Beyond Soil Health: The Microbial Implications of Conservation Agriculture
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soil Sampling
2.3. Analysis of Chemical and Biological Variables
2.4. Study of Bacterial Communities in the Soil
2.5. Statistical Analysis
3. Results and Discussion
3.1. Effect of Tillage and Residue Management Practices on Soil Chemical and Biological Properties and Crop Yield
3.2. Bacterial Communities Under Different Tillage and Residue Management Practices
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. Save and Grow in Practice: Maize, Rice and Wheat. Available online: https://www.fao.org/3/i4009e/i4009e.pdf (accessed on 26 November 2024).
- Michler, J.D.; Baylis, K.; Arends-Kuenning, M.; Mazvimavi, K. Conservation Agriculture and Climate Resilience. J. Environ. Econ. Manag. 2019, 93, 148–169. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Wang, C.; Luo, Y. Meta-Analysis of the Impacts of Global Change Factors on Soil Microbial Diversity and Functionality. Nat. Commun. 2020, 11, 3072. [Google Scholar] [CrossRef]
- Hallama, M.; Pekrun, C.; Pilz, S.; Jarosch, K.A.; Frąc, M.; Uksa, M.; Marhan, S.; Kandeler, E. Interactions between Cover Crops and Soil Microorganisms Increase Phosphorus Availability in Conservation Agriculture. Plant Soil 2021, 463, 307–328. [Google Scholar] [CrossRef]
- Dubey, A.; Malla, M.A.; Khan, F.; Chowdhary, K.; Yadav, S.; Kumar, A.; Sharma, S.; Khare, P.K.; Khan, M.L. Soil Microbiome: A Key Player for Conservation of Soil Health under Changing Climate. Biodivers. Conserv. 2019, 28, 2405–2429. [Google Scholar] [CrossRef]
- Zheng, Q.; Hu, Y.; Zhang, S.; Noll, L.; Böckle, T.; Dietrich, M.; Herbold, C.W.; Eichorst, S.A.; Woebken, D.; Richter, A.; et al. Soil Multifunctionality Is Affected by the Soil Environment and by Microbial Community Composition and Diversity. Soil Biol. Biochem. 2019, 136, 107521. [Google Scholar] [CrossRef] [PubMed]
- Yarwood, S.A. The Role of Wetland Microorganisms in Plant-Litter Decomposition and Soil Organic Matter Formation: A Critical Review. FEMS Microbiol. Ecol. 2018, 94, fiy175. [Google Scholar] [CrossRef] [PubMed]
- Xue, P.-P.; Carrillo, Y.; Pino, V.; Minasny, B.; McBratney, A.B. Soil Properties Drive Microbial Community Structure in a Large Scale Transect in South Eastern Australia. Sci. Rep. 2018, 8, 11725. [Google Scholar] [CrossRef]
- Schimel, J.P. Life in Dry Soils: Effects of Drought on Soil Microbial Communities and Processes. Annu. Rev. Ecol. Evol. Syst. 2018, 49, 409–432. [Google Scholar] [CrossRef]
- Francaviglia, R.; Almagro, M.; Vicente-Vicente, J.L. Conservation Agriculture and Soil Organic Carbon: Principles, Processes, Practices and Policy Options. Soil Syst. 2023, 7, 17. [Google Scholar] [CrossRef]
- Wang, H.; Wang, S.; Wang, R.; Wang, X.; Li, J. Conservation Tillage Increased Soil Bacterial Diversity and Improved Soil Nutrient Status on the Loess Plateau in China. Arch. Agron. Soil Sci. 2020, 66, 1509–1519. [Google Scholar] [CrossRef]
- Dev, P.; Khandelwal, S.; Yadav, S.C.; Arya, V.; Mali, H.R.; Poonam; Yadav, K.K. Conservation Agriculture for Sustainable Agriculture. Int. J. Plant Soil Sci. 2023, 35, 1–11. [Google Scholar] [CrossRef]
- Khan, M.H.; Liu, H.; Zhu, A.; Khan, M.H.; Hussain, S.; Cao, H. Conservation Tillage Practices Affect Soil Microbial Diversity and Composition in Experimental Fields. Front. Microbiol. 2023, 14, 1227297. [Google Scholar] [CrossRef]
- Martínez-García, L.B.; Korthals, G.; Brussaard, L.; Jørgensen, H.B.; De Deyn, G.B. Organic Management and Cover Crop Species Steer Soil Microbial Community Structure and Functionality along with Soil Organic Matter Properties. Agric. Ecosyst. Environ. 2018, 263, 7–17. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, L.; Yang, J.; Duan, Y.; Luo, Y.; Taherzadeh, M.J.; Li, Y.; Li, H.; Awasthi, M.K.; Zhao, Z. The Diversity of Microbial Community and Function Varied in Response to Different Agricultural Residues Composting. Sci. Total Environ. 2020, 715, 136983. [Google Scholar] [CrossRef]
