Fiber Bragg Grating Thermometry and Post-Treatment Ablation Size Analysis of Radiofrequency Thermal Ablation on Ex Vivo Liver, Kidney and Lung
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Thermometry Performed with FBGs
2.3. RFA Settings
2.4. Post-RFA Dimension Analysis
2.5. Data Analysis Protocol
3. Results
3.1. Temperature Trends and Maps
3.1.1. Liver
3.1.2. Kidney
3.1.3. Lung
3.2. Post-RFA Analysis of the Ablation Region Dimension
3.2.1. Liver
3.2.2. Kidney
3.2.3. Lung
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ni, Y.; Mulier, S.; Miao, Y.; Michel, L.; Marchal, G. A Review of the General Aspects of Radiofrequency Ablation. Abdom. Imaging 2005, 30, 381–400. [Google Scholar] [CrossRef]
- Organ, L.W. Electrophysiologic Principles of Radiofrequency Lesion Making. Appl. Neurophysiol. 2007, 39, 69–76. [Google Scholar] [CrossRef]
- Hand, J.W.; Haar, G. ter Heating Techniques in Hyperthermia. Br. J. Radiol. 1981, 54, 443–466. [Google Scholar] [CrossRef]
- Tatli, S.; Tapan, Ü.; Morrison, P.R.; Silverman, S.G. Radiofrequency Ablation: Technique and Clinical Applications. Diagn. Interv. Radiol. 2012, 18, 508–516. [Google Scholar] [CrossRef]
- Strand, N.H.; Hagedorn, J.M.; Dunn, T.; Johnson, B.; Abd-Elsayed, A.; Covington, S.; Freeman, J.; Dawodu, A.; Maloney, J. Advances in Radiofrequency Ablation: Mechanism of Action and Technology. Ann. Palliat. Med. 2024, 13, 1028034. [Google Scholar] [CrossRef]
- Hong, K.; Georgiades, C. Radiofrequency Ablation: Mechanism of Action and Devices. J. Vasc. Interv. Radiol. 2010, 21, S179–S186. [Google Scholar] [CrossRef]
- Boers, T.; Brink, W.; Bianchi, L.; Saccomandi, P.; van Hespen, J.; Wennemars, G.; Braak, S.; Versluis, M.; Manohar, S. An Anthropomorphic Thyroid Phantom for Ultrasound-Guided Radiofrequency Ablation of Nodules. Med. Phys. 2024, 51, 826–838. [Google Scholar] [CrossRef]
- Wood, B.J.; Ramkaransingh, J.R.; Fojo, T.; Walther, M.M.; Libutti, S.K. Percutaneous Tumor Ablation with Radiofrequency. Cancer 2002, 94, 443–451. [Google Scholar] [CrossRef]
- Nakazawa, T.; Kokubu, S.; Shibuya, A.; Ono, K.; Watanabe, M.; Hidaka, H.; Tsuchihashi, T.; Saigenji, K. Radiofrequency Ablation of Hepatocellular Carcinoma: Correlation Between Local Tumor Progression After Ablation and Ablative Margin. Am. J. Roentgenol. 2007, 188, 480–488. [Google Scholar] [CrossRef]
- Kim, J.W.; Kim, J.H.; Won, H.J.; Shin, Y.M.; Yoon, H.-K.; Sung, K.-B.; Kim, P.N. Hepatocellular Carcinomas 2–3 Cm in Diameter: Transarterial Chemoembolization plus Radiofrequency Ablation vs. Radiofrequency Ablation Alone. Eur. J. Radiol. 2012, 81, e189–e193. [Google Scholar] [CrossRef]
- Sutherland, L.M.; Williams, J.A.R.; Padbury, R.T.A.; Gotley, D.C.; Stokes, B.; Maddern, G.J. Radiofrequency Ablation of Liver Tumors: A Systematic Review. Arch. Surg. 2006, 141, 181–190. [Google Scholar] [CrossRef]
- Izzo, F.; Granata, V.; Grassi, R.; Fusco, R.; Palaia, R.; Delrio, P.; Carrafiello, G.; Azoulay, D.; Petrillo, A.; Curley, S.A. Radiofrequency Ablation and Microwave Ablation in Liver Tumors: An Update. Oncologist 2019, 24, e990–e1005. [Google Scholar] [CrossRef]
- Hsu, T.H.S.; Fidler, M.E.; Gill, I.S. Radiofrequency Ablation of the Kidney: Acute and Chronic Histology in Porcine Model. Urology 2000, 56, 872–875. [Google Scholar] [CrossRef]
