The Axes of Divergence for the Evolutionary Radiation of Notothenioid Fishes in Antarctica
Abstract
:1. Introduction
2. The Stages and Axes of the «Cryonotothenioid» Radiation
2.1. Habitat Stage—Axis 1: Depth, Represented by Maximum Depth
2.2. Habitat Stage—Axis 2: Biotopes, with Percentage Buoyancy Values (%B) Used as Proxies for Subdivisions within the Pelagic and Benthic Realms
- Pelagic biotope (%B = 0–0.5), 5% of species. The water column is irrespective of depth. In some species, neutral buoyancy may not be permanent and is contingent on the availability of lipid-rich prey.
- Semipelagic biotope (%B = 1.3–2.0), 10% of species. The water column and the substrate. Some species previously considered cryopelagic or epibenthic, based on ecomorphological measurements, are here included as occupying the semipelagic or demersal biotopes.
- Demersal biotope (%B = 2.4–4.6), 73% of species. The substrate or water column near the substrate, irrespective of depth. The term benthopelagic is not used because it limits the implied habitat depth to within 100 m of the substrate (Lincoln et al., 1998, p. 37) [66]. Demersal more accurately reflects the ecological plasticity of the species that occupy this biotope.
- Benthic biotope (%B = 5.0–7.0), 12% of species. The substrate, including the intertidal zone in areas where this exists. Species occupying this biotope are frequently in contact with the substrate.
2.3. Morphology Stage—Axis 3: Body Size, as Represented by Maximum Total Length
2.4. Morphology Stage—Axis 4: Body Density, Based on Relative Proportions of Skeletal and Adipose Tissues
- Reduction in bone mass—predominance of various forms of cancellous rather than compact bone. The type of bone, whether cancellous (light and spongy) or compact (heavy and dense), influences its density by as much as 4-fold (Wainwright et al., 1976, p. 167) [126]. Cavities in cancellous bone decrease the bone mass but also provide space for low-density lipid that further decreases overall body density (Pelster, 1998) [127]. Examples of this are seen in the vertebral centra of many «cryonotothenioids». In Notothenia coriiceps and N. rossii the relative skeletal masses are 2.45% and 1.65%, respectively (Eastman et al., 2014) [42]. In both species compact bone in the vertebral centra is confined to the periphery and adjacent to the notochordal vacuoles (Figure 12e). The majority of the centrum is composed of cancellous bone with adipocytes occupying cavities of various sizes. However, there are different degrees of bone sponginess, and this can decrease or increase bone mass and overall body density. In N. coriiceps (Figure 12a,c,f), the volume of the bone space is less than the volume of cavity space whereas the situation is reversed in N. rossii (Figure 12b,d). Surface area measurements from histological sections (Figure 12c,d) show that the bone-space: cavity-space ratios are 44:56 for N. coriiceps and 63:37 for N. rossii. Thus, N. rossii has more bone and less lipid-containing cavity space, and this accounts for the significantly greater relative mass of the vertebral column in this species—28% of skeletal mass versus 24% in N. coriiceps (t = –3.766, p < 0.02) (Eastman et al., 2011) [42]. A more substantial vertebral bone mass may be a response to the increased stress on the column experienced during subcarangiform locomotion by the relatively more active N. rossii. This is paradoxical in the sense that the overall percentage skeletal mass and percentage buoyancy values are lower in N. rossii, but regional specialization does exist in the skeletal system.Figure 12. Bone of the vertebral centra of the sister species N. coriiceps (a,c,e) and N. rossii (b,d). (a,b) Left lateral views of the centra of the last abdominal and first caudal vertebrae of similarly sized specimens. Both species have predominantly cancellous bone, but the mesh is finer (smaller cavities and larger bony trabeculae) in N. rossii. Original magnifications, ×7.0 and ×7.5. (c,d) Histological sections of centra show the distribution of red-staining bony trabeculae and lipid-filled spaces in the centrally located cancellous bone. Compact bone (asterisks) of the amphicelous centra is located at the periphery adjacent to notochordal cavities containing notochordal vacuoles (NV). Long axes of spaces marked by daggers are 420 µm and 225 µm, respectively. ×27 and ×27. (e) A midsagittal section of ananterior caudal vertebra of N. coriiceps, sanded to show the limited extent of compact bone (asterisks) and its location around the notochordal cavities with the remainder of the centrum consisting of cancellous bone. This species has a small notochordal canal (NC) in the middle of each centrum. ×12. (f) Parasagittal histological section of an anterior caudal vertebra of N. coriiceps showing spongy bone and smooth-walled lipid-filled cavities. Arrows indicate accumulation of stain at growth checks in bone. The long axis of space marked by the dagger is 420 µm. ×83. From Eastman et al. (2011 [68], Figure 4), © Inter-Research, 2011, with permission.
