The Resistance–Amplitude–Frequency Effect of In–Liquid Quartz Crystal Microbalance
Abstract
:1. Introduction
2. Theory and Simulation
3. Discussion
4. Conclusions
Author Contributions
Conflicts of Interest
References
- Fukao, N.; Kyung, K.H.; Fujimoto, K.; Shiratori, S. Automatic Spray-LBL Machine Based on in-Situ QCM Monitoring. Macromolecules 2011, 44, 2964–2969. [Google Scholar] [CrossRef]
- Huang, H.L.; Xu, Y.; Hong, Y.L. Effects of film thickness on moisture sorption, glass transition temperature and morphology of poly(chloro-p-xylylene) film. Polymer 2005, 46, 5949–5955. [Google Scholar] [CrossRef]
- Yao, Y.; Ma, W.Y. Self-Assembly of Polyelectrolytic/Graphene Oxide Multilayer Thin Films on Quartz Crystal Microbalance for Humidity Detection. IEEE Sens. J. 2014, 14, 4078–4084. [Google Scholar] [CrossRef]
- Pascal-Delannoy, F.; Sorli, B.; Boyer, A. Quartz Crystal Microbalance (QCM) used as humidity sensor. Sens. Actuators A Phys. 2000, 84, 285–291. [Google Scholar] [CrossRef]
- Yao, Y.; Chen, X.D.; Li, X.Y.; Chen, X.P.; Li, N. Investigation of the stability of QCM humidity sensor using graphene oxide as sensing films. Sens. Actuators B Chem. 2014, 191, 779–783. [Google Scholar] [CrossRef]
- Yao, Y.; Zhang, H.; Huang, X.H. Enhanced sensitivity of quartz crystal proximity sensors using an asymmetrical electrodes configuration. Sens. Actuators A Phys. 2017, 258, 95–100. [Google Scholar] [CrossRef]
- Chang, W.T. Metal-electrode-sandwiched quartz crystal-based oscillator as proximity sensor. Sens. Actuators A Phys. 2011, 171, 292–296. [Google Scholar] [CrossRef]
- Procek, M.; Stolarczyk, A.; Pustelny, T.; Maciak, E. A Study of a QCM Sensor Based on TiO2 Nanostructures for the Detection of NO2 and Explosives Vapours in Air. Sensors 2015, 15, 9563–9581. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.F.; Ding, B.; Sun, M.; Yu, J.Y.; Sun, G. Nanofibrous polyethyleneimine membranes as sensitive coatings for quartz crystal microbalance-based formaldehyde sensors. Sens. Actuators B Chem. 2009, 144, 11–17. [Google Scholar] [CrossRef]
- Selyanchyn, R.; Korposh, S.; Wakamatsu, S.; Lee, S.W. Respiratory Monitoring by Porphyrin Modified Quartz Crystal Microbalance Sensors. Sensors 2011, 11, 1177–1191. [Google Scholar] [CrossRef] [PubMed]
- Sauerbrey, G. Use of quartz vibration for weighing thin films on a microbalance. Z. Phys. 1959, 155, 206–212. [Google Scholar] [CrossRef]
- Hillier, A.C.; Ward, M.D. Scanning electrochemical mass sensitivity mapping of the quartz crystal microbalance in liquid media. Anal. Chem. 1992, 64, 2539–2554. [Google Scholar] [CrossRef]
- Nomura, T.; Okuhara, M. Frequency shift of piezoelectric quartz crystals immersed in organic liquids. Anal. Chim. Acta 1982, 142, 281–284. [Google Scholar] [CrossRef]
- Sato, T.; Izyan Ruslan, R.; Goto, S.; Akitsu, T. Double-Resonance Quartz Crystal Oscillator and Excitation of a Resonator Immersed in Liquid Media. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2011, 58, 788–797. [Google Scholar] [CrossRef] [PubMed]
- Sigalov, S.; Levi, M.D.; Salitra, G.; Aurbach, D.; Maier, J. EQCM as a unique tool for determination of ionic fluxes in microporous carbons as a function of surface charge distribution. Electrochem. Commun. 2010, 12, 1718–1721. [Google Scholar] [CrossRef]
- Levi, M.D.; Sigalov, S.; Salitra, G.; Aurbach, D. Quartz crystal microbalance with dissipation monitoring (EQCM-D) for in-situ studies of electrodes for supercapacitors and batteries: A mini-review. Electrochem. Commun. 2016, 67, 16–21. [Google Scholar] [CrossRef]
- Tsai, W.-Y.; Taberna, P.L.; Patrice, S. Electrochemical quartz crystal microbalance (EQCM) study of ion dynamics in nanoporous carbons. J. Am. Chem. Soc. 2014, 136, 8722–8728. [Google Scholar] [CrossRef] [PubMed]
