Review of Photodetectors for Space Lidars
Abstract
:1. Introduction
2. Space Lidar Detectors from UV to near Infrared
2.1. Photoelectron Multiplication Tubes
2.2. Silicon Avalanche Photodiodes in Analog Mode Operation
2.3. Silicon APDs in Geiger Mode Operation
3. Space Lidar Detectors from Short-Wave to Mid-Wave Infrared
3.1. InGaAs APDs
3.2. HgCdTe APDs for Atmospheric Lidars
3.3. HgCdTe APD Arrays for Surface Elevation Lidar
3.4. Radiation Damage and Annealing of HgCdTe APD Arrays
3.5. Use of HgCdTe APD Arrays in Airborne and Future Spaceborne Lidars
4. Discussion
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cremons, D.R. The future of lidar in planetary science. Front. Remote Sens. 2022, 3, 1042460. [Google Scholar] [CrossRef]
- Sun, X.; Abshire, J.B.; McGarry, J.F.; Neumann, G.A.; Cananaugh, J.F.; Smith, J.C.; Harding, D.J.; Zwally, H.J.; Smith, D.E.; Zuber, M.T. Space lidar developed at NASA Goddard Space Flight Center—The first 20 years. IEEE J. Sel. Top. Appl. Earth. Obs. Remote Sens. 2013, 6, 1660–1675. [Google Scholar] [CrossRef]
- Beck, J.; Wan, C.; Kinch, M.; Robinson, J.; Mitra, P.; Scritchfield, R.; Ma, F.; Campbell, J. The HgCdTe electron avalanche photodiode. J. Electron. Mater. 2006, 35, 1166–1173. [Google Scholar] [CrossRef]
- McCormick, M.P. Airborne and space borne lidar. In Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere; WeitKamp, C., Ed.; Springer Series in Optical Science; Springer Science + Business Media Inc.: New York, NY, USA, 2005; Chapter 13; Volume 102, pp. 355–397. [Google Scholar] [CrossRef]
- Hunt, W.H.; Winker, D.M.; Vaughan, M.A.; Powell, K.A.; Lucker, P.L.; Weimer, C. CALIPSO lidar description and performance assessment. J. Atmos. Ocean Technol. (JTECH) 2009, 26, 1214–1228. [Google Scholar] [CrossRef]
- Baker, W.E.; Atlas, R.; Gardinali, C.; Clement, A.; Emmitt, G.D.; Gentry, B.M.; Hardesty, R.M.; Kallen, E.; Kavaya, M.J.; Langland, R.; et al. Lidar-measured wind profiles: The missing link in the global observing system. Bull. Am. Meteorol. Soc. (BAMS) 2014, 95, 543–564. [Google Scholar] [CrossRef]
- Neumann, T.A.; Martino, A.; Markus, T.; Baeb, S.; Bocka, M.R.; Brenner, A.C.; Brunt, K.M.; Cavanaugh, J.F.; Fernandes, S.T.; Hancock, D.W.; et al. The Ice, Cloud, and Land Elevation Satellite-2 mission: A global geolocated photon product derived from the Advanced Topographic Laser Altimeter System. Remote Sens. Environ. 2019, 233, 111325. [Google Scholar] [CrossRef]
- Martino, A.J.; Neumann, T.A.; Kurtz, N.T.; McClennan, D. ICESat-2 mission overview and early performance. SPIE 2019, 111151, 111510C. [Google Scholar] [CrossRef]
- Butler, A. 2015: Single-photon counting detectors for the visible range between 300 and 1000 nm. In Advanced Photon Counting Applications, Methods, Instrumentation; Kapusta, P., Wahl, M., Erdmann, R., Eds.; Springer Series on Fluorescence; Springer: Cham, Switzerland; New Work, NY, USA, 2014; Volume 15, pp. 23–42. [Google Scholar] [CrossRef]