- Neotenic retention of cartilage reduces bone mass in the adult skeleton. The delay in bone development and persistence of cartilage in the adult skeleton is a pedomorphic aspect of skeletal development (Voskoboinikova, 2001, 2010) [116,118] that reduces overall skeletal mass. This is characteristic of the neurocranium, branchial skeleton, and pectoral and pelvic girdles in many «cryonotothenioids». Much of the skull of specimens of Dissostichus mawsoni and channichthyids is cartilage overlain by a thin veneer of dermal bone. A radiograph of the endochondral pectoral girdle of D. mawsoni shows a range of skeletal tissues: a small amount of peripheral compact bone, cancellous bone, and a core of persisting cartilage (Figure 13). This is even more evident in channichthyids, a clade characterized by the late appearance and minimal development of bony elements. This group has more persistent cartilage in adults than in any other «cryonotothenioid» family (Voskoboinikova, 1997, 2010) [118,128]. Figure 11 bottom demonstrates the relatively small amount of bone in the neurocranium and branchiopharyngeal and pectoral regions. Figure 14a,b shows the large extent of persisting cartilage in the adult neurocranium and the thin superficial layer of dermal bone.Figure 13. Radiograph of a transverse section of the pectoral fin of Dissostichus mawsoni showing that the pectoral girdle is composed of a core of cartilage (C), surrounded by cancellous bone (B) of differing degrees of porosity (arrows), although the bone mineral content is typical of that for teleosts. Abbreviations: D, dermis; M, muscle; S, scales.Figure 14. (a) Dorsal view of the neurocranium of the skull of a fresh adult specimen of the channichthyid Chaenocephalus aceratus (29.4 cm TL). Most of the neurocranium, exemplified by the ethmoid region (E), consists of cartilage. The thin sheathing parasphenoid (PS) bone, of dermal origin, detached from the ventral surface of the neurocranium during maceration and is shown to the right. (b) A histological cross-section shows that the dorsolateral posterior neurocranium of C. aceratus consists primarily of cartilage (C), covered by a thin lamina of red staining bone (B, white arrows) beneath the dermis (D) of the skin.
- Neotenic retention of notochordal tissue displaces and reduces some of the bone mass of vertebral centra. There is extensive interspecific variation in the size of the persisting notochord and vertebral canal in the centra of adult «cryonotothenioids» (Eastman et al., 2014) [42]. This results in the reduction in the mass of vertebral bone, a substantial component of overall skeletal mass. The centra of actinopterygians do not have a cartilaginous stage and develop by progressive mineralization of the notochordal sheath, with a subsequent contribution of bone from the somites (Arratia et al., 2001; Bensimon-Brito et al., 2012) [129,130]. During this process, the vertebral canal becomes progressively diminished in size or eliminated by bone during ontogeny. However, in many «cryonotothenioids», the canal remains partially patent, and the centra exhibit various degrees of “hollowness”, never becoming completely amphicelous (hourglass-shaped). This means that the biconid-shaped layer of compact bone is reduced and that this space is instead occupied by persisting notochordal vacuoles containing fluid that is only slightly denser than seawater (Table 1).
2.5. Morphology Stage—Axis 5: Body Shape
2.6. Morphology Stage—Axis 6: Trophic Morphology, Specifically Oral and Pharyngeal Morphology (Jaws, Teeth, Head Size, and Oral and Pharyngeal Gapes)
- Channichthyids. The channichthyids are distinctive among «cryonotothenioids» in having the largest mean total length, the longest snouts, the largest oral and pharyngeal gapes, and fixed premaxillae. The functional implications of this morphology are that, along with Dissostichus spp., they are the only «cryonotothenioids» capable of ram-strike feeding on relatively large prey in the water column or on the substrate. There are no channichthyids that are obligate benthivores (Voronina & Neelov 2001) [201]. Channichthyids exemplify the divergence of head morphology away from that suited for benthic browsing, involving biting and suction of relatively small prey to consuming large prey such as fish. This transition has involved both the lengthening of the neurocranial base, especially in the ethmoid region (Iwami, 1985; Voskoboinikova, 1997, 2010) [118,128,179] and the widening of the head. The heads are distinctively large, one-third or more SL, with the snout length accounting for ≈50% of head length (HL) in species with the largest heads (Iwami and Kock, 1990) [202].
- Large-headed (≈40% SL) channichthyids. There are three large-headed species of medium-large body size: Chaenocephalus aceratus (TL = 76 cm, HL = 33–42% SL; %B = 3.46), Pseudochaenichthys georgianus (TL = 60 cm, HL = 36–43% SL; %B = 1.96) and Channichthys rhinoceratus (TL = 58 cm, HL = 37–41% SL; %B unknown). These three species are ram-strike predators on fish, and also krill in the case of P. georgianus (Duhamel et al., 2005; Kock 2005) [203,204]. Pseudochaenichthys georgianus differs from the other two species in being semipelagic (%B = 1.96) and it likely feeds in the water column as well as on the substrate. Chaenocephalus aceratus (Figure 21a) has a diet consisting almost exclusively of fish (Figure 22a). They are capable of engulfing large-headed fish including other channichthyids that are 40–50% of their own length (Kock 2005; Reid et al., 2007; Kock et al., 2013) [204,205,206]. Remarkably, a Chaenocephalus aceratus swallowed a Dissostichus mawsoni that was 76% of its length and 41% of its weight (Kock et al., 2013) [206]. In swallowing large prey fishes head-first, the jaws of channichthyids remain partially open for periods of hours as the head of the prey distends and then slowly passes through the pharyngeal gape and into the stomach causing the ventral body wall to become and large pendulous. The caudal trunk of the prey may sometimes protrude from the mouth for 1–2 days in this type of headfirst ram-strike feeding, and complete digestion may take at least five days (Kock et al., 2013 [206]; Eastman, personal observation on aquarium specimens).
