Textile Retrieval Based on Image Content from CDC and Webcam Cameras in Indoor Environments
Abstract
:1. Introduction
2. Related Research
3. Method
3.1. Overview
3.2. Region Extraction: MSER
3.3. Region Description
3.3.1. Local Binary Pattern (LBP)
3.3.2. Adaptive Local Binary Pattern (ALBP)
3.3.3. Histogram of Oriented Gradients (HOG)
3.3.4. Complete Local Oriented Statistical Information Booster (CLOSIB) Variants
3.3.5. Faster R-CNN
3.4. Distance Measures
4. Experiments
4.1. TextilTube Dataset
4.2. Performance Evaluation Metrics
4.2.1. Precision at n
4.2.2. Success at n
4.3. Experimental Setup
4.4. Distance Measure Evaluation
5. Results
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
LBP | Local Binary Pattern |
ALBP | Adaptive Local Binary Pattern |
HOG | Histogram of Oriented Gradients |
CLOSIB | Complete Local Oriented Statistical Information Booster |
HCLOSIB | Half Complete Local Oriented Statistical Information Booster |
MSER | Maximally Stable Extremal Regions |
CBIR | Content Based Image Retrieval |
ASASEC | Advisory System Against Sexual Exploitation of Children |
HSV | Hue, Saturation, Value |
CDC | Compact Digital Cameras |
p@n | precision at n |
s@n | success at n |
CNN | Convolutional Neural Networks |
R-CNN | Region based Convolutional Neural Network |
RPN | Region Proposal Network |
FC | Fully Connected |
RGB | Red, Green, Blue |
SIFT | Scale-Invariant Feature Transform |
SURF | Speeded Up Robust Features |
VGG | Visual Geometry Group |
MS-COCO | MicroSoft Common Objects in COntext |
XML | eXtensible Markup Language |
References
- Czúni, L.; Rashad, M. Lightweight Active Object Retrieval with Weak Classifiers. Sensors 2018, 18, 801. [Google Scholar] [CrossRef] [PubMed]
- Domínguez, S. Saliency-based similarity measure. Rev. Iberoam. Autom. Inform. Ind. 2012, 9, 359–370. [Google Scholar] [CrossRef] [Green Version]
- Faria, A.V.; Oishi, K.; Yoshida, S.; Hillis, A.; Miller, M.I.; Mori, S. Content-based image retrieval for brain MRI: An image-searching engine and population-based analysis to utilize past clinical data for future diagnosis. NeuroImage Clin. 2015, 7, 367–376. [Google Scholar] [CrossRef] [PubMed]
- Srinivas, M.; Naidu, R.R.; Sastry, C.; Mohan, C.K. Content based medical image retrieval using dictionary learning. Neurocomputing 2015, 168, 880–895. [Google Scholar] [CrossRef]
- Bugatti, P.H.; Kaster, D.S.; Ponciano-Silva, M.; Traina, C., Jr.; Azevedo-Marques, P.M.; Traina, A.J. PRoSPer: Perceptual similarity queries in medical CBIR systems through user profiles. Comput. Biol. Med. 2014, 45, 8–19. [Google Scholar] [CrossRef] [PubMed]
- Jung, J.; Yoon, I.; Lee, S.; Paik, J. Normalized Metadata Generation for Human Retrieval Using Multiple Video Surveillance Cameras. Sensors 2016, 16, 963. [Google Scholar] [CrossRef] [PubMed]
- Feng, L.; Bhanu, B.; Heraty, J. A software system for automated identification and retrieval of moth images based on wing attributes. Pattern Recognit. 2016, 51, 225–241. [Google Scholar] [CrossRef]
