Poly(3-Methylthiophene) Thin Films Deposited Electrochemically on QCMs for the Sensing of Volatile Organic Compounds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sensor Preparation
2.2. Gas Sensing Measurements
3. Results and Discussion
3.1. Structural Properties
3.2. General Gas Sensing Properties and Discussion of the Sensing Mechanism
3.3. VOC Sensing Performance
3.4. Responses to Humid Air and Effect on Humidity on VOC Sensing
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Yi, W.Y.; Lo, K.M.; Mak, T.; Leung, K.; Leung, S.Y.; Meng, M.L. A Survey of Wireless Sensor Network Based Air Pollution Monitoring Systems. Sensors 2015, 15, 31392–31427. [Google Scholar] [CrossRef] [PubMed]
- Baek, S.-O.; Suvarapu, L.N.; Seo, Y.-K. Occurrence and Concentrations of Toxic VOCs in the Ambient Air of Gumi, an Electronics-Industrial City in Korea. Sensors 2015, 15, 19102–19123. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Cang, H.; Li, C.; Zhao, Z.K.; Li, H. Quartz crystal microbalance sensor array for the detection of volatile organic compounds. Talanta 2009, 78, 711–716. [Google Scholar] [CrossRef] [PubMed]
- Si, P.; Mortensen, J.; Komolov, A.; Denborg, J.; Møller, P.J. Polymer coated quartz crystal microbalance sensors for detection of volatile organic compounds in gas mixtures. Anal. Chim. Acta 2007, 597, 223–230. [Google Scholar] [CrossRef] [PubMed]
- Arshak, K.; Moore, E.; Lyons, G.M.; Harris, J.; Clifford, S. A review of gas sensors employed in electronic nose applications. Sens. Rev. 2004, 24, 181–198. [Google Scholar] [CrossRef]
- Gupta, N.; Sharma, S.; Mir, I.A.; Kumar, D. Advances in Sensors Based on Conducting Polymers. J. Sci. Ind. Res. 2006, 65, 549–557. [Google Scholar]
- Vashist, S.K.; Vashist, P. Recent Advances in Quartz Crystal Microbalance-Based Sensors. J. Sens. 2011, 2011, 1–13. [Google Scholar] [CrossRef]
- Selyanchyn, R.; Wakamatsu, S.; Hayashi, K.; Lee, S.-W. A Nano-Thin Film-Based Prototype QCM Sensor Array for Monitoring Human Breath and Respiratory Patterns. Sensors 2015, 15, 18834–18850. [Google Scholar] [CrossRef] [PubMed]
- Fan, G.; Wang, Y.; Hu, M.; Luo, Z.; Zhang, K.; Li, G. Template Free Synthesis of Hollow Ball-Like Nano-Fe2O3 and Its Application to the Detection of Dimethyl Methylphosphonate at Room Temperature. Sensors 2012, 12, 4594–4604. [Google Scholar] [CrossRef] [PubMed]
- Bachar, N.; Liberman, L.; Muallem, F.; Feng, X.; Müllen, K.; Haick, H. Sensor Arrays on Polycyclic Aromatic Hydrocarbons: Chemiresistors versus Quartz-Crystal Microbalance. ACS Appl. Mater. Interfaces 2013, 5, 11641–11653. [Google Scholar] [CrossRef] [PubMed]
- Zilberman, Y.; Tisch, U.; Pisula, W.; Feng, X.; Müllen, K.; Haick, H. Spongelike Structures of Hexa-peri-hexabenzocoronene Derivatives Enhance the Sensitivity of Chemiresistive Carbon Nanotubes to Nonpolar Volatile Organic Compounds of Cancers. Langmuir 2009, 25, 5411–5416. [Google Scholar] [CrossRef] [PubMed]
