. Results on Full-Cycle Bearing Dataset
5.2.1. Results on the IMS Dataset
5.2.2. Results on the XJTU-SY Dataset
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Martí, L.; Sanchez-Pi, N.; Molina, J.M.; Garcia, A.C.B. Anomaly Detection Based on Sensor Data in Petroleum Industry Applications. Sensors 2015, 15, 2774–2797. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Yairi, T. A review on the application of deep learning in system health management. Mech. Syst. Signal Process. 2018, 107, 241–265. [Google Scholar] [CrossRef]
- Nandi, S.; Toliyat, H.A.; Li, X. Condition Monitoring and Fault Diagnosis of Electrical Motors—A Review. IEEE Trans. Energy Convers. 2005, 20, 719–729. [Google Scholar] [CrossRef]
- Widodo, A.; Yang, B.-S. Support vector machine in machine condition monitoring and fault diagnosis. Mech. Syst. Signal Process. 2007, 21, 2560–2574. [Google Scholar] [CrossRef]
- Sugumaran, V.; Muralidharan, V.; Ramachandran, K.I. Feature selection using Decision Tree and classification through Proximal Support Vector Machine for fault diagnostics of roller bearing. Mech. Syst. Signal Process. 2007, 21, 930–942. [Google Scholar] [CrossRef]
- Kanarachos, S.; Christopoulos, S.R.G.; Chroneos, A.; Fitzpatrick, M.E. Detecting anomalies in time series data via a deep learning algorithm combining wavelets, neural networks and Hilbert transform. Expert Syst. Appl. 2017, 85, 292–304. [Google Scholar] [CrossRef]
- Taylor, A.; Leblanc, S.; Japkowicz, N. Anomaly Detection in Automobile Control Network Data with Long Short-Term Memory Networks. In Proceedings of the 2016 IEEE International Conference on Data Science and Advanced Analytics (DSAA), Montreal, QC, Canada, 17–19 October 2016; pp. 130–139. [Google Scholar] [CrossRef]
- Wen, T.; Keyes, R. Time Series Anomaly Detection Using Convolutional Neural Networks and Transfer Learning. arXiv 2019, arXiv:1905.13628. [Google Scholar]
- Malhotra, P.; Ramakrishnan, A.; Anand, G.; Vig, L.; Agarwal, P.; Shroff, G. LSTM-based Encoder-Decoder for Multi-sensor Anomaly Detection. arXiv 2016, arXiv:1607.00148. [Google Scholar]
- Lin, S.; Clark, R.; Birke, R.; Schönborn, S.; Trigoni, N.; Roberts, S. Anomaly Detection for Time Series Using VAE-LSTM Hybrid Model. In Proceedings of the ICASSP 2020—IEEE International Conference on Acoustics, Speech and Signal Processing, Barcelona, Spain, 4–8 May 2020; pp. 4322–4326. [Google Scholar] [CrossRef]
- Dong, Z.; Jiang, Y.; Jiao, W.; Zhang, F.; Wang, Z.; Huang, J.; Wang, X.; Zhang, K. Double attention-guided tree-inspired grade decision network: A method for bearing fault diagnosis of unbalanced samples under strong noise conditions. Adv. Eng. Inform. 2025, 103004. [Google Scholar] [CrossRef]
- Jiang, W.; Hong, Y.; Zhou, B.; He, X.; Cheng, C. A GAN-Based Anomaly Detection Approach for Imbalanced Industrial Time Series. IEEE Access 2019, 7, 143608–143619. [Google Scholar] [CrossRef]
- Wang, D.; Shang, Y. A new active labeling method for deep learning. In Proceedings of the 2014 International Joint Conference on Neural Networks (IJCNN), Beijing, China, 6–11 July 2014; pp. 112–119. [Google Scholar] [CrossRef]
- Love, B.C. Comparing supervised and unsupervised category learning. Psychon. Bull. Rev. 2002, 9, 829–835. [Google Scholar] [CrossRef]
- Chandola, V. Anomaly Detection: A Survey. ACM Comput. Surv. 2009, 41, 1–58. [Google Scholar] [CrossRef]
- Pimentel, M.A.; Clifton, D.A.; Clifton, L.; Tarassenko, L. A review of novelty detection. Signal Process. 2014, 99, 215–249. [Google Scholar] [CrossRef]
- Huang, J.; Zhang, F.; Coombs, T.; Chu, F. The first-kind flexible tensor SVD: Innovations in multi-sensor data fusion processing. Nonlinear Dyn. 2024, 1–19. [Google Scholar] [CrossRef]