- Mallik, J.; Samal, A.; Gardner, S.L. A content based image retrieval system for a biological specimen collection. Comput. Vis. Image Underst. 2010, 114, 745–757. [Google Scholar] [CrossRef]
- Liu, B.; Yue, Y.M.; Li, R.; Shen, W.J.; Wang, K.L. Plant Leaf Chlorophyll Content Retrieval Based on a Field Imaging Spectroscopy System. Sensors 2014, 14, 19910–19925. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, K.; Odetayo, M.O.; James, A. Content-based image retrieval approach for biometric security using colour, texture and shape features controlled by fuzzy heuristics. J. Comput. Syst. Sci. 2012, 78, 1258–1277. [Google Scholar] [CrossRef]
- Chang, L.; Duarte, M.M.; Sucar, L.; Morales, E.F. A Bayesian approach for object classification based on clusters of SIFT local features. Expert Syst. Appl. 2012, 39, 1679–1686. [Google Scholar] [CrossRef]
- Fidalgo, E.; Alegre, E.; González-Castro, V.; Fernández-Robles, L. Compass radius estimation for improved image classification using Edge-SIFT. Neurocomputing 2016, 197, 119–135. [Google Scholar] [CrossRef]
- Chen, L.C.; Hsieh, J.W.; Yan, Y.; Chen, D.Y. Vehicle make and model recognition using sparse representation and symmetrical SURFs. Pattern Recognit. 2015, 48, 1979–1998. [Google Scholar] [CrossRef]
- Li, H.; Liu, Z.; Huang, Y.; Shi, Y. Quaternion generic Fourier descriptor for color object recognition. Pattern Recognit. 2015, 48, 3895–3903. [Google Scholar] [CrossRef]
- Zhu, J.; Yu, J.; Wang, C.; Li, F.Z. Object recognition via contextual color attention. J. Vis. Commun. Image Represent. 2015, 27, 44–56. [Google Scholar] [CrossRef]
- Shih, H.C.; Yu, K.C. SPiraL Aggregation Map (SPLAM): A new descriptor for robust template matching with fast algorithm. Pattern Recognit. 2015, 48, 1707–1723. [Google Scholar] [CrossRef]
- Tan, M.; Hu, Z.; Wang, B.; Zhao, J.; Wang, Y. Robust object recognition via weakly supervised metric and template learning. Neurocomputing 2016, 181, 96–107. [Google Scholar] [CrossRef]
- Salvador, A.; Giró i Nieto, X.; Marqués, F.; Satoh, S. Faster R-CNN Features for Instance Search. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Las Vegas, NV, USA, 26 June–1 July 2016; pp. 394–401. [Google Scholar]
- Han, J.; Zhang, D.; Cheng, G.; Liu, N.; Xu, D. Advanced Deep-Learning Techniques for Salient and Category-Specific Object Detection: A Survey. IEEE Signal Process. Mag. 2018, 35, 84–100. [Google Scholar] [CrossRef]
- Saikia, S.; Fidalgo, E.; Alegre, E.; Fernández-Robles, L. Query Based Object Retrieval Using Neural Codes. In Advances in Intelligent Systems and Computing; Springer: Berlin/Heidelberg, Germany, 2018; Volume 649, pp. 513–523. [Google Scholar]
- D’Amato, J.P.; Mercado, M.; Heiling, A.; Cifuentes, V. A proximal optimization method to the problem of nesting irregular pieces using parallel architectures. Rev. Iberoam. Autom. Inform. Ind. 2016, 13, 220–227. [Google Scholar] [CrossRef]
- Wong, C. Applications of Computer Vision in Fashion and Textiles, 1st ed.; The Textile Institute Book Series; Woodhead Publishing: Cambreidge, UK; Elsevier Science: New York, NY, USA, 2017. [Google Scholar]
