Advances in Wearable Photoplethysmography Applications in Health Monitoring
1. Introduction
2. Contributions
3. Conclusions
Funding
Conflicts of Interest
References
- Ates, H.C.; Nguyen, P.Q.; Gonzalez-Macia, L.; Morales-Narváez, E.; Güder, F.; Collins, J.J.; Dincer, C. End-to-end design of wearable sensors. Nat. Rev. Mater. 2022, 7, 887–907. [Google Scholar] [CrossRef] [PubMed]
- Ates, H.C.; Yetisen, A.K.; Güder, F.; Dincer, C. Wearable devices for the detection of COVID-19. Nat. Electron. 2021, 4, 13–14. [Google Scholar] [CrossRef]
- Quer, G.; Radin, J.M.; Gadaleta, M.; Baca-Motes, K.; Ariniello, L.; Ramos, E.; Kheterpal, V.; Topol, E.J.; Steinhubl, S.R. Wearable sensor data and self-reported symptoms for COVID-19 detection. Nat. Med. 2021, 27, 73–77. [Google Scholar] [CrossRef] [PubMed]
- Knight, S.; Lipoth, J.; Namvari, M.; Gu, C.; Hedayati Ch, M.; Syed-Abdul, S.; Spiteri, R.J. The Accuracy of Wearable Photoplethysmography Sensors for Telehealth Monitoring: A Scoping Review. Telemed. e-Health 2022, 29, 813–828. [Google Scholar] [CrossRef] [PubMed]
- Toda, S.; Matsumura, K. Investigation of Optimal Light Source Wavelength for Cuffless Blood Pressure Estimation Using a Single Photoplethysmography Sensor. Sensors 2023, 23, 3689. [Google Scholar] [CrossRef] [PubMed]
- Antali, F.; Kulin, D.; Lucz, K.I.; Szabó, B.; Szucs, L.; Kulin, S.; Miklós, Z. Multimodal assessment of the pulse rate variability analysis module of a photoplethysmography-based telemedicine system. Sensors 2021, 21, 5544. [Google Scholar] [CrossRef]
- Tarvainen, M.P.; Niskanen, J.P.; Lipponen, J.A.; Ranta-Aho, P.O.; Karjalainen, P.A. Kubios HRV–heart rate variability analysis software. Comput. Methods Programs Biomed. 2014, 113, 210–220. [Google Scholar] [CrossRef]
- Bizzego, A.; Esposito, G. Performance Assessment of Heartbeat Detection Algorithms on Photoplethysmograph and Functional NearInfrared Spectroscopy Signals. Sensors 2023, 23, 3668. [Google Scholar] [CrossRef]
- Charlton, P.H.; Kotzen, K.; Mejía-Mejía, E.; Aston, P.J.; Budidha, K.; Mant, J.; Pettit, C.; Behar, J.A.; Kyriacou, P.A. Detecting beats in the photoplethysmogram: Benchmarking open-source algorithms. Physiol. Meas. 2022, 43, 085007. [Google Scholar] [CrossRef]
- Cajal, D.; Hernando, D.; Lázaro, J.; Laguna, P.; Gil, E.; Bailón, R. Effects of missing data on heart rate variability metrics. Sensors 2022, 22, 5774. [Google Scholar] [CrossRef] [PubMed]
- Tsai, P.Y.; Huang, C.H.; Guo, J.W.; Li, Y.C.; Wu, A.Y.A.; Lin, H.J.; Wang, T.D. Coherence between decomposed components of wrist and finger PPG signals by imputing missing features and resolving ambiguous features. Sensors 2021, 21, 4315. [Google Scholar] [CrossRef]
- Liu, S.H.; Wang, J.J.; Chen, W.; Pan, K.L.; Su, C.H. An examination system to detect deep vein thrombosis of a lower limb using light reflection rheography. Sensors 2021, 21, 2446. [Google Scholar] [CrossRef] [PubMed]
- Glasstetter, M.; Böttcher, S.; Zabler, N.; Epitashvili, N.; Dümpelmann, M.; Richardson, M.P.; Schulze-Bonhage, A. Identification of ictal tachycardia in focal motor-and non-motor seizures by means of a wearable PPG sensor. Sensors 2021, 21, 6017. [Google Scholar] [CrossRef]
- Khan, M.U.; Aziz, S.; Hirachan, N.; Joseph, C.; Li, J.; Fernandez-Rojas, R. Experimental Exploration of Multilevel Human Pain Assessment Using Blood Volume Pulse (BVP) Signals. Sensors 2023, 23, 3980. [Google Scholar] [CrossRef]
- Lazazzera, R.; Laguna, P.; Gil, E.; Carrault, G. Proposal for a home sleep monitoring platform employing a smart glove. Sensors 2021, 21, 7976. [Google Scholar] [CrossRef]
- Castiglioni, P.; Meriggi, P.; Di Rienzo, M.; Lombardi, C.; Parati, G.; Faini, A. Heart rate variability from wearable photoplethysmography systems: Implications in sleep studies at high altitude. Sensors 2022, 22, 2891. [Google Scholar] [CrossRef]
- Kałamajska, E.; Misiurewicz, J.; Weremczuk, J. Wearable Pulse Oximeter for Swimming Pool Safety. Sensors 2022, 22, 3823. [Google Scholar] [CrossRef] [PubMed]
- de Pedro-Carracedo, J.; Fuentes-Jimenez, D.; Ugena, A.M.; Gonzalez-Marcos, A.P. Transcending Conventional Biometry Frontiers: Diffusive Dynamics PPG Biometry. Sensors 2021, 21, 5661. [Google Scholar] [CrossRef]
- van Es, V.A.; Lopata, R.G.; Scilingo, E.P.; Nardelli, M. Contactless cardiovascular assessment by imaging photoplethysmography: A comparison with wearable monitoring. Sensors 2023, 23, 1505. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nardelli, M.; Bailón, R. Advances in Wearable Photoplethysmography Applications in Health Monitoring. Sensors 2023, 23, 7064. https://doi.org/10.3390/s23167064
Nardelli M, Bailón R. Advances in Wearable Photoplethysmography Applications in Health Monitoring. Sensors. 2023; 23(16):7064. https://doi.org/10.3390/s23167064
Chicago/Turabian StyleNardelli, Mimma, and Raquel Bailón. 2023. "Advances in Wearable Photoplethysmography Applications in Health Monitoring" Sensors 23, no. 16: 7064. https://doi.org/10.3390/s23167064
APA StyleNardelli, M., & Bailón, R. (2023). Advances in Wearable Photoplethysmography Applications in Health Monitoring. Sensors, 23(16), 7064. https://doi.org/10.3390/s23167064