- La Rue, R.A.; Davis, G.A.; Pudvay, D.; Costello, K.A.; Aebi, V.W. Photon counting 1060-nm hybrid photomultiplier with high quantum efficiency. IEEE Electron. Device Lett. 1999, 20, 126–128. [Google Scholar] [CrossRef]
- Yang, G.; Martino, A.J.; Lu, W.; Cavanaugh, J.F.; Bock, M.; Krainak, M.A. ICESat 2 ATLAS photon-counting receiver–initial on-orbit performance. SPIE 2019, 10978, 109780B. [Google Scholar] [CrossRef]
- Robben, F. Noise in the measurement of light with photomultipliers. Appl. Opt. 1971, 10, 776–796. [Google Scholar] [CrossRef]
- Johnson, S.M., Jr. Radiation effects on multiplier phototubes. IEEE Trans. Nucl. Sci. 1973, NS-20, 113–124. [Google Scholar] [CrossRef]
- Lehmann, A.; Böhm, M.; Eyrich, W.; Miehling, D.; Pfaffinger, M.; Stelter, S.; Uhlig, F.; Ali, A.; Belias, A.; Dzhygadlo, R.; et al. Lifetime of MCP-PMTs and other performance features. J. Instrum. (JINST) 2018, 13, C0201. [Google Scholar] [CrossRef]
- Laforce, F. Low noise optical receiver using Si APD. SPIE 2009, 7212, 721210. [Google Scholar] [CrossRef]
- Laforce, F. Optical receiver using silicon APD for space applications. SPIE 2009, 7330, 73300R. [Google Scholar] [CrossRef]
- Smith, D.E.; Zuber, M.T.; Neumann, G.A.; Lemoine, F.G. Topography of the Moon from the Clementine lidar. J. Geophys. Res. Planets 1997, 102, 1591–1611. [Google Scholar] [CrossRef]
- Cole, T.D.; Boies, M.T.; El-Dinary, A.S.; Cheng, A.; Zuber, M.T.; Smith, D.E. The Near-Earth Asteroid Rendezvous laser altimeter. Space Sci. Rev. 1997, 82, 217–253. [Google Scholar] [CrossRef]
- Zuber, M.T.; Smith, D.E.; Solomon, S.C.; Muhleman, D.O.; Head, J.W.; Garvin, J.B.; Abshire, J.B.; Bufton, J.L. The Mars Observer Laser Altimeter investigation. J. Geophys. Res. Planets 1992, 97, 7781–7792. [Google Scholar] [CrossRef]
- Thomas, N.; Hussmann, H.; Spohn, T.; Lara, L.M.; Christensen, U.; Affolter, M.; Bandy, T.; Beck, T.; Chakraborty, S.; Geissbuehler, U.; et al. The BepoColombo Laser Altimeter. Space Sci. Rev. 2021, 217, 25. [Google Scholar] [CrossRef]
- Sun, X.; Blair, J.B.; Bufton, J.L.; Faina, M.; Dahl, S.; Bérard, P.; Seymour, R.J. Advanced silicon avalanche photodiodes on NASA’s Global Ecosystem Dynamics Investigation (GEDI) mission. SPIE 2020, 11287, 1128713. [Google Scholar] [CrossRef]
- Mizuno, T.; Kase, T.; Shiina, T.; Mita, M.; Namiki, N.; Senshu, H.; Yamada, R.; Noda, H.; Kunimori, H.; Hirata, N.; et al. Development of the laser altimeter (LIDAR) for Hayabusa2. Space Sci. Rev. 2017, 208, 33–47. [Google Scholar] [CrossRef]
- Enya, K.; Masanori Kobayashi, M.; Kimura, J.; Araki, H.; Namiki, N.; Noda, H.; Kashima, S.; Oshigami, S.; Ishibashi, K.; Yamawaki, T.; et al. The Ganymede Laser Altimeter (GALA) for the Jupiter Icy Moons Explorer (JUICE): Mission, science, and instrumentation of its receiver modules. Adv. Space Res. 2022, 69, 2283–2304. [Google Scholar] [CrossRef]
- Sun, X.; Blair, B.; Hofton, M.; Hackett, D.; Cavanaugh, J.; Bufton, J.; Lauenstein, J.-M.; Berard, P. Radiation damage of silicon avalanche photodiodes in analog mode used in space lidars. SPIE 2022, 12110, 1211006. [Google Scholar] [CrossRef]