- Li, Y.; Chang, S.X.; Tian, L.; Zhang, Q. Conservation Agriculture Practices Increase Soil Microbial Biomass Carbon and Nitrogen in Agricultural Soils: A Global Meta-Analysis. Soil Biol. Biochem. 2018, 121, 50–58. [Google Scholar] [CrossRef]
- Kraut-Cohen, J.; Zolti, A.; Shaltiel-Harpaz, L.; Argaman, E.; Rabinovich, R.; Green, S.J.; Minz, D. Effects of Tillage Practices on Soil Microbiome and Agricultural Parameters. Sci. Total Environ. 2020, 705, 135791. [Google Scholar] [CrossRef] [PubMed]
- Julio-Miranda, P.; Ortíz-Rodríguez, A.J.; Palacio-Aponte, A.G.; López-Doncel, R.; Barboza-Gudiño, R. Damage Assessment Associated with Land Subsidence in the San Luis Potosi-Soledad de Graciano Sanchez Metropolitan Area, Mexico, Elements for Risk Management. Nat. Hazards 2012, 64, 751–765. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, 4th ed.; International Union of Soil Sciences (IUSS): Vienna, Austria, 2022. [Google Scholar]
- Walkley, A.; Black, I.A. An Examination of the Degtjareff Method for Determining Soil Organic Matter, and a Proposed Modification of the Chromic Acid Titration Method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Palma, R.M.; Arrigo, N.M.; Saubidet, M.I.; Conti, M.E. Chemical and Biochemical Properties as Potential Indicators of Disturbances. Biol. Fertil. Soils 2000, 32, 381–384. [Google Scholar] [CrossRef]
- Wright, S.F.; Upadhyaya, A. Extraction of an Abundant and Unusual Protein from Soil and Comparison with Hyphal Protein of Arbuscular Mycorrhizal Fungi. Soil Sci. 1996, 161, 575–586. [Google Scholar] [CrossRef]
- Luna, L.; Miralles, I.; Andrenelli, M.C.; Gispert, M.; Pellegrini, S.; Vignozzi, N.; Solé-Benet, A. Restoration Techniques Affect Soil Organic Carbon, Glomalin and Aggregate Stability in Degraded Soils of a Semiarid Mediterranean Region. Catena 2016, 143, 256–264. [Google Scholar] [CrossRef]
- Bradford, M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Crop J. 1975, 5, 407–415. [Google Scholar] [CrossRef] [PubMed]
- Germida, J.J.; De Freitas, J.R. Cultural Methods for Soil and Root-Associated Microorganisms. In Soil Sampling and Methods of Analysis, 2nd ed.; Carter, M.R., Gregorich, E.G., Eds.; CRC Press: Boca Raton, FL, USA, 2006; pp. 341–353. [Google Scholar]
- Stagnari, F.; Perpetuini, G.; Tofalo, R.; Campanelli, G.; Leteo, F.; Della Vella, U.; Schirone, M.; Suzzi, G.; Pisante, M. Long-Term Impact of Farm Management and Crops on Soil Microorganisms Assessed by Combined DGGE and PLFA Analyses. Front. Microbiol. 2014, 5, 644. [Google Scholar] [CrossRef]
- Anderson, J.P.E. Soil Respiration. In Methods of Soil Analysis Part 2: Chemical and Microbiological Properties, 2nd ed.; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; American Society of Agronomy, Inc.: Madison, WI, USA; Soil Science Society of America, Inc.: Madison, WI, USA, 1982; pp. 831–871. [Google Scholar] [CrossRef]
- Saiya-Cork, K.R.; Sinsabaugh, R.L.; Zak, D.R. The Effects of Long Term Nitrogen Deposition on Extracellular Enzyme Activity in an Acer Saccharum Forest Soil. Soil Biol. Biochem. 2002, 34, 1309–1315. [Google Scholar] [CrossRef]
- Eivazi, F.; Tabatabai, M.A. Glucosidases and Galactosidases in Soils. Soil Biol. Biochem. 1988, 20, 601–606. [Google Scholar] [CrossRef]
- Klindworth, A.; Pruesse, E.; Schweer, T.; Peplies, J.; Quast, C.; Horn, M.; Glöckner, F.O. Evaluation of General 16S Ribosomal RNA Gene PCR Primers for Classical and Next-Generation Sequencing-Based Diversity Studies. Nucleic Acids Res. 2013, 41, e1. [Google Scholar] [CrossRef] [PubMed]
- Illumina Nextera XT DNA Library Prep Kit Reference Guide (15031942). Available online: https://support.illumina.com/downloads/nextera_xt_sample_preparation_guide_15031942.html (accessed on 20 January 2022).
