Microstrip Resonant Sensor for Differentiation of Components in Vapor Mixtures
Abstract
:1. Introduction
2. Material and Methods
2.1. Material and Sample Preparation
2.2. Electrical Resistance Measurement
2.3. Measurement of the Reflection Coefficient
3. Results
3.1. Effect of Vapors on the Composite Electrical Resistance
3.2. Effect of Vapors on the Microstrip Reflection Coefficient
3.3. Differentiation of Components in a Binary Vapor Mixture
3.4. Differentiation of Components in a Ternary Vapor Mixture
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Llobet, E. Gas sensors using carbon nanomaterials. A review. Sens. Actuator B Chem. 2013, 179, 32–45. [Google Scholar] [CrossRef]
- Zaporotskova, I.V.; Boroznina, N.P.; Parkhomenko, Z.N.; Kozhitov, L.V. Carbon nanotubes: Sensor properties. A review. Mod. Electron. Mater. 2016, 2, 95–105. [Google Scholar] [CrossRef]
- Septiani, N.L.W.; Yuliarto, B. Review-The development of gas sensor based on carbon nanotubes. J. Electr. Soc. 2016, 163, B97–B106. [Google Scholar] [CrossRef]
- Camilli, L.; Passacantando, M. Advances on sensors based on carbon nanotubes. Chemosensors 2018, 6, 62. [Google Scholar] [CrossRef] [Green Version]
- Schroeder, V.; Savagatrup, S.; He, M.; Lin, S.; Swager, T.M. Carbon nanotube chemical sensors. Chem. Rev. 2019, 119, 599–663. [Google Scholar] [CrossRef]
- Agnihotri, S.; Mota, J.P.; Rostam-Abadi, M.; Rood, M.J. Theoretical and experimental investigation of morphology and temperature effects on adsorption of organic vapors in single-walled carbon nanotubes. J. Phys. Chem. B 2006, 110, 7640–7647. [Google Scholar] [CrossRef]
- Salehi-Khojin, A.; Khalili-Araghi, F.; Kuroda, M.A.; Lin, K.Y.; Leburton, J.P.; Masel, R.I. On the sensing mechanism in carbon nanotube chemiresistors. ACS Nano 2011, 5, 153–158. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, W. Effect of annealing and HNO3-treatment on the electrical properties of transparent conducting carbon nanotube films. Microelectron. Eng. 2010, 87, 576–579. [Google Scholar] [CrossRef]
- Slobodian, P.; Riha, P.; Lengalova, A.; Svoboda, P.; Saha, P. Multi-wall carbon nanotube networks as potential resistive gas sensors for organic vapor detection. Carbon 2011, 49, 2499–2507. [Google Scholar] [CrossRef]
- Liu, C.K.; Huang, M.W.; Wu, J.M.; Shih, H.C. Effect of plasma modification of single wall carbon nanotubes on ethanol vapor sensing. Diam. Relat. Mater. 2010, 19, 981–987. [Google Scholar] [CrossRef]
- Liu, C.K.; Wu, J.M.; Shih, H.C. Application of plasma modified multi-wall carbon nanotubes to ethanol vapor detection. Sens. Actuator B Chem. 2010, 150, 641–648. [Google Scholar] [CrossRef]
- Hafaiedh, I.; Euch, W.E.; Clement, P.; Llobet, E.; Abdelghani, A. Multi-walled carbon nanotubes for volatile organic compound detection. Sens. Actuator B Chem. 2013, 182, 344–350. [Google Scholar] [CrossRef]
- Ionescu, R.; Espinosa, E.H.; Sotter, E.; Llobet, E.; Vilanova, X.; Correig, X.; Felten, A.; Bittencourt, C.; van Lier, G.; Charlier, J.C.; et al. Oxygen functionalisation of MWNT and their use as gas sensitive thick-film layers. Sens. Actuator B Chem. 2006, 113, 36–46. [Google Scholar] [CrossRef]
- Xie, H.; Sheng, C.; Chen, X.; Wang, X.; Li, Z.; Zhou, J. Multi-wall carbon nanotube gas sensors modified with amino-group to detect low concentration of formaldehyde. Sens. Actuator B Chem. 2012, 168, 34–38. [Google Scholar] [CrossRef]
- Mohammadzadeh, F.; Jahanshahi, M.; Rashidi, A.M. Preparation of nanosensors based on organic functionalized MWCNT for H2S detection. Appl. Surf. Sci. 2012, 259, 159–165. [Google Scholar] [CrossRef]