- Substrate-perching channichthyid with an elevated bipodal stance. The semipelagic Pagetodes antarcticus (Figure 22b) (TL = 65 cm, HL = 36% SL; %B = 2.53) has pelvic fins that are 23–70% SL, with a mean of 42% (La Mesa et al., 2002) [207]. There is an ontogenetic decrease in the relative size of these fins (La Mesa and Vacchi, 1997) [208]. Perching has been previously reported in this species, but as a “tripod” stance involving the caudal fin with the head down and body angled toward the substrate (Ekau & Gutt 1991, p. 45) [209]. However, based on videos from an ROV, P. antarcticus also balances itself using only the pelvic fins (Figure 22b) that are, in this instance, ≈45% SL. It is not known if the perching behavior encompasses all sizes or is confined primarily to smaller specimens with relatively longer pelvis’. Perching provides elevation and an enhanced view of the substrate and, with no locomotion involved, is energetically efficient. Given the relatively large size of the pelvis’ throughout the range of body lengths, anything other than a bipodal stance may be impossible when the pelvis’ are fully extended toward the substrate. Pagetodes antarcticus preys primarily on fish (Kock, 2005; Kock et al., 2013) [204,206]. In the southern Scotia Arc, this species is able to consume specimens of Chionodraco rastrospinosus that are 60–66% of its own length and 20–26% of its own weight (Kock & Jones 2002) [210]. They also consume krill (Iwami & Kock 1990) [202].
- Semipelagic channichthyids that feed primarily in the water column. This was first recognized by Nybelin (1947, pp. 55, 58) [52]. Chen et al. (1998) [211] confirmed the existence of ecological disparity at some terminal nodes in their cladogram for channichthyids, with sister species occupying demersal and semipelagic biotopes. Below are examples of two species that possess disparate morphology associated with feeding in and habitation of the water column, and a third species that spends time in the water column and on the substrate.
- 2.
- Bathydraconids also exhibit divergent head morphology. Bathydraconids are medium-sized and narrow-bodied. The snout ranges from relatively long and pointed to short and blunt. Longer-headed species include the two species of Parachaenichthys (HL = 41% SL), Cygnodraco mawsoni (HL = 41% SL) and Gymnodraco acuticeps (HL = 37% SL) (Figure 24). Figure 24 also shows that the eyes in some species are dorsolateral and “look up”, possibly attributable to the narrowing of the head, although in some species this might also indicate the primary feeding vector. There is also considerable interspecific variation in the premaxillae and dentaries (Figure 25). As feeders on benthos (Gutt and Ekau, 1996) [218], some of the shorter-headed species like Psilodraco, Prionodraco, and Racovitzia have relatively heavy protrusible jaws with well-developed ascending and articular processes on the premaxillae (Andriashev et al., 1989) [192]. These shorter and more rugged jaws are suited for biting and manipulation of prey during feeding. The ascending and articular processes are reduced or vestigial in Parachaenichthys, Cygnodraco, and Gerlachea (Andriashev et al., 1989; Balushkin and Voskoboinikova, 2011) [192,194]. The elongated snouts and less rugged jaws suggest that these species are ram-strike feeders. The oral and pharyngeal gapes, however, do not approach the size of those in channichthyids. As evident in Akarotaxis and Prionodraco (Figure 25b), the body of the dentary is also larger to accommodate the pores, neuromasts, and branches of the cephalic lateral-line nerve. The following examples highlight some of the disparity in trophic and general morphology.
- Cygnodraco mawsoni and Parachaenichthys spp. Have long narrow heads and snouts, well-muscled trunks (Figure 9d and Figure 24), and are more active predators than most other bathydraconids. Parachaenichthys charcoti is benthic (%B = 5.05); the buoyancy of Cygnodraco is unknown. These species may be short-pursuit predators on and near the substrate. In the case of C. mawsoni, a 49 cm TL specimen held in an aquarium exhibited considerable spontaneous swimming employing both subcarangiform and labriform locomotion. The jaws of Parachaenichthys charcoti (Figure 19a) resemble those of channichthyids (Figure 19b,c) except that they are heavier and the inferior limb of the dentary is larger. Parachaenichthys feeds on fishes and mysids (Targett 1981; Gon, 1990) [72,219], and the diet of Cygnodraco includes fishes, decapods, mysids, amphipods, and polychaetes (Gon, 1990) [219]. Based on their head and jaw morphology, both species are probably ram or ram-suction feeders.
- Vomeridens infuscipinnis (Figure 26) hovers above the substrate using its pectoral fins that are the longest among bathydraconids at 27–30% SL. Those of Parachaenichthys and Cygnodraco are only 16–17% SL. Vomeridens and the five species of Bathydraco have delicate spindle-like trunks. Vomeridens is semipelagic with a %B of 1.61. The stomachs of individuals 168–216 mm SL contained adult krill 46–50 mm in length (Kuhn et al., 2011) [220]. During the Nathaniel B. Palmer Cruise 97-9 in the Ross Sea a towed video camera captured a sequence at 1191 m showing a bathydraconid headed into the current, with body axis held straight, simultaneously using its large fan-shaped pectoral fins, and possibly the smaller pelvic fins, to hover a short distance off the substrate (JM Barry and JT Eastman, personal observation). Although it was not possible to identify the species then, in the light of subsequent research, Vomeridens is a possibility. Vomeridens has considerable persistent cartilage in the skull and pectoral girdle, a partially persistent notochord, and extensive subcutaneous lipid deposits, as well as a deep lipid deposit around the most posterior caudal vertebrae (Kuhn et al., 2011) [220]. Thin skin covers all fins, suggesting minimal contact with the substrate.Figure 24. Divergence in head shape among bathydraconids. Note the greater head lengths in Gymnodraco, Gerlachea, and Parachaenichthys, and the enlarged symphyseal teeth on the dentary of Gymnodraco. Psilodraco, Gymnodraco, Geralchea, and Parachaenichthys are gymnodraconines; others are bathydraconins. Modified from Balushkin and Voskoboinikova (2011, p. 19, Figure 3) [194], with permission of the authors.Figure 25. Divergence in the shape of the premaxillae (a), dentaries (b), and teeth of bathydraconids. Note variation in sizes of the ascending, articular, and postmaxillary processes of the premaxillae, the enlarged teeth in Psilodraco and Gymnodraco, and the enlarged mandibular lateral line pores (arrows) in the dentaries of the bathydraconins Akarotaxis and Prionodraco. Modified from Balushkin and Voskoboinikova (2011, p. 58, Figures 21 and 22) [194], with permission of the authors.