- Illumina 16S Metagenomic Sequencing Library. Available online: http://support.illumina.com/content/dam/illumina-support/documents/documentation/chemistry_documentation/16s/16s-metagenomic-library-prep-guide-15044223-b.pdf (accessed on 20 January 2022).
- Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Fierer, N.; Peña, A.G.; Goodrich, J.K.; Gordon, J.I.; et al. QIIME Allows Analysis of High-Throughput Community Sequencing Data. Nat. Methods 2010, 7, 335–336. [Google Scholar] [CrossRef]
- Zhang, J.; Kobert, K.; Flouri, T.; Stamatakis, A. PEAR: A Fast and Accurate Illumina Paired-End ReAd MergeR. Bioinformatics 2014, 30, 614–620. [Google Scholar] [CrossRef]
- Edgar, R.C. Search and Clustering Orders of Magnitude Faster than BLAST. Bioinformatics 2010, 26, 2460–2461. [Google Scholar] [CrossRef]
- Yoon, S.H.; Ha, S.M.; Kwon, S.; Lim, J.; Kim, Y.; Seo, H.; Chun, J. Introducing EzBioCloud: A Taxonomically United Database of 16S RRNA Gene Sequences and Whole-Genome Assemblies. Int. J. Syst. Evol. Microbiol. 2017, 67, 1613–1617. [Google Scholar] [CrossRef]
- McDonald, D.; Price, M.N.; Goodrich, J.; Nawrocki, E.P.; DeSantis, T.Z.; Probst, A.; Andersen, G.L.; Knight, R.; Hugenholtz, P. An Improved Greengenes Taxonomy with Explicit Ranks for Ecological and Evolutionary Analyses of Bacteria and Archaea. ISME J. 2012, 6, 610–618. [Google Scholar] [CrossRef]
- Chatterjee, A.; Lal, R. On Farm Assessment of Tillage Impact on Soil Carbon and Associated Soil Quality Parameters. Soil Tillage Res. 2009, 104, 270–277. [Google Scholar] [CrossRef]
- Mumu, N.J.; Ferdous, J.; Riza, I.J.; Jahiruddin, M.; Islam, K.R.; Bell, R.W.; Jahangir, M. Glomalin as a Soil Quality Indicator in Long-Term Agricultural Practices. 2024. Available online: https://ssrn.com/abstract=4961851 (accessed on 5 November 2024).