- Benlikaya, R.; Slobodian, P.; Riha, P.; Olejnik, R. The enhanced alcohol sensing response of multiwalled carbon nanotube networks induced by alkyl diamine treatment. Sens. Actuator B Chem. 2014, 201, 122–130. [Google Scholar] [CrossRef]
- Philip, B.; Abraham, J.K.; Chandrasekhar, A.; Varadan, V.K. Carbon nanotube/PMMA composite thin films for gas-sensing applications. Smart Mater. Struct. 2003, 12, 935–939. [Google Scholar] [CrossRef]
- Fan, Q.; Qin, Z.; Villmow, T.; Pionteck, J.; Pötschke, P.; Wu, Y.; Voit, B.; Zhu, M. Vapor sensing properties of thermoplastic polyurethane multifilament covered with carbon nanotube networks. Sens. Actuator B Chem. 2011, 156, 63–70. [Google Scholar] [CrossRef]
- Fu, X.; Al-Jumaily, A.M.; Ramos, M.; Meshkinzar, A.; Huang, X. Stretchable and sensitive sensor based on carbon nanotubes/polymer composite with serpentine shapes via molding technique. J. Biomat. Sci. Polym. Ed. 2019, 30, 1227–1241. [Google Scholar] [CrossRef]
- Nela, L.; Tang, J.; Cao, Q.; Tulevski, G.; Han, S.J. Large-area high-performance flexible pressure sensor with carbon nanotube active matrix for electronic skin. Nano Lett. 2018, 18, 2054–2059. [Google Scholar] [CrossRef]
- Yang, N.; Chen, X.; Ren, T.; Zhang, P.; Yang, D. Carbon nanotube based biosensors. Sens. Act. B Chem. 2015, 207, 690–715. [Google Scholar] [CrossRef]
- Barsan, M.M.; Ghica, M.E.; Brett, C.M.A. Electrochemical sensors and biosensors based on redox polymer/carbon nanotube modified electrodes. Anal. Chim. Acta 2015, 881, 1–23. [Google Scholar] [CrossRef]
- Sireesha, M.; Babu, V.J.; Kiran, A.S.K.; Ramakrishna, S. A review on carbon nanotubes in biosensor devices and their applications in medicine. Nanocomposites 2018, 4, 36–57. [Google Scholar] [CrossRef]
- Choi, Y.E.; Kwak, J.W.; Park, J.W. Nanotechnology for early cancer detection. Sensors 2010, 10, 428–455. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Heo, Y.J.; Park, M.; Park, S.J. Recent advances in organic thermoelectric materials: Principle mechanisms and emerging carbon-based green energy materials. Polymers 2019, 11, 167. [Google Scholar] [CrossRef] [Green Version]
- Giorcelli, M.; Bartoli, M. Carbon nanostructures for actuators: An overview of recent developments. Actuators 2019, 8, 46. [Google Scholar] [CrossRef] [Green Version]
- Slobodian, P.; Riha, P.; Olejnik, R.; Matyas, J. Accelerated shape forming and recovering, induction, and release of adhesiveness of conductive carbon nanotube/epoxy composites by Joule heating. Polymers 2020, 12, 1030. [Google Scholar] [CrossRef]
- Kim, S.; Keisham, B.; Berry, V. Cellular nano-transistor: An electronic-interface between nanoscale semiconductors and biological cells. Mater. Today Nano 2020, 9, 100063. [Google Scholar] [CrossRef]
- Toader, M.; Schubel, R.; Hartmann, M.; Scharfenberg, L.; Jordan, R.; Mertig, M.; Schulz, S.E.; Gessner, T.; Hermann, S. Enhancement of carbon nanotube FET performance via direct synthesis of poly (sodium 4-styrenesulfonate) in the transistor channel. Chem. Phys. Lett. 2016, 661, 1–5. [Google Scholar] [CrossRef]
- Du, Y.; Cai, K.F.; Chen, S.; Wang, H.; Shen, S.Z.; Donelson, R.; Lin, T. Thermoelectric fabrics: Toward power generating clothing. Sci. Rep. 2015, 5, 6144. [Google Scholar] [CrossRef]
- Yang, Y.; Lin, Z.H.; Hou, T.; Zhang, F.; Wang, Z.L. Nanowire-composite based flexible thermoelectrics nanogenerators and self-powered temperature sensors. Nano Res. 2012, 5, 888–895. [Google Scholar] [CrossRef]