2.7. Morphology Stage—Axis 7: Neuromorphology (Brain and Sensory Systems, including Intraocular Vasculature)
- The brains of the bovichtids Bovichtus diacanthus (Figure 27a,c) and Cottoperca trigloides (Figure 27b,d). Bovichtus diacanthus inhabits tidepools and subtidal areas to depths of 20 m at Tristan da Cunha (37° S) while C. trigloides live at 5–310 m around the Falklands/Malvinas Islands and on the Patagonian shelf. Among the percoid families with known brain morphology, bovichtid brains resemble those of butterflyfishes (chaetodontids), angelfishes (pomacanthids), and cichlids (Bauchot et al., 1989; Huber et al., 1997) [249,250]. The brains of both bovichtids have a well-developed telencephalon and tectum. The telencephalon of C. trigloides is prominently lobed, more so than in any other notothenioid. The corpus cerebelli is relatively small and upright and, unlike other notothenioids, has prominent transverse sulci on the dorsal and caudal surfaces. Areas for lateral-line mechanoreception (eminentia granularis and crista cerebellaris) are also conspicuous but olfactory, gustatory, and somatosensory areas are not prominent. The olfactory nerves are also small. The brain of B. diacanthus is similar to that of C. trigloides but the anterior lateral-line nerve complex is larger, likely because of its innervation of the neuromasts in the extensively branched cephalic lateral canals. Both species also have large optic nerves and duplex (cone and rod) retinae that are 1.25-fold thicker and have nearly 5-fold more photoreceptors than those of most of the «cryonotothenioids».Figure 27. Lateral and dorsal views of brains and cranial nerves of the bovichtids Bovichtus diacanthus (a,c) and Cottoperca trigloides (b,d). From Eastman and Lannoo (2007) [242]. Abbreviations for this and subsequent brain illustrations: ADLL, anterodorsal lateral line nerve complex; AVLL, anteroventral lateral line nerve complex; CC, crista cerebellaris of the rhombencephalon; CCb, corpus division of the cerebellum; Dd, dorsodorsal subdivision of the telencephalon; Dl, dorsal lateral subdivision of the telencephalon; Dm, dorsal medial subdivision of the telencephalon; EG, eminentia granularis division of the cerebellum; Ha, habenula; IL, inferior lobe of the diencephalon; OB, olfactory bulb; Pit, pituitary gland; PLL, posterior lateral line nerve complex; PreO, preoptic area; SN1, first spinal nerve; SN2, second spinal nerve; SN3, third spinal nerve; SV, saccus vasculosus; Tec, tectum of the mesencephalon; Tel, telencephalon; I, olfactory nerve; II, optic nerve; III, oculomotor nerve; IV, trochlear nerve; V, trigeminal nerve; VII, facial nerve; VIII, auditory/vestibular nerve; IX, glossopharyngeal nerve; X, vagus nerve.
- The brain of Eleginops maclovinus, the sister taxon of the «cryonotothenioids». The euryhaline E. maclovinus is migratory and catadromous in the Falklands/Malvinas Islands where it lives at water depths of 0–250 m and temperatures of 0–15 °C (Brickle et al., 2005a,b) [182,183]. As with bovichtids, the brain of E. maclovinus is similar to those of visually oriented temperate and tropical perciforms. The tectum is smaller than in bovichtids but E. maclovinus has well-developed olfactory bulbs and nerves, the latter nearly as large as the optic, and the mechanoreceptive lateral-line areas are also well-developed. There is a large caudally projecting corpus cerebelli (Figure 28a,b). Eye diameter is about twofold smaller in E. maclovinus than in many «cryonotothenioids»; the duplex retina has single and occasional twin cones. The olfactory rosette has 50–55 lamellae, a large number for any notothenioid and, given the large size of the olfactory nerve, olfaction is likely an important modality in this species. Eleginops maclovinus, and some species of «cryonotothenioids», also share an expansion of the proximal olfactory nerve immediately rostral to the olfactory bulb. The expansion, of unknown functional significance, consists of fascicles of olfactory nerve fibers that have an irregular rather than parallel orientation.
- The brains of nototheniids Dissostichus mawsoni and Pleuragramma antarcticum exhibit the most disparate morphology among «cryonotothenioids». Both species occupy the pelagic biotope in high-latitude shelf waters and have relatively wide bathymetric ranges. However, D. mawsoni is a large, migratory, primarily piscivorous predator while P. antarcticum is a medium-sized zooplanktivore. The brain of D. mawsoni (Figure 29a,b) displays some phylogenetically persistent morphology in its overall resemblance to that of Eleginops maclovinus, especially in the large olfactory nerves and bulbs, the proximal swellings of the olfactory nerves, the lobation of the telencephalon, and the relatively large caudally projecting corpus cerebelli. The brain of Pleuragramma (Figure 29c,d) does not retain phylogenetically persistent morphology and is reduced in mass. The corpus cerebelli is small, consistent with the inactivity of this species. Unlike other «cryonotothenioids», the olfactory bulbs are separated, or stalked, away from the telencephalon to reveal the medial and lateral olfactory tracts (arrows in Figure 29c). Stalking between the telencephalon and tectum is also evident (Figure 29d). Mechanosensation is well developed in Pleuragramma, more so than any other «cryonotothenioid» examined to date, as evident by the relatively large eminentia granularis of the cerebellum and crista cerebellaris.