- Salas, N.; Ramanathan, R.; Dummett, S.; Leveillee, R.J. Results of Radiofrequency Kidney Tumor Ablation: Renal Function Preservation and Oncologic Efficacy. World J. Urol. 2010, 28, 583–591. [Google Scholar] [CrossRef]
- Mahnken, A.H.; Günther, R.W.; Tacke, J. Radiofrequency Ablation of Renal Tumors. Eur. Radiol. 2004, 14, 1449–1455. [Google Scholar] [CrossRef]
- Brace, C.L. Radiofrequency and Microwave Ablation of the Liver, Lung, Kidney, and Bone: What Are the Differences? Curr. Probl. Diagn. Radiol. 2009, 38, 135–143. [Google Scholar] [CrossRef]
- Zhu, J.C.; Yan, T.D.; Morris, D.L. A Systematic Review of Radiofrequency Ablation for Lung Tumors. Ann. Surg. Oncol. 2008, 15, 1765–1774. [Google Scholar] [CrossRef]
- Gadaleta, C.; Mattioli, V.; Colucci, G.; Cramarossa, A.; Lorusso, V.; Canniello, E.; Timurian, A.; Ranieri, G.; Fiorentini, G.; De Lena, M.; et al. Radiofrequency Ablation of 40 Lung Neoplasms: Preliminary Results. Am. J. Roentgenol. 2004, 183, 361–368. [Google Scholar] [CrossRef]
- Abtin, F.G.; Eradat, J.; Gutierrez, A.J.; Lee, C.; Fishbein, M.C.; Suh, R.D. Radiofrequency Ablation of Lung Tumors: Imaging Features of the Postablation Zone. RadioGraphics 2012, 32, 947–969. [Google Scholar] [CrossRef]
- Ryan, A.; Byrne, C.; Pusceddu, C.; Buy, X.; Tsoumakidou, G.; Filippiadis, D. CIRSE Standards of Practice on Thermal Ablation of Bone Tumours. Cardiovasc. Interv. Radiol. 2022, 45, 591–605. [Google Scholar] [CrossRef]
- Crocetti, L.; de Baére, T.; Pereira, P.L.; Tarantino, F.P. CIRSE Standards of Practice on Thermal Ablation of Liver Tumours. Cardiovasc. Interv. Radiol. 2020, 43, 951–962. [Google Scholar] [CrossRef] [PubMed]
- Venturini, M.; Cariati, M.; Marra, P.; Masala, S.; Pereira, P.L.; Carrafiello, G. CIRSE Standards of Practice on Thermal Ablation of Primary and Secondary Lung Tumours. Cardiovasc. Interv. Radiol. 2020, 43, 667–683. [Google Scholar] [CrossRef] [PubMed]
- Clasen, S.; Pereira, P.L. Magnetic Resonance Guidance for Radiofrequency Ablation of Liver Tumors. J. Magn. Reson. Imaging 2008, 27, 421–433. [Google Scholar] [CrossRef] [PubMed]
- Clasen, S.; Rempp, H.; Hoffmann, R.; Graf, H.; Pereira, P.L.; Claussen, C.D. Image-Guided Radiofrequency Ablation of Hepatocellular Carcinoma (HCC): Is MR Guidance More Effective than CT Guidance? Eur. J. Radiol. 2014, 83, 111–116. [Google Scholar] [CrossRef] [PubMed]
- Minami, Y.; Kudo, M. Radiofrequency Ablation of Liver Metastases from Colorectal Cancer: A Literature Review. Gut Liver 2013, 7, 1–6. [Google Scholar] [CrossRef]
- Ogan, K.; Jacomides, L.; Dolmatch, B.L.; Rivera, F.J.; Dellaria, M.F.; Josephs, S.C.; Cadeddu, J.A. Percutaneous Radiofrequency Ablation of Renal Tumors: Technique, Limitations, and Morbidity. Urology 2002, 60, 954–958. [Google Scholar] [CrossRef]
- Grasso, R.F.; Bernetti, C.; Pacella, G.; Altomare, C.; Castiello, G.; Andresciani, F.; Sarli, M.; Zobel, B.B.; Faiella, E. A Comparative Analysis of Thermal Ablation Techniques in the Treatment of Primary and Secondary Lung Tumors: A Single-Center Experience. Radiol. Med. 2022, 127, 714–724. [Google Scholar] [CrossRef]
- Faiella, E.; Frauenfelder, G.; Santucci, D.; Luppi, G.; Zobel, B.B.; Grasso, R.F. Percutaneous Radiofrequency Ablation of a Bleeding Pseudoaneurysm during CT-Guided Renal Cancer Treatment. A Case Report. Emerg. Radiol. 2016, 23, 527–530. [Google Scholar] [CrossRef]