- Huang, J.; Zhang, F.; Safaei, B.; Qin, Z.; Chu, F. The flexible tensor singular value decomposition and its applications in multisensor signal fusion processing. Mech. Syst. Signal Process. 2024, 220, 111662. [Google Scholar] [CrossRef]
- Kang, Y.; Chen, G.; Wang, H.; Pan, W.; Wei, X. A New Dual-Input Deep Anomaly Detection Method for Early Faults Warning of Rolling Bearings. Sensors 2023, 23, 8013. [Google Scholar] [CrossRef] [PubMed]
- Song, W.; Shen, W.; Gao, L.; Li, X. An Early Fault Detection Method of Rotating Machines Based on Unsupervised Sequence Segmentation Convolutional Neural Network. IEEE Trans. Instrum. Meas. 2022, 71, 3504712. [Google Scholar] [CrossRef]
- Lu, W.; Cheng, Y.; Xiao, C.; Chang, S.; Huang, S.; Liang, B.; Huang, T. Unsupervised Sequential Outlier Detection with Deep Architectures. IEEE Trans. Image Process. 2017, 26, 4321–4330. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.; Li, Y.; Cheng, Y.; Meng, D.; Liang, B.; Zhou, P. Early Fault Detection Approach with Deep Architectures. IEEE Trans. Instrum. Meas. 2018, 67, 1679–1689. [Google Scholar] [CrossRef]
- He, M.; He, D. Deep Learning Based Approach for Bearing Fault Diagnosis. IEEE Trans. Ind. Appl. 2017, 53, 3057–3065. [Google Scholar] [CrossRef]
- Grill, J.B.; Strub, F.; Altché, F.; Tallec, C.; Richemond, P.; Buchatskaya, E.; Doersch, C.; Avila Pires, B.; Guo, Z.; Gheshlaghi Azar, M.; et al. Bootstrap your own latent—A new approach to self-supervised learning. Adv. Neural Inf. Process. Syst. 2020, 33, 21271–21284. [Google Scholar]
- Yu, J. Local and nonlocal preserving projection for bearing defect classification and performance assessment. IEEE Trans. Ind. Electron. 2012, 59, 2363–2376. [Google Scholar] [CrossRef]
- Nectoux, P.; Gouriveau, R.; Medjaher, K. PRONOSTIA: A Project for Prognostics of Bearings. Int. J. Progn. Health Manag. 2012, 3, 1–6. Available online: http://www.phmsociety.org/ (accessed on 1 February 2024).
- Li, H.; Wang, Y. Rolling bearing reliability estimation based on logistic regression model. In Proceedings of the International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering (QR2MSE), Chengdu, China, 15–18 July 2013; pp. 1730–1733. [Google Scholar]
- Tobon-Mejia, D.A.; Medjaher, K.; Zerhouni, N.; Tripot, G. A data-driven failure prognostics method based on mixture of Gaussians hidden Markov models. IEEE Trans. Reliab. 2012, 61, 491–503. [Google Scholar] [CrossRef]
- Yu, J. Health condition monitoring of machines based on hidden Markov model and contribution analysis. IEEE Trans. Instrum. Meas. 2012, 61, 2200–2211. [Google Scholar] [CrossRef]
- Case Western Reserve University Bearing Data Center. Available online: https://engineering.case.edu/bearingdatacenter (accessed on 22 December 2023).
- Wang, B.; Lei, Y.; Li, N.; Li, N. A hybrid prognostics approach for estimating remaining useful life of rolling element bearings. IEEE Trans. Reliab. 2018, 69, 401–412. [Google Scholar] [CrossRef]
- Zhang, W.; Li, X.; Ding, Q. Deep residual learning-based fault diagnosis method for rotating machinery. ISA Trans. 2019, 95, 295–305. [Google Scholar] [CrossRef] [PubMed]
- Guo, G.; Wang, H.; Bell, D.; Bi, Y.; Greer, K. KNN Model-Based Approach in Classification. In On the Move to Meaningful Internet Systems 2003: CoopIS, DOA, and ODBASE; Meersman, R., Tari, Z., Schmidt, D.C., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2003; Volume 2888, pp. 986–996. [Google Scholar]
- Alghushairy, O.; Alsini, R.; Soule, T.; Ma, X. A Review of Local Outlier Factor Algorithms for Outlier Detection in Big Data Streams. BDCC 2020, 5, 1. [Google Scholar] [CrossRef]
- Li, K.L.; Huang, H.K.; Tian, S.F.; Xu, W. Improving one-class SVM for anomaly detection. In Proceedings of the 2003 International Conference on Machine Learning and Cybernetics, Xi’an, China, 5 November 2003; pp. 3077–3081. [Google Scholar] [CrossRef]
