Quantitative Raman Spectroscopy Analysis of Polyhydroxyalkanoates Produced by Cupriavidus necator H16
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microorganisms and Their Cultivation
2.2. Bacterial Sample Preparation and Estimated Time Frame for Analysis
- (a)
- One milliliter of bacterial culture was transferred into a 1.5 mL tube, and the cells were centrifuged (10,000 rpm, 2 min), washed with 50% ethanol, and centrifuged again (total 5 min).
- (b)
- In the next step, the supernatant was aspirated, and approx. 20 µL of cell pellets formed via centrifugation was pipetted onto a CaF (Raman grade) microscope slide (1 min).
- (c)
- The cell suspensions were air-dried (approx. 5 min) at laboratory temperature and analyzed using a Raman instrument (1 min).
2.3 Raman Spectroscopy
2.4. Data Analysisis
3. Results and Discussion
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Smith, R. Biodegradable Polymers for Industrial Applications; CRC Press: Cambridge, UK, 2005; p. 245. [Google Scholar]
- Tan, G.-Y.A.; Chen, C.-L.; Li, L.; Ge, L.; Wang, L.; Razaad, I.M.N.; Li, Y.; Zhao, L.; Mo, Y.; Wang, J.-Y. Start a Research on Biopolymer Polyhydroxyalkanoate (PHA): A Review. Polymers 2014, 6, 706–754. [Google Scholar] [CrossRef]
- Liu, C.C.; Zhang, L.L.; An, J.; Chen, B.; Yang, H. Recent strategies for efficient production of polyhydroxyalkanoates by micro-organisms. Lett. Appl. Microbiol. 2015, 62, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Koller, M.; Rodriguez-Contreras, A. Techniques for tracing PHA-producing organisms and for qualitative and quantitative analysis of intra- and extracellular PHA. Eng. Life Sci. 2015, 15, 558–581. [Google Scholar] [CrossRef]
- Schie, I.W.; Huser, T. Methods and applications of Raman microspectroscopy to single-cell analysis. Appl. Spectrosc. 2013, 67, 813–828. [Google Scholar] [PubMed]
- Afseth, N.K.; Bloomfield, M.; Wold, J.P.; Matousek, P.A. Novel approach for subsurface through-skin analysis of salmon using spatially offset raman spectroscopy (SORS). Appl. Spectrosc. 2014, 68, 255–262. [Google Scholar] [CrossRef] [PubMed]
- De Gelder, J.; De Gussem, K.; Vandenabeele, P.; Moens, L. Reference database of Raman spectra of biological molecules. J. Raman Spectrosc. 2007, 38, 1133–1147. [Google Scholar] [CrossRef]
- Brauchle, E.; Schenke-Leyland, K. Raman spectroscopy in biomedicine—Non-invasive in vitro analysis of cells and extracellular matrix components in tissues. Biotechnol. J. 2013, 8, 288–297. [Google Scholar] [CrossRef] [PubMed]
- Samek, O.; Al-Marashi, J.F.M.; Telle, H.H. The potential of Raman spectroscopy for the identification of biofilm formation by Staphylococcus epidermidis. Laser Phys. Lett. 2010, 7, 378–383. [Google Scholar] [CrossRef]
- Samek, O.; Telle, H.H.; Harris, L.G.; Bloomfield, M.; Mack, D. Raman spectroscopy for rapid discrimination of Staphylococcus epidermidis clones related to medical device-associated infections. Laser Phys. Lett. 2008, 5, 465–470. [Google Scholar] [CrossRef]