- Cavallari, M.R.; Izquierdo, J.E.E.; Braga, G.S.; Dirani, E.A.T.; Pereira-da-Silva, M.A.; Rodríguez, E.F.G.; Fonseca, F.J. Enhanced Sensitivity of Gas Sensor Based on Poly(3-hexylthiophene) Thin-Film Transistors for Disease Diagnosis and Environment Monitoring. Sensors 2015, 15, 9592–9609. [Google Scholar] [CrossRef] [PubMed]
- Manoli, K.; Dumitru, L.M.; Mulla, Y.M.; Magliulo, M.; Di Franco, C.; Santacroce, M.V.; Scamarcio, G.; Torsi, L. A Comparative Study of the Gas Sensing Behavior in P3HT- and PBTTT-Based OTFTs: The Influence of Film Morphology and Contact Electrode Position. Sensors 2014, 14, 16869–16880. [Google Scholar] [CrossRef] [PubMed]
- Guadarrama, A.; Rodriguez-Mendez, M.L.; de Saja, J.A. Influence of electrochemical deposition parameters on the performance of poly-3-methyl thiophene and polyaniline sensors for virgin olive oils, Conducting polymers in chemical sensors and arrays. Sens. Actuators B Chem. 2004, 100, 60–64. [Google Scholar] [CrossRef]
- Persaud, K.C. Polymers for chemical sensing. Mater. Today 2005, 8, 38–44. [Google Scholar] [CrossRef]
- Santhanam, K.S.V.; Sangoi, R.; Fuller, L. A chemical sensor for chloromethanes using a nanocomposite of multiwalled carbon nanotubes with poly(3-methylthiophene). Sens. Actuators B Chem. 2005, 106, 766–771. [Google Scholar]
- Bai, H.; Shi, G. Gas Sensors Based on Conducting Polymers. Sensors 2007, 7, 267–307. [Google Scholar] [CrossRef]
- Yoon, H. Current Trends in Sensors Based on Conducting Polymer Nanomaterials. Nanomaterials 2013, 33, 524–549. [Google Scholar] [CrossRef]
- Bachar, N.; Mintz, L.; Zilberman, Y.; Ionescu, R.; Feng, X.; Müllen, K.; Haick, H. Polycyclic Aromatic Hydrocarbons for the Detection of Nonpolar Analytes under Counteracting Humidity Conditions. ACS Appl. Mater. Interfaces 2012, 4, 4960–4965. [Google Scholar] [CrossRef] [PubMed]
- Harbeck, M.; Şen, Z.; Gümüş, G.; Gürol, I.; Musluoğlu, E.; Öztürk, Z.Z.; Ahsen, V. Customized vic-dioximes and their metal complexes for enhanced chemical sensing of polar organic molecules. Sens. Actuators B Chem. 2013, 188, 1004–1011. [Google Scholar] [CrossRef]
- Harbeck, M.; Şen, Z.; Gürol, I.; Gümüş, G.; Musluoğlu, E.; Ahsen, V.; Öztürk, Z.Z. Vic-dioximes: A new class of sensitive materials for chemical gas sensing. Sens. Actuators B Chem. 2011, 156, 673–679. [Google Scholar] [CrossRef]
- Kayinamura, Y.P.; Ovadi, M.; Zavitz, D.; Rubinson, J.F. Investigation of Near Ohmic Behavior for Poly(3,4-ethylenedioxythiophene): A Model Consistent with Systematic Variations in Polymerization Conditions. ACS Appl. Mater. Interfaces 2011, 2, 2653–2662. [Google Scholar] [CrossRef] [PubMed]
- Krivan, E.; Visy, C.; Kankare, J. Deprotonation and Dehydration of Pristine PPy/DS Films During Open-Circuit Relaxation: An Ignored Factor in Determining the Properties of Conducting Polymers. J. Phys. Chem. B 2003, 107, 1302–1308. [Google Scholar] [CrossRef]
- Virji, S.; Kaner, R.B.; Weiller, B.H. Hydrogen sensors based on conductivity changes in polyaniline nanofibers. J. Phys. Chem. B 2006, 110, 22266–22270. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, S.H.; Entezami, A.A. Conducting polymer blends of polypyrrole with polyvinyl acetate, polystyrene, and polyvinyl chloride-based toxic gas sensors. J. Appl. Polym. Sci. 2003, 90, 49–62. [Google Scholar] [CrossRef]