- Wen, J.; Wong, W. Chapter 2—Fundamentals of common computer vision techniques for fashion textile modeling, recognition, and retrieval. In Applications of Computer Vision in Fashion and Textiles; Wong, W., Ed.; The Textile Institute Book Series; Woodhead Publishing: Cambreidge, UK, 2018; pp. 17–44. [Google Scholar]
- Gangwar, A.; Fidalgo, E.; Alegre, E.; González-Castro, V. Pornography and Child Sexual Abuse Detection in Image and Video: A Comparative Evaluation. In Proceedings of the 8th International Conference on Imaging for Crime Imaging for Crime Detection and Prevention, Madrid, Spain, 13–15 December 2017. [Google Scholar]
- Zhu, Z.; Brilakis, I. Parameter optimization for automated concrete detection in image data. Autom. Constr. 2010, 19, 944–953. [Google Scholar] [CrossRef]
- Son, H.; Kim, C.; Hwang, N.; Kim, C.; Kang, Y. Classification of major construction materials in construction environments using ensemble classifiers. Adv. Eng. Inform. 2014, 28, 1–10. [Google Scholar] [CrossRef]
- Xie, X.; Yang, L.; Zheng, W.S. Learning object-specific DAGs for multi-label material recognition. Comput. Vis. Image Underst. 2016, 143, 183–190. [Google Scholar] [CrossRef]
- Yang, L.; Xie, X. Exploiting object semantic cues for Multi-label Material Recognition. Neurocomputing 2016, 173, 1646–1654. [Google Scholar] [CrossRef]
- Xue, J.; Zhang, H.; Dana, K.; Nishino, K. Differential Angular Imaging for Material Recognition. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 6940–6949. [Google Scholar]
- González, E.; Bianconi, F.; Álvarez, M.X.; Saetta, S.A. Automatic Characterization of the Visual Appearance of Industrial Materials through Colour and Texture Analysis: An Overview of Methods and Applications. Adv. Opt. Technol. 2013, 2013, 1–11. [Google Scholar] [CrossRef]
- Bashar, M.; Ohnishi, N.; Matsumoto, T.; Takeuchi, Y.; Kudo, H.; Agusa, K. Image retrieval by pattern categorization using wavelet domain perceptual features with LVQ neural network. Pattern Recognit. Lett. 2005, 26, 2315–2335. [Google Scholar] [CrossRef]
- Carbunaru, A.E.; Coltuc, D.; Jourlin, M.; Frangu, L. A texture descriptor for textile image retrieval. In Proceedings of the 2009 International Symposium on Signals, Circuits and Systems, Iasi, Romania, 9–10 July 2009; pp. 1–4. [Google Scholar]
- Chun, J.C.; Kim, W.G. Textile Image Retrieval Using Composite Feature Vectors of Color and Wavelet Transformed Textural Property. Appl. Mech. Mater. 2013, 333, 822–827. [Google Scholar] [CrossRef]
- Huang, Y.F.; Lin, S.M. Searching Images in a Textile Image Database; Springer International Publishing: Cham, Switzerland, 2014; pp. 267–274. [Google Scholar]
- Yamaguchi, K.; Kiapour, M.H.; Ortiz, L.E.; Berg, T.L. Retrieving Similar Styles to Parse Clothing. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 37, 1028–1040. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Lin, L.; Yang, W.; Luo, P.; Huang, J.; Yan, S. Clothes Co-Parsing Via Joint Image Segmentation and Labeling with Application to Clothing Retrieval. IEEE Trans. Multimed. 2016, 18, 1175–1186. [Google Scholar] [CrossRef]