- Bernatová, S.; Samek, O.; Pilát, Z.; Šerý, M.; Ježek, J.; Jákl, P.; Šiler, M.; Krzyžánek, V.; Zemánek, P.; Holá, V.; et al. Following the mechanisms of bacteriostatic versus bactericidal action using Raman spectroscopy. Molecules 2013, 18, 13188–13199. [Google Scholar] [CrossRef] [PubMed]
- Samek, O.; Jonáš, A.; Pilát, Z.; Zemánek, P.; Nedbal, L.; Tříska, J.; Kotas, P.; Trtílek, M. Raman microspectroscopy of individual algal cells: Sensing unsaturation of storage lipids in vivo. Sensors 2010, 10, 8635–8651. [Google Scholar] [CrossRef] [PubMed]
- Sandt, C.; Smith-Palmer, T.; Pink, J.; Brennan, L.; Pink, D. Confocal Raman microspectroscopy as a tool for studying the chemical heterogeneities of biofilms in situ. J. Appl. Microbiol. 2007, 103, 1808–1820. [Google Scholar] [CrossRef] [PubMed]
- Choo-Smith, L.P.; Marquelin, K.; van Vreeswijk, T.; Bruining, H.A.; Puppels, G.J.; Ngo Thi, N.A.; Kirchner, C.; Naumann, D.; Ami, D.; Villa, A.M.; et al. Investigating microbial (Micro)colony heterogeneity by vibrational spectroscopy. Appl. Environ. Microbiol. 2001, 67, 1461–1469. [Google Scholar] [CrossRef] [PubMed]
- Samek, O.; Mlynariková, K.; Bernatová, S.; Ježek, J.; Krzyžánek, V.; Šiler, M.; Zemánek, P.; Růžička, F.; Holá, V.; Mahelová, M. Candida parapsilosis Biofilm Identification by Raman Spectroscopy. Int. J. Mol. Sci. 2014, 15, 23924–23935. [Google Scholar] [CrossRef] [PubMed]
- Maquelin, K.; Choo-Smith, L.P.; van Vreeswijk, T.; Endtz, H.P.; Smith, B.; Bennett, R.; Bruining, H.A.; Puppels, G.J. Raman Spectroscopic Method for Identification of Clinically Relevant Microorganisms Growing on Solid Culture Medium. Anal. Chem. 2000, 72, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Maquelin, K.; Choo-Smith, L.P.; Endtz, H.P.; Bruining, H.A.; Puppels, G.J. Rapid identification of Candida species by confocal Raman microspectroscopy. J. Clin. Microbiol. 2002, 40, 594–600. [Google Scholar] [CrossRef] [PubMed]
- Espagnon, I.; Ostrovskii, D.; Mathey, R.; Dupoy, M.; Joly, P.L.; Novelli-Rousseau, A.; Pinston, F.; Gal, O.; Mallard, F.; Leroux, D.F. Direct identification of clinically relevant bacterial and yeast microcolonies and macrocolonies on solid culture media by Raman spectroscopy. J. Biomed. Opt. 2014, 19, 027004. [Google Scholar] [CrossRef] [PubMed]
- Gelder, J.; Willemse-Erix, D.; Scholtes, M.J.; Sanchez, J.I.; Maquelin, K.; Vandenabeele, P.; Boever, P.; Puppels, J.G.; Moens, L.; Vos, P. Monitoring poly(3-hydroxybutyrate) production in Cupriavidus necator DSM 428 (H16) with Raman spectroscopy. Anal. Chem. 2008, 80, 2155–2160. [Google Scholar] [CrossRef] [PubMed]
- Ciobota, V.; Burkhardt, E.M.; Schumacher, W.; Rosch, P.; Kusel, K.; Popp, J. The influence of intracellular storage material on bacterial identification by means of Raman spectroscopy. Anal. Bioanal. Chem. 2010, 397, 2929–2937. [Google Scholar] [CrossRef] [PubMed]
- Izumi, C.M.S.; Temperini, M. FT-Raman investigation of biodegradable polymers: Poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Vibrat. Spectr. 2010, 54, 127–132. [Google Scholar] [CrossRef]
- Naumann, D. FT-Infrared and Ft-Raman spectroscopy in biomedical research. Appl. Spectrosc. Rev. 2001, 36, 239–298. [Google Scholar] [CrossRef]
