Mattress-Based Non-Influencing Sleep Apnea Monitoring System
Abstract
:1. Introduction
2. Methods
2.1. System Composition and Signal
2.2. Device and Testing
3. Experiments and Results
3.1. Signal Preprocessing
3.2. Feature Parameter Extraction
3.3. Classification of SAHS
4. Verification
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Malhotra, A.; Ayappa, I.; Ayas, N.; Collop, N.; Kirsch, D.; Mcardle, N.; Mehra, R.; Pack, A.I.; Punjabi, N.; White, D.P.; et al. Metrics of sleep apnea severity: Beyond the apnea-hypopnea index. Sleep 2021, 44, zsab030. [Google Scholar] [CrossRef]
- Gottlieb, D.J.; Punjabi, N.M. Diagnosis and management of obstructive sleep apnea: A review. JAMA-J. Am. Med. Assoc. 2020, 323, 1389–1400. [Google Scholar] [CrossRef] [PubMed]
- Leng, Y.; McEvoy, C.T.; Allen, I.E.; Yaffe, K. Association of sleep-disordered breathing with cognitive function and risk of cognitive impairment a systematic review and meta-analysis. JAMA Neurol. 2017, 74, 237–1245. [Google Scholar] [CrossRef] [PubMed]
- Jordan, A.S.; McSharry, D.G.; Malhotra, A. Adult obstructive sleep apnea. Lancet 2014, 383, 736–747. [Google Scholar] [CrossRef] [Green Version]
- Benjafield, A.V.; Ayas, N.T.; Eastwood, P.R.; Heinzer, R.; Ip, M.S.M.; Morrell, M.J.; Nunez, C.M.; Patel, S.R.; Penzel, T.; Pepin, J.L. Estimation of the global prevalence and burden of obstructive sleep apnoea: A literature-based analysis. Lancet Respir. Med. 2019, 7, 687–698. [Google Scholar] [CrossRef] [Green Version]
- Kasai, T.; Floras, J.S.; Bradley, T.D. Sleep apnea and cardiovascular disease: A bidirectional relationship. Circulation 2012, 126, 1495–1510. [Google Scholar] [CrossRef] [Green Version]
- Pevernagie, D.A.; Gnidovec-Strazisar, B.; Grote, L.; Heinzer, R.; McNicholas, W.T.; Penzel, T.; Randerath, W.; Schiza, S.; Verbraecken, J.; Arnardottir, E.S. On the rise and fall of the apneahypopnea index: A historical review and critical appraisal. J. Sleep Res. 2020, 29, e13066. [Google Scholar] [CrossRef]
- Lim, D.C.; Mazzotti, D.R.; Sutherland, K.; Mindel, J.W.; Kim, J.; Cistulli, P.A.; Magalang, U.J.; Pack, A.I.; de Chazal, P.; Penzel, T. Reinventing polysomnography in the age of precision medicine. Sleep Med. Rev. 2020, 52, 101313. [Google Scholar] [CrossRef]
- Loomis, A.L.; Harvey, E.N.; Hobart, G.A. Cerebral states during sleep, as studied by human brain potentials. J. Exp. Psychol. Gen. 1937, 21, 127–144. [Google Scholar] [CrossRef]
- Barroso-Garcia, V.; Gutierrez-Tobal, G.C.; Kheirandish-Gozal, L.; Alvarez, D.; Vaquerizo-Villar, F.; Nunez, P.; Campo, F.D.; Gozal, D.; Hornero, R. Usefulness of recurrence plots from airflow recordings to aid in paediatric sleep apnoea diagnosis. Comput. Meth. Prog. Biomed. 2020, 183, 105083. [Google Scholar] [CrossRef] [PubMed]
- Tal, A.; Shinar, Z.; Shaki, D.; Codish, S.; Goldbart, A. Validation of contact-free sleep monitoring device with comparison to polysomnography. J. Clin. Sleep Med. 2017, 13, 517–522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ong, A.A.; Gillespie, M.B. Overview of smartphone applications for sleep analysis. World J. Otorhinolaryngol. Head Neck Surg. 2016, 2, 45–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sadek, I.; Mohktari, M. Nonintrusive remote monitoring of sleep in home-based situation. J. Med. Syst. 2018, 42, 64. [Google Scholar] [CrossRef]
- Sadek, I.; Demarasse, A.; Mokhtari, M. Internet of things for sleep tracking: Wearables vs. nonwearables. Health Technol. 2020, 10, 333–340. [Google Scholar] [CrossRef]
- Kolla, B.P.; Mansukhani, S.; Mansukhani, M.P. Consumer sleep tracking devices: A review of mechanisms, validity and utility. Expert Rev. Med. Devic. 2016, 13, 497–506. [Google Scholar] [CrossRef] [PubMed]
- Lazaro, J.; Nam, Y.; Gil, E.; Laguna, P.; Chon, K.H. Smartphone-camera-acquired pulse photoplethysmographic signal for deriving respiratory rate. In Proceedings of the 2014 8th Conference of the European Study Group on Cardiovascular Oscillations (ESGCO), Trento, Italy, 25–28 May 2014; pp. 121–122. [Google Scholar]