- Öztürk, S.; Kılınç, N.; Taşaltin, N.; Öztürk, Z.Z. A comparative study on the NO2 gas sensing properties of ZnO thin films, nanowires and nanorods. Thin Solid Films 2011, 520, 932–938. [Google Scholar] [CrossRef]
- Öztürk, S.; Kösemen, A.; Kösemen, Z.A.; Kılınc, N.; Öztürk, Z.Z.; Penza, M. Electrochemically growth of Pd doped ZnO nanorods on QCM for room temperature VOC sensors. Sens. Actuators B Chem. 2016, 222, 280–289. [Google Scholar] [CrossRef]
- Gentry, S.J.; Jones, T.A. The role of catalysis in solid-state gas sensors. Sens. Actuators 1986, 16, 141–163. [Google Scholar] [CrossRef]
- Kilinc, N.; Cakmak, O.; Kosemen, A.; Ermek, E.; Ozturk, S.; Yerli, Y.; Ozturk, Z.Z.; Urey, H. Fabrication of 1D ZnO nanostructures on MEMS cantilever for VOC sensor application. Sens. Actuators B Chem. 2014, 202, 357–364. [Google Scholar] [CrossRef]
- Gardner, J.W.; Bartlett, P.N.; Pratt, K.F.E. Modeling of Gas-Sensitive Conducting Polymer Devices. IEEE Proc. Circuits Devices Syst. 1995, 142, 321–333. [Google Scholar] [CrossRef]
- Korotcenkov, G. Metal oxides for solid-state gas sensors: What determines our choice? Mater. Sci. Eng. B 2007, 139, 1–23. [Google Scholar] [CrossRef]
- Horzum, N.; Tascioglu, D.; Ozbek, C.; Okur, S.; Demir, M.M. VOC sensors based on a metal oxide nanofibrous membrane/QCM system prepared by electrospinning. New J. Chem. 2014, 38, 5761–5768. [Google Scholar] [CrossRef]
- Tang, W.; Wang, J. Mechanism for toluene detection of flower-like ZnO sensors prepared by hydrothermal approach: Charge transfer. Sens. Actuators B Chem. 2015, 207, 66–73. [Google Scholar] [CrossRef]
- Wilmsmeyer, A.R.; Uzarski, J.; Barrie, P.J.; Morrisi, J.R. Interactions and Binding Energies of Dimethyl Methylphosphonate and Dimethyl Chlorophosphate with Amorphous Silica. Langmuir 2012, 28, 10962–10967. [Google Scholar] [CrossRef] [PubMed]
- Penza, M.; Cassano, G.; Aversa, P.; Antolini, F.; Cusano, A.; Consales, M.; Giordano, M.; Nicolais, L. Carbon nanotubes-coated multi-transducing sensors for VOCs detection. Sens. Actuators B Chem. 2005, 111–112, 171–180. [Google Scholar] [CrossRef]
- Şen, Z.; Gümüş, G.; Gürol, I.; Musluoğlu, E.; Öztürk, Z.Z.; Harbeck, M. Metal Complexes of vic-dioximes for chemical gas sensor. Sens. Actuators B Chem. 2011, 160, 1203–1209. [Google Scholar] [CrossRef]
- Zilberman, Y.; Tisch, U.; Shuster, G.; Pisula, W.; Feng, X.; Müllen, K.; Haick, H. Carbon Nanotube/Hexa-peri-hexabenzocoronene Bilayers for Discrimination between Nonpolar Volatile Organic Compounds of Cancer and Humid Atmospheres. Adv. Mater. 2010, 22, 4317–4320. [Google Scholar] [CrossRef] [PubMed]
- Ruangchuay, L.; Sirivat, A.; Schwank, J. Electrical conductivity response of polypyrrole to acetone vapor: Effect of dopant anions and interaction mechanisms. Synth. Met. 2004, 140, 15–21. [Google Scholar] [CrossRef]
- US Department of Labor. Occupational Safety & Health Administration. Available online: https://www.osha.gov/ (accessed on 4 February 2016).