- Sun, G.L.; Wu, X.; Peng, Q. Part-based clothing image annotation by visual neighbor retrieval. Neurocomputing 2016, 213, 115–124. [Google Scholar] [CrossRef]
- Chen, Q.; Huang, J.; Feris, R.; Brown, L.M.; Dong, J.; Yan, S. Deep domain adaptation for describing people based on fine-grained clothing attributes. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 5315–5324. [Google Scholar]
- Huang, J.; Feris, R.; Chen, Q.; Yan, S. Cross-Domain Image Retrieval with a Dual Attribute-Aware Ranking Network. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015; pp. 1062–1070. [Google Scholar]
- Kiapour, M.H.; Han, X.; Lazebnik, S.; Berg, A.C.; Berg, T.L. Where to Buy It: Matching Street Clothing Photos in Online Shops. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015; pp. 3343–3351. [Google Scholar]
- Zheng, Y.; Sarem, M. A fast region segmentation algorithm on compressed gray images using Non-symmetry and Anti-packing Model and Extended Shading representation. J. Vis. Commun. Image Represent. 2016, 34, 153–166. [Google Scholar] [CrossRef]
- Yang, B.; Yu, H.; Hu, R. Unsupervised regions based segmentation using object discovery. J. Vis. Commun. Image Represent. 2015, 31, 125–137. [Google Scholar] [CrossRef]
- Matas, J.; Chum, O.; Urban, M.; Pajdla, T. Robust wide-baseline stereo from maximally stable extremal regions. Image Vis. Comput. 2004, 22, 761–767. [Google Scholar] [CrossRef]
- Dalal, N.; Triggs, B. Histograms of oriented gradients for human detection. In Proceedings of the 2005 IEEE Computer Society Conference onComputer Vision and Pattern Recognition (CVPR 2005), San Diego, CA, USA, 20–25 June 2005; Volume 1, pp. 886–893. [Google Scholar]
- Li, B.; Huo, G. Face recognition using locality sensitive histograms of oriented gradients. Opt. Int. J. Light Electron Opt. 2016, 127, 3489–3494. [Google Scholar] [CrossRef]
- Ojala, T.; Pietikainen, M.; Harwood, D. Performance evaluation of texture measures with classification based on Kullback discrimination of distributions. In Proceedings of the 12th International Conference on Pattern Recognition, Jerusalem, Israel, 9–13 October 1994; Volume 1, pp. 582–585. [Google Scholar]
- Guo, Z.; Zhang, L.; Zhang, D. Rotation invariant texture classification using LBP variance (LBPV) with global matching. Pattern Recognit. 2010, 43, 706–719. [Google Scholar] [CrossRef]
- Guo, Z.; Zhang, L.; Zhang, D. A completed modeling of local binary pattern operator for texture classification. IEEE Trans. Image Process. 2010, 19, 1657–1663. [Google Scholar] [PubMed]
- Guo, Z.; Zhang, L.; Zhang, D.; Zhang, S. Rotation invariant texture classification using adaptive LBP with directional statistical features. In Proceedings of the 2010 17th IEEE International Conference on Image Processing (ICIP), Paris, France, 27–30 October 2010; pp. 285–288. [Google Scholar]
- García-Olalla, O.; Alegre, E.; Fernández-Robles, L.; García-Ordás, M.T. Vitality assessment of boar sperm using an adaptive LBP based on oriented deviation. In Proceedings of the Computer Vision—ACCV 2012 Workshops, Daejeon, Korea, 5–9 November 2012; Park, J.I., Kim, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 61–72. [Google Scholar]