- Shin, J.H.; Choi, B.H.; Lim, Y.G.; Jeong, D.U.; Park, K.S. Automatic ballistocardiogram (BCG) beat detection using a template matching approach. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vancouver, BC, Canada, 20–25 August 2008; pp. 1144–1146. [Google Scholar]
- Jin, J.J.; Wang, X.; Wu, Y.N.; Yu, Y.B. Pseudo-period segment of ballistocardiogram based on joint time-frequency analysis. In Proceedings of the 2009 IEEE International Conference on Intelligent Computing and Intelligent Systems, Shanghai, China, 20–22 November 2009; pp. 467–470. [Google Scholar]
- Albukhari, A.; Lima, F.; Mescheder, U. Bed-embedded heart and respiration rates detection by longitudinal ballistocardiography and pattern recognition. Sensors 2019, 19, 1451. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.C.; Si, Z.T.; Xiang, J.W. A compound fault diagnosis method of rolling bearing based on wavelet scattering transform and improved soft threshold denoising algorithm. Measurement 2022, 196, 111276. [Google Scholar] [CrossRef]
- Luna, P.S.; Pallas, R. Automatic concealed heart rate detection from the BCG in seated position. IEEE Lat. Am. Trans. 2015, 13, 583–588. [Google Scholar] [CrossRef]
- Patel, R.; Gireesan, K.; Sengottuvel, S.; Janawadkar, M.; Radhakrishnan, T. Common methodology for cardiac and ocular artifact suppression from recordings by combining ensemble empirical mode decomposition with regression approach. J. Med. Biol. Eng. 2017, 37, 201–208. [Google Scholar] [CrossRef] [Green Version]
- Adami, A.; Boostani, R.; Marzbanrad, F.; Charlton, P.H. A new framework to estimate breathing rate from electrocardiogram, photoplethysmogram, and blood pressure signals. IEEE Access 2021, 9, 45832–45844. [Google Scholar] [CrossRef]
- Popov, D.; Gapochkin, A.; Nekrasov, A. An algorithm of daubechies wavelet transform in the final field when processing speech signals. Electronics 2018, 7, 120. [Google Scholar] [CrossRef] [Green Version]
- Yeh, J.R.; Shieh, J.S.; Huang, N.E. Complementary ensemble empirical mode decomposition: A novel noise enhanced data analysis method. Adv. Adapt. Data Anal. 2010, 2, 135–156. [Google Scholar] [CrossRef]
- Huysmans, D.; Borzée, P.; Testelmans, D.; Buyse, B.; Willemen, T.; Huffel, S.V.; Varon, C. Evaluation of a commercial ballistocardiography sensor for sleep apnea screening and sleep monitoring. Sensors 2019, 19, 2133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evans, S.; Li, L.L. A comparison of goodness of fit tests for the logistic GEE model. Stat. Med. 2005, 8, 1245–1261. [Google Scholar] [CrossRef] [PubMed]
- Karlson, K.B.; Holm, A.; Breen, R. Comparing regression coefficients between same-sample nested models using logit and probit: A new method. Sociol. Methodol. 2012, 1, 286–313. [Google Scholar] [CrossRef]
- Baetschmann, G.; Staub, K.E.; Winkelmann, R. Consistent estimation of the fixed effects ordered logit model. J. R. Stat. Soc. A. Stat. 2015, 3, 685–703. [Google Scholar] [CrossRef] [Green Version]
- Evangelia, C.; Jie, M.; Collins, G.S.; Steyerberg, E.W.; Verbakel, J.Y.; Ben, V.C. A systematic review shows no performance benefit of machine learning over logistic regression for clinical prediction models. J. Clin. Epidemiol. 2019, 110, 12–22. [Google Scholar]
- Hosmer, D.W.; Hosmer, T.; Le Cessie, S. A comparison of goodness-of-fit tests for the logistic regression model. Stat. Med. 1997, 16, 965–980. [Google Scholar] [CrossRef]
- Jushan, B.; Kunpeng, L. Statistical analysis of factor models of high dimension. Ann. Stat. 2012, 40, 436–465. [Google Scholar]
- Liu, X.M.; Fan, Y.M. Maximum likelihood extended gradient-based estimation algorithms for the input nonlinear controlled autoregressive moving average system with variable-gain nonlinearity. Int. J. Robust Nonlinear Control 2021, 9, 4017–4036. [Google Scholar] [CrossRef]