- Jakubowski, M.; Czerczak, S. A Proposal for Calculating Occupational Exposure Limits for Volatile Organic Compounds Acting as Sensory Irritants on the Basis of Their Physicochemical Properties. J. Occup. Environ. Hyg. 2010, 7, 429–434. [Google Scholar] [CrossRef] [PubMed]
Analytes/Sensitive Materials | P1 | P2 | P3 | P4 | P5 | TLV | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Sm | LOD | Sm | LOD | Sm | LOD | Sm | LOD | Sm | LOD | ||
Chlorobenzene | 0.4 | 12.5 | 0.39 | 12 | 0.337 | 15 | 0.72 | 7 | 0.536 | 10 | 10 |
n-Heptane | 0.069 | 72 | 0.104 | 48 | 0.09 | 55 | 0.09 | 55 | 0.076 | 66 | 400 |
TCE * | 0.193 | 26 | 0.318 | 16 | 0.247 | 20 | 0.32 | 16 | 0.277 | 18 | 25 |
o-Xylene | 0.629 | 8 | 1.092 | 4.5 | 0.405 | 12 | 1.025 | 5 | 0.916 | 6 | 100 |
Toluene | 0.132 | 38 | 0.188 | 26 | 0.085 | 60 | 0.233 | 22 | 0.192 | 26 | 50 |
Ethylbenzene | 0.641 | 8 | 0.609 | 8 | 0.884 | 6 | 1.059 | 5 | 0.831 | 6 | 30 |
Acetonitrile | 0.068 | 75 | 0.080 | 62 | 0.055 | 90 | 0.167 | 30 | 0.159 | 30 | 20 |
Methanol | 0.058 | 86 | 0.075 | 66 | 0.027 | 185 | 0.14 | 36 | 0.133 | 38 | 200 |
Isopropanol | 0.198 | 25 | 0.281 | 18 | 0.147 | 35 | 0.46 | 10 | 0.354 | 15 | 200 |
Ethylacetate | 0.033 | 150 | 0.045 | 110 | 0.035 | 145 | 0.064 | 78 | 0.053 | 95 | 400 |
Triethylamine | 0.019 | 263 | 0.043 | 116 | 0.058 | 86 | 0.024 | 210 | 0.020 | 250 | 1 |
DMMP | 11.65 | 0.42 | 8.054 | 0.62 | 20.90 | 0.24 | 48.39 | 0.1 | 38.14 | 0.13 | 0.1 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Öztürk, S.; Kösemen, A.; Şen, Z.; Kılınç, N.; Harbeck, M. Poly(3-Methylthiophene) Thin Films Deposited Electrochemically on QCMs for the Sensing of Volatile Organic Compounds. Sensors 2016, 16, 423. https://doi.org/10.3390/s16040423
Öztürk S, Kösemen A, Şen Z, Kılınç N, Harbeck M. Poly(3-Methylthiophene) Thin Films Deposited Electrochemically on QCMs for the Sensing of Volatile Organic Compounds. Sensors. 2016; 16(4):423. https://doi.org/10.3390/s16040423
Chicago/Turabian StyleÖztürk, Sadullah, Arif Kösemen, Zafer Şen, Necmettin Kılınç, and Mika Harbeck. 2016. "Poly(3-Methylthiophene) Thin Films Deposited Electrochemically on QCMs for the Sensing of Volatile Organic Compounds" Sensors 16, no. 4: 423. https://doi.org/10.3390/s16040423