- The brains of nototheniids of the genus Trematomus are similar. The brains of six species have been studied and, as represented by T. bernacchii (Figure 31), are generally comparable in proportions to that of Dissostichus mawsoni, although the corpus cerebelli are smaller. However, there is interspecific variation among the six species that reflects habitat depths and activity levels. The sister species T. lepidorhinus and T. loennbergii occupy the deep shelf-upper slope niche and exhibit differences in the size of brain regions, and divergence in all sensory systems. The morphology is unequivocally differentiating for habitat depths and conclusively documents a shift toward reliance on non-visual senses in T. loennbergii, consistent with collection data indicating that this species has a greater depth of peak abundance than T. lepidorhinus (Eastman and La Mesa, 2021) [60].
- The brain of the artedidraconid Dolloidraco longedorsalis. This species is sedentary, living on the substrate at 99–1243 m. It has a relatively long mental barbel and its brain is reduced in size. The telencephalon is small and the brain exhibits “stalking” (arrows in Figure 32a,b) with a visible neural axis. The corpus cerebelli is also relatively small but mechanosensation is well-developed based on the appearance of the eminentia granularis and crista cerebellaris (Eastman & Lannoo 2003a) [239]. However, the most distinctive features of the brain, apparent in histological sections, are the enlarged chief sensory nucleus of the trigeminal nerve and the well-developed thalamic and telencephalic nuclei of the ascending pathway, features that are correlated across artedidraconids with barbel length. Artedidraconids have single a mental barbel and its function is not understood (Eakin & Eastman, this volume) [252]. The barbels are unusual in lacking taste buds. Branches of the trigeminal nerve do extend into the skin to supply general sensation. Silver staining reveals that the barbel of D. longedorsalis has small fibers, possibly somatosensory and proprioceptive, in both the dermis and epidermis. The barbel, at least in long-barrelled species, may serve as a tactile organ and extend this modality anterior to the mouth to assist in locating benthic prey. Somatosensation is not a dominant sense in long-barbelled artedidraconids, but supplemental to lateral-line mechanosensation.
- Disparity is evident in the brains of species representing the two bathydraconid subfamilies. The brain of the relatively shallow-living Gymnodraco acuticeps (Gymnodraconinae, Figure 33a,b) is similar to that of Trematomus bernacchii (Figure 31). However, the brain of Akarotaxis nudiceps of the deeper-living Bathydraconinae exhibits an overall reduction in the neuropil and in the size of lobes that results in stalking of the brain, but the eminentia granulares and crista cerebellares remain prominent. (Figure 33b,d). The bathydraconins have rod-dominated retinae, dorsolaterally oriented eyes (Figure 24) and an expanded cephalic lateral-line system consisting of large cephalic lateral-line pores, wide head canals (Figure 34d), hypertrophied canal neuromasts and, in some species, an enlarged dorsal branch of the anterior line nerve (Figure 33b,d) (Eastman and Lannoo, 2003b) [240]. The wide canals probably enhance the sensitivity of the neuromasts to near-field particle motion (Coombs et al., 1988; Montgomery & Pankhurst 1997) [253,254]. In addition, the sagittal otoliths of the inner ear are elongated and several-fold larger in the Bathydraconinae, specifically Prionodraco evansii, Bathydraco marri, and A. nudiceps (Figure 34b,d) compared to the small round sagittae of G. acuticeps (Figure 34a). Some bathydraconines hover above the substrate and are more active than gymnodraconines. Otoliths respond to the particle displacement, velocity, and acceleration components of underwater sound, but it is not known how the size and shape of the sagittae are related to the behavior and habitat of any species of fish (Popper and Hawkins, 2020) [255].Figure 33. Lateral and dorsal views of the brains and cranial nerves of the bathydraconids Gymnodraco acuticeps (a,c) and Akarotaxis nudiceps (b,d). Arrows indicate areas of stalking of the brain where lobes are reduced and the brain axis is visible. From Eastman and Lannoo (2003b) [240]. Abbreviations as in Figure 27.Figure 34. Slightly oblique left lateral radiographs of the bathydraconids Gymnodraco acuticeps (a), Prionodraco evansii (b), Bathydraco marri (c), and Akarotaxis nudiceps (d). Radiographs were overexposed to emphasize the deeply located and differently sized saccular otoliths in these specimens of similar lengths (105–114 mm SL). The bony canals of the supraorbital lateral line are also visible (arrows)—small in Gymnodraco but larger in the three bathydraconines, especially Akarotaxis. From Eastman and Lannoo (2003b) [240].
- The brain of the channichthyid Chionodraco hamatus (Figure 35a,b). There is relatively little interspecific variation among the brains of the seven channichthyid species that have been examined (Eastman and Lannoo, 2004) [241], and their brains resemble that of Gymnodraco acuticeps. The brain of Chionodraco hamatus differs from that of G. acuticeps in that it has a slightly regressed telencephalon resulting in stalking in this region (Figure 35b, arrow). It also has a larger tectum and a more dorsally-projecting corpus cerebelli than G. acuticeps. The mechanoreceptive areas are well-developed. Although the olfactory nerves are relatively small, olfactory lamellae are more numerous than in other «cryonotothenioids», but this may simply reflect their larger body lengths. The eyes are large and laterally oriented, the optic nerves are relatively large and the retinae have cones and rods in all eight species where this has been examined. The most unusual morphological feature is not in the nervous tissue per se but in the blood supply of their eyes considered below.