- Garcia-Olalla, O.; Alegre, E.; Fernandez-Robles, L.; Garcia-Ordas, M.T.; Garcia-Ordas, D. Adaptive local binary pattern with oriented standard deviation (ALBPS) for texture classification. EURASIP J. Image Video Process. 2013, 2013, 31. [Google Scholar] [CrossRef]
- García-Olalla, O.; Alegre, E.; García-Ordás, M.T.; Fernández-Robles, L. Evaluation of LBP Variants using several Metrics and kNN Classifiers. In Similarity Search and Applications; Brisaboa, N., Pedreira, O., Zezula, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 151–162. [Google Scholar]
- Garcia-Olalla, O.; Alegre, E.; Fernandez-Robles, L.; Gonzalez-Castro, V. Local Oriented Statistics Information Booster (LOSIB) for Texture Classification. In Proceedings of the 2014 22nd International Conference on Pattern Recognition (ICPR), Stockholm, Sweden, 24–28 August 2014; pp. 1114–1119. [Google Scholar]
- Fernández, A.; Álvarez, M.X.; Bianconi, F. Texture Description Through Histograms of Equivalent Patterns. J. Math. Imaging Vis. 2013, 45, 76–102. [Google Scholar] [CrossRef]
- Liu, L.; Zhao, L.; Long, Y.; Kuang, G.; Fieguth, P. Extended local binary patterns for texture classification. Image Vis. Comput. 2012, 30, 86–99. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. In Advances in Neural Information Processing Systems 25; Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2012; pp. 1097–1105. [Google Scholar]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 1–9. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv, 2014; arXiv:1409.1556. [Google Scholar]
- Vallet, A.; Sakamoto, H. Convolutional Recurrent Neural Networks for Better Image Understanding. In Proceedings of the 2016 International Conference on Digital Image Computing: Techniques and Applications (DICTA), Gold Coast, Australia, 30 November–2 December 2016; pp. 1–7. [Google Scholar]
- Donahue, J.; Jia, Y.; Vinyals, O.; Hoffman, J.; Zhang, N.; Tzeng, E.; Darrell, T. DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition. In Proceedings of the 31st International Conference on Machine Learning, Bejing, China, 21–26 June 2014; Xing, E.P., Jebara, T., Eds.; PMLR: Bejing, China, 2014; Volume 32, pp. 647–655. [Google Scholar]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR ’14), Columbus, OH, USA, 23–28 June 2014; IEEE Computer Society: Washington, DC, USA, 2014; pp. 580–587. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [Google Scholar] [CrossRef] [PubMed]
- Bangham, J.A.; Harvey, R.W.; Ling, P.D.; Aldridge, R.V. Morphological scale-space preserving transforms in many dimensions. J. Electron. Imaging 1996, 5, 5–17. [Google Scholar] [CrossRef]
- Ojala, T.; Pietikainen, M.; Maenpaa, T. Multiresolution gray-scale and rotation invariant texture classification with Local Binary Patterns. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 971–987. [Google Scholar] [CrossRef]
- García-Olalla Olivera, O. Methods for Improving Texture Description by Using Statistical Information Extracted from the Image Gradient. Ph.D. Thesis, Universidad de León, León, Spain, 2017. [Google Scholar]