- Dautet, H.; Deschampt, P.; Dion, B.; MacGregor, A.D.; MacSween, D.; McIntyre, R.J.; Trottier, C.; Webb, P.P. Photon counting techniques with silicon avalanche photodiodes. Appl. Opt. 1992, 32, 3894–3900. [Google Scholar] [CrossRef] [PubMed]
- Cova, S.; Ghioni, M.; Lotito, A.; Rech, I.; Zappa, F. Evolution and prospects for single-photon avalanche diodes and quenching circuits. J. Mod. Opt. 2004, 51, 1267–1288. [Google Scholar] [CrossRef]
- Prochazka, I.; Hamal, K.; Sopko, B. Recent achievements in single photon detectors and their applications. J. Mod. Opt. 2004, 51, 1289–1313. [Google Scholar] [CrossRef]
- Sun, X.; Krainak, M.A.; Abshire, J.B.; Spinhirne, J.D.; Trottier, C.; Davis, M.; Dautet, H.; Allan, G.; Lukemire, A.T.; Vandiver, J.C. Space-qualified silicon avalanche-photodiode single-photon-counting modules. J. Mod. Opt. 2004, 51, 1333–1350. [Google Scholar] [CrossRef]
- Yorks, J.E.; McGill, M.J.; Palm, S.P.; Hlavka, D.L.; Selmer, P.A.; Nowottnick, E.P.; Vaughan, M.A.; Rodier, S.D.; Hart, W.D. An overview of the CATS level 1 processing algorithms and data products. Geo. Res. Lett. 2016, 43, 4632–4639. [Google Scholar] [CrossRef]
- Prochazka, I.; Blazej, J. and Kodet, J. Solid state photon counters and their applications in space related projects. SPIE 2011, 8194, 819403. [Google Scholar] [CrossRef]
- Michalek, V.; Prochazka, I.; Blazej, J. Twenty years of rad-hard K14 SPAD in space projects. Sensors 2015, 15, 18178–18196. [Google Scholar] [CrossRef]
- Gulinatti, A.; Rech, I.; Maccagnani, P.; Cova, S.; Ghioni, M. New silicon technologies enable high performance arrays of single photon avalanche diodes. SPIE 2013, 8727, 87270M. [Google Scholar] [CrossRef]
- Donati, S.; Tambosso, T. Single-photon detectors: From traditional PMT to solid-state SPAD-based technology. IEEE J. Sel. Topics Quantum Electron. 2014, 20, 3805008. [Google Scholar] [CrossRef]
- Sun, X.; Reusser, D.; Dautet, H.; Abshire, J.B. Measurement of proton radiation damage of Si avalanche photodiodes. IEEE Trans. Electron. Devices 1997, 44, 2160–2166. [Google Scholar] [CrossRef]
- Sun, X.; Jester, P.L.; Abshire, J.B.; Chang, E.S. Receiver performance assessment of the Geoscience Laser Altimeter System (GLAS) through the end of seven mission in space. In Proceedings of the Conference on Laser and Electro-Optics (CLEO), Baltimore, MD, USA, 1–6 May 2011. Paper ATuA2. [Google Scholar] [CrossRef]
- Ehret, G.; Bousquet, P.; Pierangelo, C.; Alpers, M.; Millet, B.; Abshire, J.B.; Bovensmann, H.; Burrows, J.P.; Chevallier, F.; Ciais, P.; et al. MERLIN: A French-German space lidar mission dedicated to atmospheric methane. Remote Sens. 2017, 9, 1052. [Google Scholar] [CrossRef]
- Cohen, B.A.; Petersburg, R.R.; Cremons, D.R.; Russell, P.S.; Hayne, P.O.; Greenhagen, B.T.; Paige, D.A.; Camacho, J.M.; Cheek, N.; Sullivan, M.T.; et al. Lunar Flashlight science ground and flight measurements and operations using a multi-bank laser reflectometer. Icarus 2024, 413, 116013. [Google Scholar] [CrossRef]