- The neuromorphological divergence of «cryonotothenioids» is accompanied by a reduction, transposition, and subsequent expansion of ocular vascular structures. The teleost retina lacks intrinsic blood vessels and is usually supplied by vessels located on the scleral (outer) surface and, less frequently, by vessels on the vitrad (inner or pre-retinal) surface. Teleosts have three ocular vascular structures that are not present in mammals: the choroid rete, the lentiform body (a small rete), and the falciform process that supplies the retractor lentis (Walls, 1942; Nicol, 1989) [256,257]. The choroid rete is especially labile and has been frequently lost in unrelated teleost taxa (Wittenberg and Haedrich, 1974; Berenbrink et al., 2005) [258,259]. Although ocular vascular structures (Table 2 and Table 3) are well developed in phylogenetically basal notothenioids (Eastman, 1988b, 2006) [232,260], there has been a phylogenetic reduction in these structures among most «cryonotothenioids». Some bathydraconids and all channichthyids have lost the choroid rete and the choriocapillaris, the capillary bed supplying the retina (Eastman and Lannoo, 2004) [241]. The ophthalmic artery may be vestigial or lost as well. However, the optic artery branches into a densely arranged series of hyaloid arteries at the vitreoretinal interface, and these supply the retina. Channichthyids possess the most extensive system of hyaloid arteries documented to date among teleosts (Eastman 1988b; Eastman and Lannoo, 2004; Wujcik et al., 2007) [232,241,248]. These vessels are ≈60 μm, twice the diameter of those in red-blooded nototheniids, and have an extremely dense, anastomosing branching pattern (Figure 36g,h) unlike that in basal notothenioids (Figure 36a,b) and other «cryonotothenioids» (Figure 36c–f). With the loss of the primary vasculature from the scleral surface, there has been a transposition and expansion of the hyaloid vessels on the vitrad surface of the retina. However, as a compensatory response, a dense vascular array in a pre-retinal position may be maladaptive in that: (1) the vessels are situated farther from the photoreceptors, hence the diffusion distance to these oxygen-demanding elements is longer, and (2) the acuity of the visual image is likely compromised by the interposition of vessels containing whitish, non-transparent blood. The extent of development of the hyaloid vasculature is also inversely correlated with levels of circulating hemoglobin among «cryonotothenioids» (Wujcik et al., 2007) [248].Figure 36. (a–h) Eyes of eight species of notothenioids showing varying degrees of development of the hyaloid (preretinal) arteries on the vitrad surface of retinae as visualized by arterial perfusions of Microfil®. The cornea, iris, lens, and vitreous body have been removed; the retractor lentis (RL) muscle is situated ventrally; hyaloid arteries drain to the annular vein (AV). With the exception of (c), all are left eyes. Phylogenetically basal Bovichtus diacanthus (a) has a sparse pattern of hyaloid branches and an open choroid fissure (arrow) is also evident. Eleginops maclovinus (b) lacks branches to the retina and the hyaloid artery continues anteriorly to supply the retractor lentis. Among cryonotothenioids, Notothenia coriiceps (c) and Trematomus borchgrevinki (d) have a widely spaced radial branching pattern emanating from the hyaloid artery at its entry point at the optic disk. Red-blooded bathydraconids Gymnodraco acuticeps (e) and Parachaenichthys georgianus (f) have a denser radial pattern. White-blooded channichthyids Pseudochaenichthys georgianus (g) and Chaenocephalus aceratus (h) have extremely dense networks of anastomosing vessels that are unusual among fishes, with radial (g) or linear (h) branching patterns. Bovichtus diacanthus, E. maclovinus, and N. coriiceps have a choroid rete; the other five species do not.
- Overview and summary of brain and sense organ disparity among «cryonotothenioids». The Antarctic environment does not require novel neural and sense organ morphology—nothing beyond that provided by the percoid phenotype with physiological adaptations for low temperatures. «Cryonotothenioid» brains and sense organs resemble those of temperate percoids more than those of phylogenetically older deep-sea species. Habitat depth does influence neuromorphology among «cryonotothenioids», but there are no sensory specialists—species possessing marked hypertrophy of and reliance on primarily one modality, as seen in some deep-sea fishes. Most «cryonotothenioids» retain a relatively balanced array among their sensory systems. Compared with bovichtids (Figure 27) and Eleginops maclovinus (Figure 28), these are the most conspicuous features of neuromorphological disparity:
- There is a reduction in overall brain cellularity in the «cryonotothenioids» compared to Eleginops maclovinus. This is especially evident in taxa with visible “stalking” of the base of the brain: Pleuragramma, Dolloidraco, the Bathydraconinae, and some channichthyids (Figure 29c,d, Figure 32, Figure 33b,d and Figure 35b). It is also evident in the sister species Trematomus with different depth preferences (Eastman & La Mesa 2021) [60]. This is typical depth-related morphology and not unique to the Antarctic environment.
- Sensory regions of the brain are the most variable, especially the mechanosensory and olfactory regions.
- Multimodal integration and association areas of the brain, the corpus cerebelli, tectum, and telencephalon, exhibit moderate variation in size, shape, and in the case of the telencephalon, lobation patterns also vary. The size of the corpora cerebelli ranges from large and caudally projecting in the migratory Dissostichus (Figure 29a), to small and round in the relatively inactive Pleuragramma, Dolloidraco, and Akarotaxis (Figure 29c, Figure 32a, and Figure 33b).