- Slobodian, P.; Riha, P.; Olejnik, R.; Sedlacik, M. Ethylene-octene-copolymer with embedded carbon and organic conductive nanostructures for thermoelectric application. Polymers 2020, 12, 1316. [Google Scholar] [CrossRef] [PubMed]
- Chopra, S.; Phama, A.; Gaillard, J.; Parker, A.; Rao, A.M. Carbon-nanotube-based resonant-circuit sensor for ammonia. Appl. Phys. Lett. 2002, 80, 24. [Google Scholar] [CrossRef]
- Ong, K.G.; Zeng, K.; Grimes, C.A. A wireless, passive carbon nanotube-based gas sensor. IEEE Sens. J. 2002, 2, 82–88. [Google Scholar]
- Yang, L.; Zhang, R.; Staiculescu, D.; Wong, C.P.; Tentzeris, M. A Novel conformal RFID-enabled module utilizing inkjet-printed antennas and carbon nanotubes for gas-detection applications. IEEE Antennas Wirel. Propag. Lett. 2009, 8, 653–656. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.; Shaker, G.; Naishadham, K.; Song, X.; McKinley, M.; Wagner, B.; Tentzeris, M. Carbon-nanotube loaded antenna-based ammonia gas sensor. IEEE Trans. Microw. Theory Technol. 2011, 59, 2665–2673. [Google Scholar] [CrossRef] [Green Version]
- Occhiuzzi, C.; Rida, A.; Marrocco, G. RFID passive gas sensor integrating carbon nanotubes. IEEE Trans. Microw. Theory Technol. 2011, 59, 2674–2684. [Google Scholar] [CrossRef] [Green Version]
- Verma, R.; Said, K.; Salim, J.; Kimathi, E.; Rizkalla, M.; Agarwall, M.; Varahramyan, K. Carbon nanotube-based microstrip antenna gas sensor. In Proceedings of the 2013 IEEE 56th International Midwest Symposium on Circuits and Systems (MWSCAS), Columbus, OH, USA, 4–7 August 2013; pp. 724–727. [Google Scholar]
- Slobodian, P.; Riha, P.; Lengalova, A.; Saha, P. Compressive stress-electrical conductivity characteristics of multiwall carbon nanotube networks. J. Mater. Sci. 2011, 46, 3186–3190. [Google Scholar] [CrossRef] [Green Version]
- Tarleton, E.S.; Robinson, J.P.; Smith, S.J.; Na, J.J.W. New experimental observations of solvent induced swelling in nanofiltration membranes. J. Membr. Sci. 2005, 261, 129–135. [Google Scholar] [CrossRef] [Green Version]
- Maier, R.; Suhm, J.; Kressler, J.; Mülhaupt, R. Solubility parameters of ethene/1-octene random copolymers. Polym. Bull. 1998, 40, 337–344. [Google Scholar] [CrossRef]
- Slobodian, P.; Riha, P.; Olejnik, R.; Benlikaya, R. Analysis of sensing properties of thermoelectric vapor sensor made of carbon nanotubes/ethylene-octene copolymer composites. Carbon 2016, 110, 257–266. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, J.; Du, T.; Zhu, Z.; Zhang, J.; Liu, Q. A gas sensor array for the simultaneous detection of multiple VOCs. Sci. Rep. 2017, 7, 1960. [Google Scholar] [CrossRef]
- Johnson, K.J.; Rose-Pehrsson, S.L. Sensor array design for complex sensing tasks. An. Rev. Anal. Chem. 2015, 8, 287–310. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Slobodian, P.; Riha, P.; Olejnik, R.; Matyas, J.; Slobodian, R. Microstrip Resonant Sensor for Differentiation of Components in Vapor Mixtures. Sensors 2021, 21, 298. https://doi.org/10.3390/s21010298
Slobodian P, Riha P, Olejnik R, Matyas J, Slobodian R. Microstrip Resonant Sensor for Differentiation of Components in Vapor Mixtures. Sensors. 2021; 21(1):298. https://doi.org/10.3390/s21010298
Chicago/Turabian StyleSlobodian, Petr, Pavel Riha, Robert Olejnik, Jiri Matyas, and Rostislav Slobodian. 2021. "Microstrip Resonant Sensor for Differentiation of Components in Vapor Mixtures" Sensors 21, no. 1: 298. https://doi.org/10.3390/s21010298