- Wright, S.F.; Anderson, R.L. Aggregate Stability and Glomalin in Alternative Crop Rotations for the Central Great Plains. Biol. Fertil. Soils 2000, 31, 249–253. [Google Scholar] [CrossRef]
- Wang, Y.; Li, C.; Tu, C.; Hoyt, G.D.; DeForest, J.L.; Hu, S. Long-Term No-Tillage and Organic Input Management Enhanced the Diversity and Stability of Soil Microbial Community. Sci. Total Environ. 2017, 609, 341–347. [Google Scholar] [CrossRef]
- Zhao, J.; Chen, S.; Hu, R.; Li, Y. Aggregate Stability and Size Distribution of Red Soils under Different Land Uses Integrally Regulated by Soil Organic Matter, and Iron and Aluminum Oxides. Soil Tillage Res. 2017, 167, 73–79. [Google Scholar] [CrossRef]
- Dai, H.; Zhang, H.; Li, Z.; Liu, K.; Zamanian, K. Tillage Practice Impacts on the Carbon Sequestration Potential of Topsoil Microbial Communities in an Agricultural Field. Agronomy 2020, 11, 60. [Google Scholar] [CrossRef]
- Galazka, A.; Gawryjolek, K.; Grzadziel, J.; Ksiezak, J. Effect of Different Agricultural Management Practices on Soil Biological Parameters Including Glomalin Fraction. Plant Soil Environ. 2017, 63, 300–306. [Google Scholar] [CrossRef]
- Kumar, R.; Choudhary, J.S.; Naik, S.K.; Mondal, S.; Mishra, J.S.; Poonia, S.P.; Kumar, S.; Hans, H.; Kumar, S.; Das, A.; et al. Influence of Conservation Agriculture-Based Production Systems on Bacterial Diversity and Soil Quality in Rice-Wheat-Greengram Cropping System in Eastern Indo-Gangetic Plains of India. Front. Microbiol. 2023, 14, 1181317. [Google Scholar] [CrossRef]
- Xia, Q.; Rufty, T.; Shi, W. Soil Microbial Diversity and Composition: Links to Soil Texture and Associated Properties. Soil Biol. Biochem. 2020, 149, 107953. [Google Scholar] [CrossRef]
- Gohain, A.; Manpoong, C.; Saikia, R.; De Mandal, S. Actinobacteria: Diversity and Biotechnological Applications. In Recent Advancements in Microbial Diversity; Elsevier: Amsterdam, The Netherlands, 2020; pp. 217–231. [Google Scholar]
- Tang, H.; Xiao, X.; Xu, Y.; Li, C.; Cheng, K.; Pan, X.; Li, W. Utilization of Carbon Sources in the Rice Rhizosphere and Nonrhizosphere Soils with Different Long-term Fertilization Management. J. Basic Microbiol. 2019, 59, 621–631. [Google Scholar] [CrossRef]
- Treonis, A.M.; Austin, E.E.; Buyer, J.S.; Maul, J.E.; Spicer, L.; Zasada, I.A. Effects of Organic Amendment and Tillage on Soil Microorganisms and Microfauna. Appl. Soil Ecol. 2010, 46, 103–110. [Google Scholar] [CrossRef]
- Gupta, A.; Singh, U.B.; Sahu, P.K.; Paul, S.; Kumar, A.; Malviya, D.; Singh, S.; Kuppusamy, P.; Singh, P.; Paul, D.; et al. Linking Soil Microbial Diversity to Modern Agriculture Practices: A Review. Int. J. Environ. Res. Public Health 2022, 19, 3141. [Google Scholar] [CrossRef]
- Sinsabaugh, R.L. Phenol Oxidase, Peroxidase and Organic Matter Dynamics of Soil. Soil Biol. Biochem. 2010, 42, 391–404. [Google Scholar] [CrossRef]
- Li, Y.; Song, D.; Liang, S.; Dang, P.; Qin, X.; Liao, Y.; Siddique, K.H.M. Effect of No-Tillage on Soil Bacterial and Fungal Community Diversity: A Meta-Analysis. Soil Tillage Res. 2020, 204, 104721. [Google Scholar] [CrossRef]