- Sensory cranial nerves exhibit interspecific size differences, especially the olfactory, optic, and anterior lateral-line nerves. There are no species with extreme reduction in any of these nerves. However, compared to the large size of the optic nerves in bovichtids, Eleginops, Dissostichus, Pleuragramma, and Trematomus spp., those of most other «cryonotothenioids» are relatively smaller.
- All species have well-developed eyes and duplex (cone and rod) retinae (Figure 30). This is not surprising as most acanthomorphs are visually oriented (Demski, 2003) [261]. There are, however, large differences in the cone-to-rod ratios, with fewer cones in most deeper-living species. There are also a phylogenetic reductions in the vascularity, thickness and cellularity of the retina (Table 2 and Table 3).
- In artedidraconids with long mental barbels, branches of the trigeminal nerves likely convey somatosensory (tactile) and proprioceptive (position) information from the barbel to the central nervous system.
- Neither oral nor cutaneous taste is notably developed in «cryonotothenioids». Most species have a few taste buds in and around the oral cavity. The barbels of artedidraconids lack taste buds. It is possible that there are solitary chemosensory cells in the skin.
- Chemosensation is understudied but potentially important in «cryonotothenioids». Nothing is known about pheromonal detection and communication in «cryonotothenioids»; however, based on findings in other fishes, it could be involved in activities such as migration to spawning sites and finding of mates (Vrieze et al., 2011; Lim and Sorensen, 2012) [263,264]. Given its well-developed olfactory system and spawning migrations, Dissostichus mawsoni would be a promising subject for this type of research. Trematomus spp. are attracted to fishery waste (Pakhomov, 1998) [265] and can detect and track an odor plume emanating from fish used as bait in experiments (Montgomery et al., 1999) [266]. Scavenging is also known through experimentation designed to test its prevalence (Smale et al., 2007) [267], and by the success of the odor plumes from bait used in the industrial longline fishery for Dissostichus spp.
3. The Fossil Record as Context for the Radiation of «Cryonotothenioids»
4. Overview of the Radiation
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barnes, D.K.; Conlan, K.E. Disturbance, colonization and development of Antarctic benthic communities. Philos. Trans. R. Soc. B Biol. Sci. 2006, 362, 11–38. [Google Scholar] [CrossRef] [PubMed]
- Near, T.J.; Dornburg, A.; Harrington, R.C.; Oliveira, C.; Pietsch, T.W.; Thacker, C.E.; Satoh, T.P.; Katayama, E.; Wainwright, P.C.; Eastman, J.T.; et al. Identification of the notothenioid sister lineage illuminates the biogeographic history of an Antarctic adaptive radiation. BMC Evol. Biol. 2015, 15, 109. [Google Scholar] [CrossRef] [PubMed]
- Near, T.J.; MacGuigan, D.J.; Parker, E.; Struthers, C.D.; Jones, C.D.; Dornburg, A. Phylogenetic analysis of Antarctic notothenioids illuminates the utility of RADseq for resolving Cenozoic adaptive radiations. Mol. Phylogenetics Evol. 2018, 129, 268–279. [Google Scholar] [CrossRef] [PubMed]
- Zaffos, A.; Finnegan, S.; Peters, S.E. Plate tectonic regulation of global marine animal diversity. Proc. Natl. Acad. Sci. USA 2017, 114, 5653–5658. [Google Scholar] [CrossRef] [PubMed]
- Benton, M.J. The Red Queen and the Court Jester: Species Diversity and the Role of Biotic and Abiotic Factors through Time. Science 2009, 323, 728–732. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.B. Antarctic Marine Geology; Cambridge University Press: Cambridge, UK, 1999; 289p. [Google Scholar]
- Near, T.J.; Dornburg, A.; Kuhn, K.L.; Eastman, J.T.; Pennington, J.N.; Patarnello, T.; Zane, L.; Fernández, D.A.; Jones, C.D. Ancient climate change, antifreeze, and the evolutionary diversification of Antarctic fishes. Proc. Natl. Acad. Sci. USA 2012, 109, 3434–3439. [Google Scholar] [CrossRef] [PubMed]
- Pollard, D.; DeConto, R.M. Modelling West Antarctic ice sheet growth and collapse through the past five million years. Nature 2009, 458, 329–332. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.B.; Conway, H.; Bart, P.J.; Witus, A.E.; Greenwood, S.L.; McKay, R.M.; Hall, B.L.; Ackert, R.P.; Licht, K.; Jakobsson, M.; et al. Ross Sea paleo-ice sheet drainage and deglacial history during and since the LGM. Quat. Sci. Rev. 2014, 100, 31–54. [Google Scholar] [CrossRef]