- Girshick, R. Fast R-CNN. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015; pp. 1440–1448. [Google Scholar]
- Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft COCO: Common Objects in Context. In Proceedings of the Computer Vision—ECCV 2014, Zurich, Switzerland, 6–12 September 2014; Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T., Eds.; Springer International Publishing: Cham, Switzerland, 2014; pp. 740–755. [Google Scholar]
- Liu, L.; Zsu, M.T. Encyclopedia of Database Systems, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Jia, Y.; Shelhamer, E.; Donahue, J.; Karayev, S.; Long, J.; Girshick, R.; Guadarrama, S.; Darrell, T. Caffe: Convolutional Architecture for Fast Feature Embedding. In Proceedings of the 22nd ACM International Conference on Multimedia (MM ’14), Orlando, FL, USA, 3–7 November 2014; ACM: New York, NY, USA, 2014; pp. 675–678. [Google Scholar]
Descriptor | n | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
HOG + HCLOSIB | 37.2 | 32.8 | 29.3 | 26.8 | 24.7 | 23.2 | 21.7 | 20.5 | 19.4 | 18.6 |
HOG + CLOSIB | 35.9 | 30.8 | 27.9 | 25.4 | 23.8 | 22.5 | 20.8 | 19.5 | 18.5 | 17.7 |
HOG | 35.2 | 30.0 | 26.7 | 24.4 | 22.8 | 21.5 | 20.2 | 19.4 | 18.7 | 17.8 |
Faster R-CNN | 30.1 | 27.4 | 25.2 | 23.8 | 22.5 | 21.6 | 20.6 | 19.7 | 19.0 | 18.2 |
ALBP | 28.9 | 25.2 | 23.0 | 21.4 | 20.1 | 19.0 | 18.1 | 17.5 | 16.9 | 16.3 |
ALBP + HCLOSIB | 25.5 | 21.7 | 19.6 | 18.7 | 17.9 | 17.0 | 16.2 | 15.8 | 15.4 | 15.0 |
ALBP + CLOSIB | 24.8 | 23.1 | 21.8 | 20.4 | 19.5 | 18.8 | 18.1 | 17.5 | 17.1 | 16.6 |
LBP | 16.6 | 14.8 | 14.2 | 13.7 | 13.3 | 13.3 | 13.0 | 12.6 | 12.3 | 12.0 |
LBP + CLOSIB | 12.2 | 10.8 | 10.4 | 9.6 | 9.2 | 8.9 | 8.5 | 8.3 | 8.1 | 7.9 |
LBP + HCLOSIB | 11.1 | 10.1 | 9.3 | 8.7 | 8.6 | 8.5 | 8.4 | 8.1 | 8.0 | 7.7 |
Descriptor | n | |||||||||
11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | |
HOG + HCLOSIB | 17.7 | 17.0 | 16.4 | 15.8 | 15.3 | 15.0 | 14.6 | 14.4 | 14.0 | 13.7 |
HOG + CLOSIB | 17.1 | 16.4 | 15.8 | 15.4 | 14.9 | 14.6 | 14.2 | 13.9 | 13.6 | 13.3 |
HOG | 17.0 | 16.4 | 15.9 | 15.5 | 14.9 | 14.5 | 14.1 | 13.7 | 13.4 | 13.0 |
Faster R-CNN | 17.6 | 17.1 | 16.8 | 16.3 | 15.9 | 15.5 | 15.1 | 14.8 | 14.6 | 14.3 |
ALBP | 15.9 | 15.6 | 15.2 | 15.0 | 14.7 | 14.4 | 14.2 | 14.0 | 13.8 | 13.5 |
ALBP + HCLOSIB | 14.7 | 14.4 | 14.1 | 14.0 | 13.7 | 13.5 | 13.3 | 13.1 | 13.0 | 12.8 |
ALBP + CLOSIB | 16.2 | 15.7 | 15.4 | 15.1 | 14.8 | 14.6 | 14.4 | 14.2 | 14.0 | 13.9 |
LBP | 11.7 | 11.4 | 11.3 | 11.1 | 11.0 | 10.8 | 10.7 | 10.5 | 10.5 | 10.4 |
LBP + CLOSIB | 7.9 | 7.8 | 7.7 | 7.6 | 7.6 | 7.5 | 7.4 | 7.4 | 7.3 | 7.2 |
LBP + HCLOSIB | 7.7 | 7.7 | 7.6 | 7.5 | 7.5 | 7.3 | 7.3 | 7.2 | 7.2 | 7.2 |
Descriptor | n | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
Faster R-CNN | 30.1 | 38.7 | 44.3 | 48.4 | 52.2 | 55.7 | 58.6 | 60.9 | 62.8 | 64.3 |
ALBP | 28.9 | 37.0 | 42.3 | 46.7 | 49.5 | 51.9 | 54.4 | 56.8 | 58.2 | 60.0 |
LBP | 16.6 | 22.6 | 27.6 | 31.7 | 35.5 | 40.5 | 42.8 | 45.2 | 47.5 | 49.2 |
ALBP + HCLOSIB | 25.5 | 31.4 | 36.5 | 40.6 | 44.0 | 47.1 | 48.8 | 51.0 | 53.0 | 54.7 |