- Vujaskovic, Z.; Song, C.W. Physiological Mechanisms Underlying Heat-Induced Radiosensitization. Int. J. Hyperth. 2004, 20, 163–174. [Google Scholar] [CrossRef]
- Chu, K.F.; Dupuy, D.E. Thermal Ablation of Tumours: Biological Mechanisms and Advances in Therapy. Nat. Rev. Cancer 2014, 14, 199–209. [Google Scholar] [CrossRef]
- Jaque, D.; Maestro, L.M.; del Rosal, B.; Haro-Gonzalez, P.; Benayas, A.; Plaza, J.L.; Rodríguez, E.M.; Solé, J.G. Nanoparticles for Photothermal Therapies. Nanoscale 2014, 6, 9494–9530. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, L.; Cavarzan, F.; Ciampitti, L.; Cremonesi, M.; Grilli, F.; Saccomandi, P. Thermophysical and Mechanical Properties of Biological Tissues as a Function of Temperature: A Systematic Literature Review. Int. J. Hyperth. 2022, 39, 297–340. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, S.N. Radiofrequency Tumor Ablation: Principles and Techniques. Eur. J. Ultrasound 2001, 13, 129–147. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, L.; Baroni, S.; Paroni, G.; Violatto, M.B.; Moscatiello, G.Y.; Panini, N.; Russo, L.; Fiordaliso, F.; Colombo, L.; Diomede, L.; et al. Thermal Effects and Biological Response of Breast and Pancreatic Cancer Cells Undergoing Gold Nanorod-Assisted Photothermal Therapy. J. Photochem. Photobiol. B Biol. 2024, 259, 112993. [Google Scholar] [CrossRef]
- Sonntag, P.D.; Hinshaw, J.L.; Lubner, M.G.; Brace, C.L.; Lee, F.T. Thermal Ablation of Lung Tumors. Surg. Oncol. Clin. 2011, 20, 369–387. [Google Scholar] [CrossRef]
- Ahmed, M.; Brace, C.L.; Lee, F.T.; Goldberg, S.N. Principles of and Advances in Percutaneous Ablation. Radiology 2011, 258, 351–369. [Google Scholar] [CrossRef]
- Lehmann, K.S.; Poch, F.G.M.; Rieder, C.; Schenk, A.; Stroux, A.; Frericks, B.B.; Gemeinhardt, O.; Holmer, C.; Kreis, M.E.; Ritz, J.P.; et al. Minimal Vascular Flows Cause Strong Heat Sink Effects in Hepatic Radiofrequency Ablation Ex Vivo. J. Hepato-Biliary-Pancreat. Sci. 2016, 23, 508–516. [Google Scholar] [CrossRef]
- Namakshenas, P.; Bianchi, L.; Saccomandi, P. Fiber Bragg Grating Sensors-Based Assessment of Laser Ablation on Pancreas at 808 and 1064 Nm Using a Diffusing Applicator: Experimental and Numerical Study. IEEE Sens. J. 2023, 23, 18267–18275. [Google Scholar] [CrossRef]
- Korganbayev, S.; Orrico, A.; Bianchi, L.; Paloschi, D.; Wolf, A.; Dostovalov, A.; Saccomandi, P. PID Controlling Approach Based on FBG Array Measurements for Laser Ablation of Pancreatic Tissues. IEEE Trans. Instrum. Meas. 2021, 70, 7006409. [Google Scholar] [CrossRef]
- Kersey, A.D.; Davis, M.A.; Patrick, H.J.; LeBlanc, M.; Koo, K.P.; Askins, C.G.; Putnam, M.A.; Friebele, E.J. Fiber Grating Sensors. J. Light. Technol. 1997, 15, 1442–1463. [Google Scholar] [CrossRef]
- Frich, L. Non-invasive Thermometry for Monitoring Hepatic Radiofrequency Ablation. Minim. Invasive Ther. Allied Technol. 2006, 15, 18–25. [Google Scholar] [CrossRef]
- Lewis, M.A.; Staruch, R.M.; Chopra, R. Thermometry and Ablation Monitoring with Ultrasound. Int. J. Hyperth. 2015, 31, 163–181. [Google Scholar] [CrossRef] [PubMed]
- TISSUE DB IT’IS Foundation. Available online: https://itis.swiss/virtual-population/tissue-properties/database/ (accessed on 4 September 2024).