- Zhao, F.Z.; Fan, X.D.; Ren, C.J.; Zhang, L.; Han, X.H.; Yang, G.H.; Wang, J.; Doughty, R. Changes of the Organic Carbon Content and Stability of Soil Aggregates Affected by Soil Bacterial Community after Afforestation. Catena 2018, 171, 622–631. [Google Scholar] [CrossRef]
- Ramirez-Villanueva, D.A.; Bello-López, J.M.; Navarro-Noya, Y.E.; Luna-Guido, M.; Verhulst, N.; Govaerts, B.; Dendooven, L. Bacterial Community Structure in Maize Residue Amended Soil with Contrasting Management Practices. Appl. Soil Ecol. 2015, 90, 49–59. [Google Scholar] [CrossRef]
- Zhang, H.; Ullah, F.; Ahmad, R.; Ali Shah, S.U.; Khan, A.; Adnan, M. Response of Soil Proteobacteria to Biochar Amendment in Sustainable Agriculture- A Mini Review. J. Soil Plant Environ. 2022, 1, 16–30. [Google Scholar] [CrossRef]
- Bei, S.; Zhang, Y.; Li, T.; Christie, P.; Li, X.; Zhang, J. Response of the Soil Microbial Community to Different Fertilizer Inputs in a Wheat-Maize Rotation on a Calcareous Soil. Agric. Ecosyst. Environ. 2018, 260, 58–69. [Google Scholar] [CrossRef]
- Luan, H.; Gao, W.; Huang, S.; Tang, J.; Li, M.; Zhang, H.; Chen, X.; Masiliūnas, D. Substitution of Manure for Chemical Fertilizer Affects Soil Microbial Community Diversity, Structure and Function in Greenhouse Vegetable Production Systems. PLoS ONE 2020, 15, e0214041. [Google Scholar] [CrossRef] [PubMed]
- Jayaraman, S.; Dang, Y.P.; Naorem, A.; Page, K.L.; Dalal, R.C. Conservation Agriculture as a System to Enhance Ecosystem Services. Agriculture 2021, 11, 718. [Google Scholar] [CrossRef]
- Selmani, Z.; Attard, E.; Lauga, B.; Barakat, M.; Ortet, P.; Tulumello, J.; Achouak, W.; Kaci, Y.; Heulin, T. Culturing the Desert Microbiota. Front. Microbiol. 2023, 14, 1098150. [Google Scholar] [CrossRef] [PubMed]
- Molina-Menor, E.; Gimeno-Valero, H.; Pascual, J.; Peretó, J.; Porcar, M. High Culturable Bacterial Diversity From a European Desert: The Tabernas Desert. Front. Microbiol. 2021, 11, 583120. [Google Scholar] [CrossRef]
- Normand, P. Geodermatophilaceae Fam. Nov., a Formal Description. Int. J. Syst. Evol. Microbiol. 2006, 56, 2277–2278. [Google Scholar] [CrossRef] [PubMed]
- Basu, S.; Kumar, G. Nitrogen Fixation in a Legume-Rizobium Symbiosis: The Roots of a Success Story. In Plant Microbe Symbiosis; Varma, A., Tripathi, S., Prasad, R., Eds.; Springer Nature: Cham, Switzerland, 2020; pp. 115–128. ISBN 9783030362478. [Google Scholar]
- Mateos, P.F.; Rivas, R.; Robledo, M.; Velázquez, E.; Martúnez-Molina, E.; Emerich, D.W. The Path of Rhizobia: From a Free-living Soil Bacterium to Root Nodulation. In Ecological Aspects of Nitrogen Metabolism in Plants; Wiley: Hoboken, NJ, USA, 2011; pp. 167–194. [Google Scholar]
- Torabian, S.; Farhangi-Abriz, S.; Denton, M.D. Do Tillage Systems Influence Nitrogen Fixation in Legumes? A Review. Soil Tillage Res. 2019, 185, 113–121. [Google Scholar] [CrossRef]