HOG + HCLOSIB | 37.2 | 42.8 | 47.5 | 50.0 | 52.2 | 54.6 | 56.1 | 57.1 | 58.4 | 60.1 |
HOG + CLOSIB | 35.9 | 40.6 | 44.0 | 46.6 | 49.8 | 52.5 | 53.2 | 54.8 | 56.4 | 57.9 |
HOG | 35.2 | 39.5 | 42.4 | 44.1 | 46.1 | 48.9 | 50.9 | 52.9 | 54.9 | 56.1 |
ALBP + CLOSIB | 24.8 | 31.7 | 36.7 | 39.8 | 42.7 | 49.0 | 46.6 | 48.3 | 49.8 | 50.5 |
LBP + HCLOSIB | 10.4 | 14.7 | 17.4 | 21.1 | 24.4 | 27.1 | 29.0 | 31.1 | 33.4 | 34.9 |
LBP + CLOSIB | 12.2 | 16.5 | 20.0 | 22.0 | 24.1 | 26.9 | 28.7 | 29.9 | 31.3 | 32.6 |
Descriptor | n | |||||||||
11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | |
Faster R-CNN | 65.9 | 67.2 | 68.7 | 69.9 | 71.1 | 71.9 | 73.1 | 74.3 | 75.0 | 75.9 |
ALBP | 61.5 | 63.0 | 64.3 | 65.8 | 66.5 | 67.8 | 68.7 | 69.6 | 70.2 | 71.5 |
LBP | 50.9 | 53.0 | 54.5 | 55.8 | 57.6 | 59.4 | 60.2 | 61.0 | 62.4 | 63.5 |
ALBP + HCLOSIB | 56.6 | 57.9 | 59.2 | 60.8 | 61.9 | 62.6 | 63.1 | 64.2 | 64.5 | 64.9 |
HOG + HCLOSIB | 60.8 | 61.7 | 62.3 | 63.3 | 64.5 | 65.0 | 65.6 | 66.5 | 66.8 | 67.3 |
HOG + CLOSIB | 59.5 | 60.2 | 60.4 | 61.2 | 62.0 | 62.6 | 62.9 | 63.2 | 63.7 | 64.3 |
HOG | 56.8 | 57.5 | 57.7 | 58.6 | 59.1 | 59.9 | 60.3 | 61.0 | 61.4 | 61.6 |
ALBP + CLOSIB | 51.2 | 52.5 | 53.3 | 53.7 | 54.2 | 55.6 | 56.6 | 57.4 | 58.1 | 58.8 |
LBP + HCLOSIB | 36.5 | 38.5 | 39.7 | 41.7 | 42.9 | 43.9 | 45.1 | 46.6 | 48.1 | 48.7 |
LBP + CLOSIB | 34.2 | 36.1 | 37.2 | 38.9 | 40.4 | 41.8 | 42.1 | 42.7 | 43.2 | 43.7 |
Descriptor | Precision | Success | ||||
---|---|---|---|---|---|---|
Mean (1–10) | Mean (1–20) | Mean (1–40) | Mean (1–10) | Mean (1–20) | Mean (1–40) | |
HOG + HCLOSIB | 24.8 | 19.5 | 15.1 | 51.1 | 57.3 | 63.9 |
HOG + CLOSIB | 23.7 | 18.8 | 14.7 | 48.7 | 54.9 | 61.4 |
HOG | 23.1 | 18.5 | 14.3 | 46.6 | 52.6 | 59.4 |
Faster R-CNN | 22.5 | 18.8 | 15.3 | 50.3 | 59.9 | 69.8 |
ALBP | 20.3 | 17.2 | 14.5 | 47.5 | 56.4 | 66.1 |
ALBP + HCLOSIB | 18.1 | 15.7 | 13.5 | 42.2 | 50.9 | 60.1 |
ALBP + CLOSIB | 19.6 | 17.0 | 14.6 | 40.7 | 47.3 | 55.1 |
LBP | 13.5 | 12.2 | 10.8 | 34.1 | 44.4 | 56.1 |
LBP + CLOSIB | 9.3 | 8.4 | 7.5 | 23.4 | 30.6 | 39.0 |
LBP + HCLOSIB | 8.8 | 8.1 | 7.4 | 22.8 | 31.3 | 42.0 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Olalla, O.; Alegre, E.; Fernández-Robles, L.; Fidalgo, E.; Saikia, S. Textile Retrieval Based on Image Content from CDC and Webcam Cameras in Indoor Environments. Sensors 2018, 18, 1329. https://doi.org/10.3390/s18051329
García-Olalla O, Alegre E, Fernández-Robles L, Fidalgo E, Saikia S. Textile Retrieval Based on Image Content from CDC and Webcam Cameras in Indoor Environments. Sensors. 2018; 18(5):1329. https://doi.org/10.3390/s18051329
Chicago/Turabian StyleGarcía-Olalla, Oscar, Enrique Alegre, Laura Fernández-Robles, Eduardo Fidalgo, and Surajit Saikia. 2018. "Textile Retrieval Based on Image Content from CDC and Webcam Cameras in Indoor Environments" Sensors 18, no. 5: 1329. https://doi.org/10.3390/s18051329
APA StyleGarcía-Olalla, O., Alegre, E., Fernández-Robles, L., Fidalgo, E., & Saikia, S. (2018). Textile Retrieval Based on Image Content from CDC and Webcam Cameras in Indoor Environments. Sensors, 18(5), 1329. https://doi.org/10.3390/s18051329