Symbol | Definition |
---|---|
The raw time-series data from normal samples | |
A sample from the time-series data, where | |
The Ricker wavelet function, defined in Equation (1) | |
The time–frequency representation of the sample after the Ricker | |
wavelet transform | |
The projection head of the online network | |
The prediction head of the online network | |
The contrastive loss, defined in Equation (4) | |
The reconstruction loss, defined in Equation (5) | |
The overall objective function, defined in Equation (6) |
Component | Configuration |
---|---|
Operating System | Windows 10 |
CPU | 12th Gen Intel(R) Core(TM) i7-12700K |
GPU | NVIDIA GeForce RTX 3090 |
RAM | 32 GB |
Storage | HS-SSD-A4000 2048G |
Python Version | Python 3.8.18 |
Deep Learning Framework | PyTorch 2.3.0 |
CUDA Version | 11.8 |
Parameter | Value |
---|---|
Encoder | ResNet-18 |
Loss | MSE |
Optimizer | Adam |
Learning Rate | 0.0003 |
Epoch | 200 |
Batch Size | 64 |
Shuffle | True |
Type | Condition Type | Defect Severity |
---|---|---|
0 | Normal | 0 |
1 | IRF | 0.007 |
2 | IRF | 0.014 |
3 | IRF | 0.021 |
4 | BF | 0.007 |
5 | BF | 0.014 |
6 | BF | 0.021 |
7 | ORF | 0.007 |
8 | ORF | 0.014 |
9 | ORF | 0.021 |
Date Set | Number of Files | Number of Positive Sample Files | Abnormal Bearings |
---|---|---|---|
Dataset 1 | 2156 | 1000 | 1_3 and 1_4 |
Dataset 2 | 984 | 400 | 2_1 |
Bearing Dataset | Number of Files | Number of Positive Sample Files | Fault Element |
---|---|---|---|
Bearing 2_1 | 491 | 315 | Inner race |
Bearing 2_2 | 161 | 30 | Outer race |
Bearing 2_3 | 533 | 225 | Cage |
Bearing 2_4 | 42 | 20 | Outer race |
Bearing 2_5 | 339 | 95 | Outer race |
Method | Fault Type | Average (%) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0 (%) | 1 (%) | 2 (%) | 3 (%) | 4 (%) | 5 (%) | 6 (%) | 7 (%) | 8 (%) | 9 (%) | ||
NN | 100 | 80.75 | 65.50 | 100 | 82.25 | 87.25 | 79.75 | 76.50 | 99.50 | 76 | 84.75 |
DNN | 100 | 97.50 | 92 | 100 | 94.50 | 94.50 | 95.50 | 92.75 | 99.50 | 83.25 | 94.95 |
CNN | 100 | 97.75 | 90.50 | 100 | 99.50 | 94.25 | 98.25 | 99.75 | 100 | 96.25 | 97.63 |
DCNN [32] | 100 | 100 | 99.50 | 100 | 100 | 100 | 100 | 100 | 99.75 | 100 | 99.93 |
ADBR | 84.76 | 100 | 99.58 | 100 | 99.79 | 95.34 | 98.73 | 100 | 91.53 | 100 | 96.97 |
Method | Results | Method | Results | Method | Results |
---|---|---|---|---|---|
1.KNN | 563 | 7.RMS + LOF | 535 | 13.DIDAD [19] | 533 |
2.LOF | 609 | 8.Kurtosis + LOF | 700 | 14.ANOGAN | 533 |
3.one-class SVM | 609 | 9.SDAE + LOF | 700 | 15.USSCNN [20] | 531 |
4.RMS + SVDD | 535 | 10.RMS + iForest | 535 | 16.UODA | 531 |
5.Kurtosis + SVDD | 703 | 11.Kurtosis + iForest | 650 | 17.FDDA [22] | 527 |
6.SDAE + SVDD | 600 | 12.SDAE + iForest | 720 | 18.ADBR | 513 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, Z.; Jiang, L.; Li, F.; Chen, Y. A Multi-Scale Self-Supervision Approach for Bearing Anomaly Detection Using Sensor Data Under Multiple Operating Conditions. Sensors 2025, 25, 1185. https://doi.org/10.3390/s25041185
Dai Z, Jiang L, Li F, Chen Y. A Multi-Scale Self-Supervision Approach for Bearing Anomaly Detection Using Sensor Data Under Multiple Operating Conditions. Sensors. 2025; 25(4):1185. https://doi.org/10.3390/s25041185
Chicago/Turabian StyleDai, Zhuoheng, Lei Jiang, Feifan Li, and Yingna Chen. 2025. "A Multi-Scale Self-Supervision Approach for Bearing Anomaly Detection Using Sensor Data Under Multiple Operating Conditions" Sensors 25, no. 4: 1185. https://doi.org/10.3390/s25041185
APA StyleDai, Z., Jiang, L., Li, F., & Chen, Y. (2025). A Multi-Scale Self-Supervision Approach for Bearing Anomaly Detection Using Sensor Data Under Multiple Operating Conditions. Sensors, 25(4), 1185. https://doi.org/10.3390/s25041185