- Vinckerr, Q.; Hardy, L.; Gibson, M.; smith, C.; Putman, P.; Hayne, P.O.; Sellar, R.G. Design and characterization of the multi-band SWIR receiver for the Lunar Flashlight GubeSat mission. Remote Sens. 2019, 11, 440. [Google Scholar] [CrossRef]
- Kleipool, Q.L.; Jongma, R.T.; Gloudemans, A.M.S.; Schrijver, H.; Lichtenberg, G.F.; van Hees, R.M.; Maurellis, A.N.; Hoogeveen, R.W.M. In-flight proton-induced radiation damage to SCIAMACHY’s extended-wavelength InGaAs near-infrared detectors. Infrared Phys. Technol. 2007, 50, 30–37. [Google Scholar] [CrossRef]
- Becker, H.N.; Johnston, A.H. Dark current degradation of near infrared avalanche photodiodes from proton irradiation. IEEE Trans. Nucl. Sci. 2004, 51, 3572–3578. [Google Scholar] [CrossRef]
- Zhang, J.; Itzler, M.A.; Zbinden, H.; Pan, J.W. Advances in InGaAs/InP single-photon detector systems for quantum communication. Light Sci. Appl. 2015, 4, e286. [Google Scholar] [CrossRef]
- Sprafke, T.; Beletic, J.W. High performance infrared focal plane arrays for space applications. Opt. Photonics News 2008, 19, 22–27. [Google Scholar] [CrossRef]
- Baker, I.; Kinch, M. HgCdTe electron avalanche photodiodes (EAPDs). In Mercury Cadmium Telluride: Growth, Properties, and Applications; Capper, P., Garland, J., Eds.; John Wiley & Sons Ltd.: West Sussex, UK, 2011; Chapter 21; pp. 493–512. [Google Scholar] [CrossRef]
- Kinch, M.A. State-of-the-Art Infrared Detector Technology; SPIE: Bellingham, WA, USA, 2014. [Google Scholar]
- Sun, X.; Abshire, J.B.; Beck, J.D.; Mitra, P.; Feiff, K.; Yang, G. HgCdTe avalanche photodiode detectors for airborne and space borne lidar at infrared wavelength. Opt. Express 2017, 25, 16589–16602. [Google Scholar] [CrossRef]
- Anderson, P.D.; Beck, J.D.; Sullivan III, W.; Schaake, C.; McCurdy, J.; Skokan, M.; Mitra, P.; Sun, X. Recent advancements in HgCdTe APDs for space applications. J. Electron. Mater. 2022, 51, 6803–6814. [Google Scholar] [CrossRef]
- Rauscher, B.J.; Boehm, N.; Cagiano, S.; Delo, G.S.; Foltz, R.; Greenhouse, M.A.; Hickey, M.; Hill, R.J.; Kan, E.; Lindler, D.; et al. New and better detectors for the JWST near-infrared spectrograph. Publ. Astron. Soc. Pac. 2014, 126, 739. [Google Scholar] [CrossRef]
- Raab, J.; Tward, E. Northrop Grumman Aerospace Systems cryocooler overview. Cryogenics 2010, 50, 572–581. [Google Scholar] [CrossRef]
- Rawlings, D.; Averitt, G. A linear drive cryocooler for ultra-small infrared sensor systems. SPIE 2014, 9070, 90702R. [Google Scholar] [CrossRef]
- Beck, J.D.; Scritchfield, R.; Mitra, P.; Sullivan III, W.W.; Gleckler, A.D.; Strittmatter, R.; Martin, R.J. Linear mode photon counting with the noiseless gain HgCdTe e-avalanche photodiode. Opt. Eng. 2014, 53, 081905. [Google Scholar] [CrossRef]
- Sun, X.; Abshire, J.; Krainak, M.; Lu, W.; Beck, J.; Sullivan III, W.; Mitra, P.; Rawlings, D.; Fields, R.; Hinkley, D.; et al. HgCdTe avalanche photodiode array detectors with single photon sensitivity and integrated detector cooler assemblies for space applications. Opt. Eng. 2019, 58, 067103. [Google Scholar] [CrossRef]
- Southwell, H.W. Focal-plane pixel-energy redistribution and concentration by use of microlens arrays. Appl. Opt. 1994, 33, 3460–3464. [Google Scholar] [CrossRef]