- Liang, J.; Klingl, A.; Lin, Y.Y.; Boul, E.; Thomas-Oates, J.; Marín, M. A Subcompatible Rhizobium Strain Reveals Infection Duality in Lotus. J. Exp. Bot. 2019, 70, 1903–1913. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Rathva, H.K.; Sahay, T.; Dhanjal, D.S.; Chopra, C.; Singh, R. Gemmata Obscuriglobus: A Connecting Link between Prokaryotic and Eukaryotic Cell. Biologia 2020, 75, 2433–2439. [Google Scholar] [CrossRef]
- de Cos-Gandoy, A.; Serrano-Bellón, A.; Macías-Daza, M.; Pérez-Uz, B.; Williams, R.A.J.; Sanchez-Jimenez, A.; Martín-Cereceda, M. Bacterial Community Structure and Patterns of Diversity in the Sediments of Mountain Rock Basins from a National Park. Diversity 2024, 16, 544. [Google Scholar] [CrossRef]
- Rong, L.; Zhao, L.; Zhao, L.; Cheng, Z.; Yao, Y.; Yuan, C.; Wang, L.; Sun, H. LDPE Microplastics Affect Soil Microbial Communities and Nitrogen Cycling. Sci. Total Environ. 2021, 773, 145640. [Google Scholar] [CrossRef] [PubMed]
- Neina, D. The Role of Soil PH in Plant Nutrition and Soil Remediation. Appl. Environ. Soil Sci. 2019, 2019, 5794869. [Google Scholar] [CrossRef]
- Mhadhbi, H.; Mylona, P.V.; Polidoros, A. Legume-Rhizobia Symbiotic Performance under Abiotic Stress: Factors Incluencing Tolerance Behaviour. In Legume Under Enviroments Stresss: Yield, Improvement and Adaptations; Azooz, M.M., Ahmad, P., Eds.; Wiley: Hoboken, NJ, USA, 2015; Volume 1. [Google Scholar]
Treatment Notation | Treatment | Description |
---|---|---|
P + H | Plow + harrow | Soil was plowed at a depth of 25–30 cm plus harrowed at the same depth. |
H | Harrow | A harrow has disks that penetrated the soil at a depth of 25–30 cm to break up and smooth out the surface of the soil |
MP | Multi-plow | From 1995 to 2017, this land was treated with P + H. Its management changed to no-tillage from 2018 (3 years at the time of the sampling) |
NT | No-tillage | Zero-tillage without crop residue incorporation |
NT33 | No-tillage + 33% residue surface cover | Zero-tillage with 33% of soil surface covered with previous crop residue (1.3 t/ha of annual stubble) |
NT66 | No-tillage + 66% residue surface cover | Zero-tillage with 66% of soil surface covered with previous crop residue (2.6 t/ha of annual stubble) |
Treatment | pH | EC ms cm−3 | SOM % | TC % | T-GRSP mg g−1 | DE-GRSP mg g−1 | EE-GRSP mg g−1 |
---|---|---|---|---|---|---|---|
P + H | 8.09 ± 0.14 a | 531.87 ± 15.20 a | 2.24 ± 0.08 d | 2.06 ± 0.03 c | 0.63 ± 0.03 d | 0.60 ± 0.03 c | 0.03 ± 0.00 d |
H | 7.97 ± 0.00 b | 443.77 ± 2.87 ab | 2.29 ± 0.04 d | 2.08 ± 0.03 c | 0.60 ± 0.03 d | 0.57 ± 0.03 c | 0.03 ± 0.00 d |
MP | 7.99 ± 0.04 b | 427.80 ± 30.94 b | 2.42 ± 0.04 c | 2.38 ± 0.09 b | 0.84 ± 0.01 c | 0.81 ± 0.01 b | 0.03 ± 0.00 c |
NT | 7.85 ± 0.03 d | 448.70 ± 59.73 ab | 3.05 ± 0.00 a | 2.63 ± 0.07 a | 0.87 ± 0.02 b | 0.82 ± 0.02 b | 0.05 ± 0.00 b |
NT33 | 7.94 ± 0.01 c | 318.80 ± 36.17 c | 3.12 ± 0.07 a | 2.68 ± 0.23 a | 0.90 ± 0.05 b | 0.84 ± 0.04 b | 0.05 ± 0.00 b |