- Tao, Z.; Peng, L.; Zhang, P.; Li, Y.-Q.; Wang, G. Probing the Kinetic Anabolism of Poly-Beta-Hydroxybutyrate in Cupriavidus necator H16 Using Single-Cell Raman Spectroscopy. Sensors 2016, 16, 1257. [Google Scholar] [CrossRef] [PubMed]
- Peng, P.; Zeng, C.; Zhou, Y.; Lian, S.; Nie, G. Rapid Determination of Turmeric Roots Quality Based on the Raman Spectrum of Curcumin. Food Anal. Methods 2015, 8, 103. [Google Scholar] [CrossRef]
- Obruca, S.; Petrik, S.; Benesova, P.; Svoboda, Z.; Eremka, L.; Marova, I. Utilization of oil extracted from spent coffee grounds for sustainable production of polyhydroxyalkanoates. Appl. Microbiol. Biotechnol. 2014, 98, 5883–5890. [Google Scholar] [CrossRef] [PubMed]
- Sato, H.; Dybal, J.; Murakami, R.; Noda, I.; Ozaki, Y. Infrared and Raman spectroscopy and quantum chemistry calculation studies of C–H/O hydrogen bondings and thermal behavior of biodegradable polyhydroxyalkanoate. J. Mol. Struct. 2005, 744–747, 35–46. [Google Scholar] [CrossRef]
Cultivation Conditions | PHB % | Intensity of PHB Line at 1736 cm−1 (Normalized on Amide I at 1662 cm–1) | Intensity of PHB Line at 1736 cm–1 (Normalized on DNA at 785 cm–1) |
---|---|---|---|
Cupriavidus necator H16 | 12.1 | 0.17 | 0.39 |
MS medium, 5 g/L fructose, 1 g/L (NH4)2SO4, from Petri dish, 72 h of cultivation | |||
Cupriavidus necator H16 | 26.1 | 0.55 | 2.0 |
MS medium, 5 g/L fructose, 3 g/L (NH4)2SO4, 72 h of cultivation | |||
Cupriavidus necator H16 | 30.6 | 0.65 | 2.7 |
NB medium, 24 h of cultivation | |||
Cupriavidus necator H16 | 59.1 | 1.8 | 5.8 |
MS medium, 20 g/L fructose, 1 g/L (NH4)2SO4, 24 h of cultivation | |||
Cupriavidus necator H16 | 65.4 | 2.0 | 7.0 |
MS medium, 20 g/L fructose, 3 g/L (NH4)2SO4, 24 h of cultivation | |||
Cupriavidus necator H16 | 67.7 | 2.2 | 7.2 |
MS medium, 20 g/L fructose, 3 g/l (NH4)2SO4, 24 h of cultivation | |||
Cupriavidus necator H16 | 69.2 | 2.2 | 7.3 |
MS medium, 20 g/L fructose, 3 g/L (NH4)2SO4, 72 h of cultivation | |||
Cupriavidus necator H16 | 90.0 | 3.2 | 9.4 |
MS medium, 20 g/L fructose, 3 g/L (NH4)2SO4, 72 h of cultivation |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Samek, O.; Obruča, S.; Šiler, M.; Sedláček, P.; Benešová, P.; Kučera, D.; Márova, I.; Ježek, J.; Bernatová, S.; Zemánek, P. Quantitative Raman Spectroscopy Analysis of Polyhydroxyalkanoates Produced by Cupriavidus necator H16. Sensors 2016, 16, 1808. https://doi.org/10.3390/s16111808
Samek O, Obruča S, Šiler M, Sedláček P, Benešová P, Kučera D, Márova I, Ježek J, Bernatová S, Zemánek P. Quantitative Raman Spectroscopy Analysis of Polyhydroxyalkanoates Produced by Cupriavidus necator H16. Sensors. 2016; 16(11):1808. https://doi.org/10.3390/s16111808
Chicago/Turabian StyleSamek, Ota, Stanislav Obruča, Martin Šiler, Petr Sedláček, Pavla Benešová, Dan Kučera, Ivana Márova, Jan Ježek, Silva Bernatová, and Pavel Zemánek. 2016. "Quantitative Raman Spectroscopy Analysis of Polyhydroxyalkanoates Produced by Cupriavidus necator H16" Sensors 16, no. 11: 1808. https://doi.org/10.3390/s16111808