- Jagielski, J.T.; Bibi, N.; Gay, P.C.; Junna, M.R.; Carvalho, D.Z.; Williams, J.A.; Morgenthaler, T.I. Evaluating an under-mattress sleep monitor compared to a peripheral arterial tonometry home sleep apnea test device in the diagnosis of obstructive sleep apnea. Sleep Breath. 2022. [Google Scholar] [CrossRef]
- Zhou, Y.; Shu, D.G.; Xu, H.D.; Qiu, Y.H.; Zhou, P.; Ruan, W.J.; Qin, G.Y.; Jin, J.; Zhu, H.; Ying, K.J.; et al. Validation of novel automatic ultra-wideband radar for sleep apnea detection. J. Thorac. Dis. 2020, 12, 1286–1295. [Google Scholar] [CrossRef]
- Ding, F.H.; Cotton-Clay, A.; Fava, L.; Easwar, V.; Kinsolving, A.; Kahn, P.; Rama, A.; Kushida, C. Polysomnographic validation of an under-mattress monitoring device in estimating sleep architecture and obstructive sleep apnea in adults. Sleep Med. 2022, 96, 20–27. [Google Scholar] [CrossRef]
- Edouard, P.; Campo, D.; Bartet, P.; Yang, R.Y.; Bruyneel, M.; Roisman, G.; Escourrou, P. Validation of the withings sleep analyzer, an under-the-mattress device for the detection of moderate-severe sleep apnea syndrome. J. Clin. Sleep. Med. 2021, 17, 1217–1227. [Google Scholar] [CrossRef] [PubMed]
- Mannino, R.G.; Myers, D.R.; Tyburski, E.A.; Caruso, C.; Boudreaux, J.; Leong, T.; Clifford, G.D.; Lam, W.A. Smartphone app for non-invasive detection of anemia using only patient-sourced photos. Nat. Commun. 2018, 9, 4924. [Google Scholar] [CrossRef] [Green Version]
- Nagatomo, K.; Masuyama, T.; Iizuka, Y.; Makino, J.; Shiotsuka, J.; Sanui, M. Validity of an under-mattress sensor for objective sleep measurement in critically ill patients: A prospective observational study. J. Intensive Care 2020, 8, 16. [Google Scholar] [CrossRef] [PubMed]
- Tuominen, J.; Peltola, K.; Saaresranta, T.; Valli, K. Sleep parameter assessment accuracy of a consumer home sleep monitoring ballistocardiograph beddit sleep tracker: A validation study. J. Clin. Sleep Med. 2019, 15, 483–487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Comparative Item | BCG (Our System) | ECG |
---|---|---|
Signal properties | Mechanical vibration signal | Electrophysiological signal |
Signal accuracy | Medium | High |
Channels of electrodes | One channel | Multi channels or one channel |
Cost | Low | High |
Form of signal acquisition equipment | Mattress | Holter monitoring, wearable devices, etc. |
Scale (2j, j = 1, 2, …) | Main Frequency Band (Hz) | The Signal Component |
---|---|---|
12.5–25 | Noise with a small ballistocardiogram component | |
6.25–12.5 | Ballistocardiogram is the main component | |
3.125–6.25 | Low frequency ballistocardiogram + body motion noise | |
1.5625–3.125 | Some body moving noise | |
0.7813–1.5625 | Partial body movement + partial respiration | |
0–0.7813 | Respiratory signal and DC baseline |
Tester | Actual Apnea | The Model Identified Apnea Times | Leaving Out the Number | Percentage of Accuracy |
---|---|---|---|---|
1 | 5 | 5 | 0 | 100% |
2 | 4 | 4 | 0 | 100% |
3 | 8 | 7 | 1 | 87.5% |
4 | 3 | 2 | 1 | 66.7% |
mean | 5 | 4.5 | 0.5 | 90% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, P.; Gong, S.; Jiang, N.; Dai, Y.; Yang, J.; Jiang, L.; Tong, J. Mattress-Based Non-Influencing Sleep Apnea Monitoring System. Sensors 2023, 23, 3675. https://doi.org/10.3390/s23073675
Qi P, Gong S, Jiang N, Dai Y, Yang J, Jiang L, Tong J. Mattress-Based Non-Influencing Sleep Apnea Monitoring System. Sensors. 2023; 23(7):3675. https://doi.org/10.3390/s23073675
Chicago/Turabian StyleQi, Pengjia, Shuaikui Gong, Nan Jiang, Yanyun Dai, Jiafeng Yang, Lurong Jiang, and Jijun Tong. 2023. "Mattress-Based Non-Influencing Sleep Apnea Monitoring System" Sensors 23, no. 7: 3675. https://doi.org/10.3390/s23073675
APA StyleQi, P., Gong, S., Jiang, N., Dai, Y., Yang, J., Jiang, L., & Tong, J. (2023). Mattress-Based Non-Influencing Sleep Apnea Monitoring System. Sensors, 23(7), 3675. https://doi.org/10.3390/s23073675