- Baker, I.M.; Maxey, C.; Hipwood, L.; Isgar, V.; Weller, H.; Herrington, M.; Barnes, K. Linear-mode avalanche photodiode arrays in HgCdTe at Leonardo U.K.: The current status. SPIE 2019, 10980, 109800K. [Google Scholar] [CrossRef]
- Atkinson, D.; Hall, D.; Jacobson, S.; Baker, I.M. Photon-counting properties of SAPHIRA APD arrays. Astron. J. 2018, 155, 220. [Google Scholar] [CrossRef]
- Baker, I.; Kicks, M.; Maxey, C.; Owton, D. Leonardo UK high performance shortwave APDs for astronomy. SPIE 2023, 12687, 1268702. [Google Scholar] [CrossRef]
- Thorne, P.; Turner, C. Progress at Leonardo UK in APD array technology development for high-speed 2D linear mode photon-counting applications. SPIE 2024, 13046, 11304608. [Google Scholar] [CrossRef]
- Rothman, J.; Mollard, L.; Goüt, S.; Bonnefond, L.; Wlassow, J. History-dependent impact ionization theory applied to HgCdTe e-APDs. J. Electron. Mater. 2011, 40, 1757–1768. [Google Scholar] [CrossRef]
- Rothman, J.; Bleuet, P.; Abergel, J.; Cout, S.; Lasfargues, G.; Mathieu, L.; Nicolas, J.-A.; Rostaing, J.-P.; Huet, S.; Castelein, P.; et al. HgCdTe APDs detector developments at CEA/Leti for atmospheric lidar and free space optical communications. SPIE 2019, 11180, 111083S. [Google Scholar] [CrossRef]
- Dumas, A.; Rothman, J.; Gibert, F.; Edouart, D.; Lasfargues, G.; Cenac, C.; Le Mounier, F.; Pellegrino, J.; Zanatta, J.-P.; Bardoux, A.; et al. Evaluation of a HgCdTe e-APD based detector for 2 μm CO2 DIAL application. Appl. Opt. 2017, 56, 7577–7585. [Google Scholar] [CrossRef]
- Jack, M.; Wehner, J.; Edwards, J.; Chapman, G.; Hall, D.N.B.; Jacobson, S.M. HgCdTe APD-based linear-mode photon counting components and LADAR receivers. SPIE 2011, 8033, 80330M. [Google Scholar] [CrossRef]
- Jack, M.; Chapman, G.; Edwards, J.; McKeag, W.; Veeder, T.; Wehner, J.; Roberts, J.; Robinson, J.; Neisz, J.; Andressen, C.; et al. Advances in LADAR components and subsystem at Raytheon. SPIE 2012, 8353, 83532F. [Google Scholar] [CrossRef]
- Sun, X.; Abshire, J.B.; Lauenstein, J.M.; Babu, S.R.; Beck, J.D.; Sullivan, W.W.; Hubbs, J.E. Proton radiation effects on HgCdTe avalanche photodiode detectors. IEEE Trans. Nucl. Sci. 2021, 68, 27–35. [Google Scholar] [CrossRef]
- Sun, X.; Lu, W.; Yang, G.; Babu, S.; Lauenstein, J.-M.; LeRoch, A.; Baker, I. Effects of proton irradiation on a SAPHIRA HgCdTe avalanche photodiode array. SPIE 2022, 12107, 121070D. [Google Scholar] [CrossRef]
- Dobler, J.T.; Harrison, F.W.; Browell, E.V.; Lin, B.; McGregor, D.; Kooi, S.; Choi, Y.; Ismail, S. Atmospheric CO2 column measurements with an airborne intensity-modulated continuous wave 1.57 μm fiber laser lidar. App. Opt. 2013, 52, 2874–2892. [Google Scholar] [CrossRef]
- Abshire, J.B.; Ramanathan, A.K.; Riris, H.; Allan, G.R.; Sun, X.; Hasselbrack, W.E.; Mao, J.; Wu, S.; Chen, J.; Numata, K.; et al. Airborne measurement of CO2 column concentrations made with a pulsed IPDA lidar using a multiple-wavelength-locked laser and HgCdTe APD detector. Atmos. Meas. Tech. 2018, 11, 2001–2025. [Google Scholar] [CrossRef]