- Mohammadi, A.; Bianchi, L.; Asadi, S.; Saccomandi, P. Measurement of Ex Vivo Liver, Brain and Pancreas Thermal Properties as Function of Temperature. Sensors 2021, 21, 4236. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, L.; Fiorentini, S.; Gianella, S.; Gianotti, S.; Iadanza, C.; Asadi, S.; Saccomandi, P. Measurement of Thermal Conductivity and Thermal Diffusivity of Porcine and Bovine Kidney Tissues at Supraphysiological Temperatures up to 93 °C. Sensors 2023, 23, 6865. [Google Scholar] [CrossRef] [PubMed]
- Rossmann, C.; Haemmerich, D. Review of Temperature Dependence of Thermal Properties, Dielectric Properties, and Perfusion of Biological Tissues at Hyperthermic and Ablation Temperatures. Crit. Rev.™ Biomed. Eng. 2014, 42, 467–492. [Google Scholar] [CrossRef] [PubMed]
- Abdelsalam, M.E.; Awad, A.; Baiomy, A.; Irwin, D.; Karam, J.A.; Matin, S.F.; Sheth, R.A.; Habibollahi, P.; Odisio, B.C.; Lu, T.; et al. Outcomes of Radiofrequency Ablation for Solitary T1a Renal Cell Carcinoma: A 20-Year Tertiary Cancer Center Experience. Cancers 2023, 15, 909. [Google Scholar] [CrossRef]
- Deng, Q.; He, M.; Fu, C.; Feng, K.; Ma, K.; Zhang, L. Radiofrequency Ablation in the Treatment of Hepatocellular Carcinoma. Int. J. Hyperth. 2022, 39, 1052–1063. [Google Scholar] [CrossRef]
- Han, K.; Kim, J.H.; Kim, G.H.; Kim, J.H.; Kim, S.Y.; Park, S.H.; Moon, S.; Kwon, J.H.; Kim, G.M.; Lee, S.J.; et al. Radiofrequency Ablation of Subcapsular versus Nonsubcapsular Hepatocellular Carcinomas ≤ 3 Cm: Analysis of Long-Term Outcomes from Two Large-Volume Liver Centers. Eur. Radiol. 2024, 34, 1578–1586. [Google Scholar] [CrossRef]
- Diehn, F.E.; Neeman, Z.; Hvizda, J.L.; Wood, B.J. Remote Thermometry to Avoid Complications in Radiofrequency Ablation. J. Vasc. Interv. Radiol. 2003, 14, 1569–1576. [Google Scholar] [CrossRef]
- Bianchi, L.; Bontempi, M.; De Simone, S.; Franceschet, M.; Saccomandi, P. Temperature Dependence of Thermal Properties of Ex Vivo Porcine Heart and Lung in Hyperthermia and Ablative Temperature Ranges. Ann. Biomed. Eng. 2023, 51, 1181–1198. [Google Scholar] [CrossRef]
- Miguel, A.F. Lungs as a Natural Porous Media: Architecture, Airflow Characteristics and Transport of Suspended Particles. In Heat and Mass Transfer in Porous Media; Delgado, J.M.P.Q., Ed.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 115–137. ISBN 978-3-642-21966-5. [Google Scholar]
- Laimer, G.; Jaschke, N.; Schullian, P.; Putzer, D.; Eberle, G.; Solbiati, M.; Solbiati, L.; Goldberg, S.N.; Bale, R. Volumetric Assessment of the Periablational Safety Margin after Thermal Ablation of Colorectal Liver Metastases. Eur. Radiol. 2021, 31, 6489–6499. [Google Scholar] [CrossRef] [PubMed]