- Diltemiz, S.E.; Keçili, R.; Ersöz, A.; Say, R. Molecular Imprinting Technology in Quartz Crystal Microbalance (QCM) Sensors. Sensors 2017, 17, 454. [Google Scholar] [CrossRef] [PubMed]
- Yao, C.Y.; Qu, L.; Fu, W.L. Detection of Fibrinogen and Coagulation Factor VIII in Plasma by a Quartz Crystal Microbalance Biosensor. Sensors 2013, 13, 6946–6956. [Google Scholar] [CrossRef] [PubMed]
- Cho, N.J.; Frank, C.W.; Kasemo, B.; Hook, F. Quartz crystal microbalance with dissipation monitoring of supported lipid bilayers on various substrates. Nat. Protoc. 2010, 5, 1096–1106. [Google Scholar] [CrossRef] [PubMed]
- Yao, C.Y.; Zhu, T.Y.; Qi, Y.Z.; Zhao, Y.H.; Xia, H.; Fu, W.L. Development of a Quartz Crystal Microbalance Biosensor with Aptamers as Bio-recognition Element. Sensors 2010, 10, 5859–5871. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.H.; Liu, Y.; Borg, G.; Withers, R.L.; Li, Z.R.; Xu, Z.; Li, C.M. Lead magnesium niobate-lead titanate piezoelectric immunosensors. Sens. Actuators A Phys. 2010, 163, 82–87. [Google Scholar] [CrossRef]
- Yang, Y.; Tu, Y.F.; Wang, X.S.; Pan, J.Y.; Ding, Y. A Label-Free Immunosensor for Ultrasensitive Detection of Ketamine Based on Quartz Crystal Microbalance. Sensors 2015, 15, 8540–8549. [Google Scholar] [CrossRef] [PubMed]
- Akter, R.; Rhee, C.K.; Rahman, M.A. A highly sensitive quartz crystal microbalance immunosensor based on magnetic bead-supported bienzymes catalyzed mass enhancement strategy. Biosens. Bioelectron. 2015, 66, 539–546. [Google Scholar] [CrossRef] [PubMed]
- Ertekin, Ö.; Öztürk, S.; Öztürk, Z.Z. Label Free QCM Immunobiosensor for AFB1 Detection Using Monoclonal IgA Antibody as Recognition Element. Sensors 2016, 16, 1274. [Google Scholar] [CrossRef] [PubMed]
- Butterworth, S. On Electrically-maintained Vibrations. Proc. Phys. Soc. Lond. 1914, 27, 410–424. [Google Scholar] [CrossRef]
- Van Dyke, K.S. The piezo-electric resonator and its equivalent network. Proc. Inst. Radio Eng. 1928, 16, 742–764. [Google Scholar] [CrossRef]
- Martin, S.J.; Granstaff, V.E.; Frye, G.C. Characterization of a quartz crystal microbalance with simultaneous mass and liquid loading. Anal. Chem. 1991, 63, 2272–2281. [Google Scholar] [CrossRef]
Resonance Damping (dB) | |||||||
---|---|---|---|---|---|---|---|
Group 1 | 12 | 9.3816 | 27 | 0.0 | 9,999,995 | 0 | –0.984 |
702 | 9.3816 | 27 | 0.0 | 9,999,995 | –18.083 | ||
Group 2 | 12 | 9.3816 | 27 | 1.0 | 9,999,995 | 262 | –0.984 |
702 | 9.3816 | 27 | 1.0 | 9,999,733 | –18.065 | ||
Group 3 | 12 | 9.3816 | 27 | 3.5 | 9,999,995 | 898 | –0.984 |
702 | 9.3816 | 27 | 3.5 | 9,999,097 | –17.860 | ||
Group 4 | 12 | 9.3816 | 27 | 6.0 | 9,999,995 | 1478 | –0.984 |
702 | 9.3816 | 27 | 6.0 | 9,998,517 | –17.470 | ||
Group 5 | 12 | 9.3816 | 27 | 8.5 | 9,999,995 | 1983 | –0.984 |
702 | 9.3816 | 27 | 8.5 | 9,998,012 | –16.959 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, X.; Bai, Q.; Zhou, Q.; Hu, J. The Resistance–Amplitude–Frequency Effect of In–Liquid Quartz Crystal Microbalance. Sensors 2017, 17, 1476. https://doi.org/10.3390/s17071476
Huang X, Bai Q, Zhou Q, Hu J. The Resistance–Amplitude–Frequency Effect of In–Liquid Quartz Crystal Microbalance. Sensors. 2017; 17(7):1476. https://doi.org/10.3390/s17071476
Chicago/Turabian StyleHuang, Xianhe, Qingsong Bai, Qi Zhou, and Jianguo Hu. 2017. "The Resistance–Amplitude–Frequency Effect of In–Liquid Quartz Crystal Microbalance" Sensors 17, no. 7: 1476. https://doi.org/10.3390/s17071476
APA StyleHuang, X., Bai, Q., Zhou, Q., & Hu, J. (2017). The Resistance–Amplitude–Frequency Effect of In–Liquid Quartz Crystal Microbalance. Sensors, 17(7), 1476. https://doi.org/10.3390/s17071476