- Riris, H.; Numata, K.; Wu, S.; Gonzelaz, B.; Rodriguez, M.; Scott, S.; Kawa, S.; Mao, J. Methane optical density measurements with an integrated path differential absorption lidar from an airborne platform. J. Appl. Rem. Sens. 2017, 11, 034001. [Google Scholar] [CrossRef] [PubMed]
- Refaat, T.F.; Singh, U.N.; Petros, M.; Remus, R. MCT avalanche photodiode detector for two-micron active remote sensing applications. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Valencia, Spain, 22–27 July 2018. Paper TU2.R9.4. [Google Scholar] [CrossRef]
- Cremons, D.R.; Abshire, J.B.; Sun, X.; Allan, G.; Riris, H.; Smith, M.D.; Guzewich, S.; Yu, A.; Hovis, F. Design of a direct-detection wind and aerosol lidar for Mars orbit. CAE Space J. 2020, 12, 149–162. [Google Scholar] [CrossRef]
- Sun, X.; Cremons, D.R.; Mazarico, E.; Smith, D.E.; Storm, M.; Utano, R.; Hwang, J.; Dang, X.; Abshire, J.B.; Beck, J. A Small All-range Lidar for topographic mapping from orbit and guidance during descent and touchdown. SPIE 2024, 13049, 1304905. [Google Scholar] [CrossRef]
Parameters | Measurement Results |
---|---|
Quantum Efficiency | >90%, 0.9 to 4.4 μm |
APD gain | 1 to 900 |
Bias voltage | 0 to 12 V |
Excess noise factor | 1.05 |
Dark current | <0.5 pA/pixel |
Maximum TIA gain | 320 kV/A |
Responsivity | >2 × 109 V/W |
Electrical bandwidth | 8 MHz |
NEP | <0.5 fW/Hz1/2/pixel at 1.55 μm wavelength and 12 V APD bias |
Maximum no damage input optical power | tested to >37 μW/pixel, at 1.55 μm |
Pixel size | 80 × 80 μm |
Pixel pitch | 80 μm |
Fill factor | 75% |
Operating temperature | 77–120 K |
Parameters | Measurement Results |
---|---|
Quantum Efficiency | >90%, 0.9 to 4.4 μm |
APD gain | 1 to 1900, with APD bias from 0 to 12 V |
Excess noise factor | 1.15 |
Outputs | 16 individual outputs for 2 × 8 pixels |
Dark current | <8 fA (50,000 electrons/s) per pixel |
TIA gain | 150 to 250 kV/A |
Buffer amplifier gain | 8 V/V |
Electrical bandwidth | 50 MHz |
Impulse response | 6–9 ns FWHM |
Single photon pulse time jitter | <1 ns |
Responsivity at 1.55 μm | 1.0 to 1.5 × 109 V/W with buffer amplifiers |
Single photon pulse amplitude | >25 mV |
NEP at 1.55 μm | <0.2 fW/Hz1/2/pixel |
Pixel size | 64 × 64 μm |
Pixel pitch | 64 μm |
Fill factor | 100% with microlens array |
IDCA size | 11 × 11 × 5.4 cm |
Cold shield aperture | f/7 or f/3 |
Cryo-cooler power | 28 V, 6 W with heat sink at room temperature |
Operating temperature | 80–110 K |
Electrical power | <2 W, +5 V, +3.6 V, and −2 V. |
Operation temperature | −24 to 60 °C |
Storage temperature | −40 to 71 °C |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, X. Review of Photodetectors for Space Lidars. Sensors 2024, 24, 6620. https://doi.org/10.3390/s24206620
Sun X. Review of Photodetectors for Space Lidars. Sensors. 2024; 24(20):6620. https://doi.org/10.3390/s24206620
Chicago/Turabian StyleSun, Xiaoli. 2024. "Review of Photodetectors for Space Lidars" Sensors 24, no. 20: 6620. https://doi.org/10.3390/s24206620