- Lu, D.S.K.; Raman, S.S.; Vodopich, D.J.; Wang, M.; Sayre, J.; Lassman, C. Effect of Vessel Size on Creation of Hepatic Radiofrequency Lesions in Pigs. Am. J. Roentgenol. 2002, 178, 47–51. [Google Scholar] [CrossRef]
a [cm] | b [cm] | a − am [cm] | b − bm [cm] | Sphericity Index, b/a | (Mean Ablation Size/Power) × 100 [cm/W] | ||
---|---|---|---|---|---|---|---|
Single electrode | RFA 200 W 12 min | 3 ± 0.3 | 2.7 ± 0.2 | 0.3 | −0.3 | 0.9 | 1.43 |
Two electrodes | RFA 200 W 9 min | 3.7 ± 0.2 | 3.7 ± 0.3 | −0.6 | 0.5 | 1 | 1.85 |
a [cm] | b [cm] | a − am [cm] | b − bm [cm] | Sphericity Index | (Mean Ablation Size/Power) × 100 [cm/W] | ||
---|---|---|---|---|---|---|---|
Single electrode | RFA 200 W 12 min | 3 ± 0.6 | 2.7 ± 0.4 | 0.3 | −0.3 | 0.9 | 1.43 |
Two electrodes | RFA 200 W 9 min | 3.7 ± 0.4 | 3.7 ± 0.6 | −0.6 | 0.5 | 1 | 1.85 |
a [cm] | b [cm] | a − am [cm] | b − bm [cm] | Sphericity Index | (Mean Ablation Size/Power) × 100 [cm/W] | ||
---|---|---|---|---|---|---|---|
Single electrode | RFA 200 W 12 min | 2.1 ± 0.3 | 0.8 ± 0.2 | −0.6 | −2.2 | 0.38 | 0.73 |
Two electrodes | RFA 200 W 9 min | 1.4 ± 0.3 | 1.2 ± 0.9 | −2.9 | −2 | 0.86 | 0.65 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Korganbayev, S.; Bianchi, L.; Girgi, C.; Vergantino, E.; Santucci, D.; Faiella, E.; Saccomandi, P. Fiber Bragg Grating Thermometry and Post-Treatment Ablation Size Analysis of Radiofrequency Thermal Ablation on Ex Vivo Liver, Kidney and Lung. Sensors 2025, 25, 245. https://doi.org/10.3390/s25010245
Korganbayev S, Bianchi L, Girgi C, Vergantino E, Santucci D, Faiella E, Saccomandi P. Fiber Bragg Grating Thermometry and Post-Treatment Ablation Size Analysis of Radiofrequency Thermal Ablation on Ex Vivo Liver, Kidney and Lung. Sensors. 2025; 25(1):245. https://doi.org/10.3390/s25010245
Chicago/Turabian StyleKorganbayev, Sanzhar, Leonardo Bianchi, Clara Girgi, Elva Vergantino, Domiziana Santucci, Eliodoro Faiella, and Paola Saccomandi. 2025. "Fiber Bragg Grating Thermometry and Post-Treatment Ablation Size Analysis of Radiofrequency Thermal Ablation on Ex Vivo Liver, Kidney and Lung" Sensors 25, no. 1: 245. https://doi.org/10.3390/s25010245
APA StyleKorganbayev, S., Bianchi, L., Girgi, C., Vergantino, E., Santucci, D., Faiella, E., & Saccomandi, P. (2025). Fiber Bragg Grating Thermometry and Post-Treatment Ablation Size Analysis of Radiofrequency Thermal Ablation on Ex Vivo Liver, Kidney and Lung. Sensors, 25(1), 245. https://doi.org/10.3390/s25010245