NT66 | 7.90 ± 0.01 cd | 353.47 ± 52.65 c | 2.88 ± 0.04 b | 2.39 ± 0.07 b | 1.65 ± 0.03 a | 1.58 ± 0.03 a | 0.07 ± 0.00 a |
p | 0.008 T | 0 C | 0.006 C | 0.013 C | 0.008 C | 0.011 C | 0.008 C |
Treatment | FUN CFU × 106 g−1 | BAC CFU × 106 g−1 | ACT CFU × 106 g−1 | POX µmol g−1 h−1 | PPO µmol g−1 h−1 | β-gal mg pNP g−1 | BRR µg g−1 h−1 |
---|---|---|---|---|---|---|---|
P + H | 2.7 ± 0.6 bc | 7.4 E ± 2.8 bc | 5.5 ± 0.7 a | 11.79 ± 0.58 a | 10.75 ± 0.70 bc | 24.10 ± 0.34 d | 58.38 ± 7.22 a |
H | 2.0 ± 0.0 c | 7.1 E ± 2.9 b | 1.7 ± 0.5 a | 10.21 ± 1.09 b | 12.39 ± 0.99 a | 22.99 ± 1.30 d | 58.38 ± 7.22 a |
MP | 3.3 ± 0.6 b | 4.0 ± 0.35 c | 4.5 ± 2.2 a | 10.45 ± 0.17 b | 12.11 ± 0.09 a | 28.08 ± 1.73 c | 66.72 ± 7.22 a |
NT | 4.3 ± 2.1 b | 11.0 ± 1.0 a | 1.9 ± 0.1 a | 9.26 ± 1.72 b | 13.43 ± 1.70 a | 34.12 ± 0.44 a | 70.89 ± 7.22 a |
NT33 | 9.0 ± 3.5 a | 12.0 ± 2.7 a | 3.6 ± 1.7 a | 12.23 ± 1.50 a | 10.55 ± 1.46 b | 33.49 ± 1.57 ab | 58.38 ± 7.22 a |
NT66 | 8.0 ± 3.0 a | 3.9 ± 0.95 c | 4.5 ± 1.3 a | 10.84 ± 0.28 b | 11.89 ± 0.26 ab | 32.32 ± 0.88 a | 54.21 ± 7.22 a |
p | 0.021 C | 0.018 C | 0.051 T | 0.028 C | 0.04 C | 0.009 C | 0.15 C |
Treatment | Total | Merged | Discarded | CD | QS | BS | OTUs |
---|---|---|---|---|---|---|---|
P + H | 88,986 | 77,052 | 55,027 | 1229 | 54,070 | 45,052 | 18,043 |
H | 96,823 | 36,244 | 60,579 | 484 | 35,629 | 28,738 | 10,662 |
MP | 110,814 | 40,994 | 69,820 | 647 | 40,189 | 33,610 | 12,816 |
NT | 113,980 | 50,807 | 63,173 | 884 | 49,738 | 44,355 | 21,674 |
NT33 | 106,341 | 39,717 | 66,624 | 1323 | 38,254 | 31,245 | 10,708 |
NT66 | 115,445 | 39,679 | 75,766 | 592 | 38,932 | 34,493 | 15,989 |
Mean | 105,398 | 47,415 | 65,165 | 860 | 42,802 | 36,249 | 14,982 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santellanez-Arreola, K.; Martínez-Gamiño, M.Á.; Constante-García, V.; Arreola-Ávila, J.; García-De la Peña, C.; Siller-Rodríguez, Q.K.; Trejo-Calzada, R.; Nava-Reyna, E. Beyond Soil Health: The Microbial Implications of Conservation Agriculture. Diversity 2025, 17, 90. https://doi.org/10.3390/d17020090
Santellanez-Arreola K, Martínez-Gamiño MÁ, Constante-García V, Arreola-Ávila J, García-De la Peña C, Siller-Rodríguez QK, Trejo-Calzada R, Nava-Reyna E. Beyond Soil Health: The Microbial Implications of Conservation Agriculture. Diversity. 2025; 17(2):90. https://doi.org/10.3390/d17020090
Chicago/Turabian StyleSantellanez-Arreola, Kassandra, Miguel Ángel Martínez-Gamiño, Vicenta Constante-García, Jesús Arreola-Ávila, Cristina García-De la Peña, Quetzaly Karmy Siller-Rodríguez, Ricardo Trejo-Calzada, and Erika Nava-Reyna. 2025. "Beyond Soil Health: The Microbial Implications of Conservation Agriculture" Diversity 17, no. 2: 90. https://doi.org/10.3390/d17020090
APA StyleSantellanez-Arreola, K., Martínez-Gamiño, M. Á., Constante-García, V., Arreola-Ávila, J., García-De la Peña, C., Siller-Rodríguez, Q. K., Trejo-Calzada, R., & Nava-Reyna, E. (2025). Beyond Soil Health: The Microbial Implications of Conservation Agriculture. Diversity, 17(2), 90. https://doi.org/10.3390/d17020090