- Pekar, S.F.; DeConto, R.M. High-resolution ice-volume estimates for the early Miocene: Evidence for a dynamic ice sheet in Antarctica. Palaeogeogr. Palaeoclim. Palaeoecol. 2006, 231, 101–109. [Google Scholar] [CrossRef]
- McKay, R. Did Antarctica initiate the ice age cycles? Science 2014, 346, 812–813. [Google Scholar] [CrossRef]
- Scherer, R.P.; DeConto, R.M.; Pollard, D.; Alley, R.B. Windblown Pliocene diatoms and East Antarctic Ice Sheet retreat. Nat. Commun. 2016, 7, 12957. [Google Scholar] [CrossRef] [PubMed]
- Schluter, D. The Ecology of Adaptive Radiation; Oxford University Press: Oxford, UK, 2000; 288p. [Google Scholar]
- Dewitt, H.H. The character of the midwater fish fauna of the Ross Sea, Antarctica. In Antarctic Ecology; Holdgate, M.W., Ed.; Academic Press: London, UK, 1970; Volume 1, pp. 305–314. [Google Scholar]
- Hubold, G.; Ekau, W. Midwater fish fauna of the Weddell Sea, Antarctica. In Fifth Congress of European Ichthyologists, Proceedings; Kullander, S.O., Fernholm, B., Eds.; Swedish Museum of Natural History: Stockholm, Sweden, 1987; pp. 391–396. [Google Scholar]
- Ekau, W. Demersal fish fauna of the Weddell Sea, Antarctica. Antarct. Sci. 1990, 2, 129–137. [Google Scholar] [CrossRef]
- Eastman, J.T.; Hubold, G. The fish fauna of the Ross Sea, Antarctica. Antarct. Sci. 1999, 11, 293–304. [Google Scholar] [CrossRef]
- Donnelly, J.; Torres, J.J.; Sutton, T.T.; Simoniello, C. Fishes of the eastern Ross Sea, Antarctica. Polar Biol. 2004, 27, 637–650. [Google Scholar] [CrossRef]
- Eastman, J.T. The nature of the diversity of Antarctic fishes. Polar Biol. 2005, 28, 93–107. [Google Scholar] [CrossRef]
- Koubbi, P.; Ozouf-Costaz, C.; Goarant, A.; Moteki, M.; Hulley, P.-A.; Causse, R.; Dettai, A.; Duhamel, G.; Pruvost, P.; Tavernier, E.; et al. Estimating the biodiversity of the East Antarctic shelf and oceanic zone for ecoregionalisation: Example of the ichthyofauna of the CEAMARC (Collaborative East Antarctic Marine Census) CAML surveys. Polar Sci. 2010, 4, 115–133. [Google Scholar] [CrossRef]
- Causse, R.; Ozouf-Costaz, C.; Koubbi, P.; Lamy, D.; Eléaume, M.; Dettaï, A.; Duhamel, G.; Busson, F.; Pruvost, P.; Post, A.; et al. Demersal Ichthyofaunal Shelf Communities from the Dumont D’urville Sea (East Antarctica). Polar Sci. 2011, 5, 272–285. [Google Scholar] [CrossRef]
- Hanchet, S.M.; Stewart, A.L.; Mcmillan, P.J.; Clark, M.R.; O’driscoll, R.L.; Stevenson, M.L. Diversity, relative abundance, new locality records, and updated fish fauna of the Ross Sea region. Antarct. Sci. 2013, 25, 619–636. [Google Scholar] [CrossRef]
- Rabosky, D.L.; Chang, J.; Title, P.O.; Cowman, P.F.; Sallan, L.; Friedman, M.; Kaschner, K.; Garilao, C.; Near, T.J.; Coll, M.; et al. An inverse latitudinal gradient in speciation rate for marine fishes. Nature 2018, 559, 392–395. [Google Scholar] [CrossRef]
- Eastman, J.T.; Mccune, A.R. Fishes on the Antarctic continental shelf: Evolution of a marine species flock? J. Fish Biol. 2000, 57 (Suppl. A), 84–102. [Google Scholar] [CrossRef]
- Janko, K.; Marshall, C.; Musilová, Z.; Van Houdt, J.; Couloux, A.; Cruaud, C.; Lecointre, G. Multilocus analyses of an Antarctic fish species flock (Teleostei, Notothenioidei, Trematominae): Phylogenetic approach and test of the early-radiation event. Mol. Phylogen. Evol. 2011, 60, 305–316. [Google Scholar] [CrossRef] [PubMed]
- Matschiner, M.; Hanel, R.; Salzburger, W. On the Origin and Trigger of the Notothenioid Adaptive Radiation. PLoS ONE 2011, 6, e18911. [Google Scholar] [CrossRef] [PubMed]
- Matschiner, M.; Colombo, M.; Damerau, M.; Ceballos, S.; Hanel, R.; Salzburger, W. The adaptive radiation of notothenioid fishes in the waters of Antarctica. In Extremeophile Fishes; Riesch, R., Tobler, M., Plath, M., Eds.; Springer: Cham, Switzerland, 2015; pp. 35–57. [Google Scholar]
- Lautrédou, A.-C.; Hinsinger, D.; Gallut, C.; Cheng, C.-H.; Berkani, M.; Ozouf-Costaz, C.; Cruaud, C.; Lecointre, G.; Dettai, A. Phylogenetic footprints of an Antarctic radiation: The Trematominae (Notothenioidei, Teleostei). Mol. Phylogenetics Evol. 2012, 65, 87–101. [Google Scholar] [CrossRef] [PubMed]
- Lecointre, G.; Améziane, N.; Boisselier, M.-C.; Bonillo, C.; Busson, F.; Causse, R.; Chenuil, A.; Couloux, A.; Coutanceau, J.P.; Cruaud, C.; et al. Is the species flock concept operational? The Antarctic Shelf case. PLoS ONE 2013, 8, e68787. [Google Scholar] [CrossRef] [PubMed]
- Wilson, L.A.B.; Colombo, M.; Hanel, R.; Salzburger, W.; Sánchez-Vilagra, M.R. Ecomorphological disparity in an adaptive radiation: Opercular bone shape and stable isotopes in Antarctic icefishes. Ecol. Evol. 2013, 3, 166–3182. [Google Scholar] [CrossRef] [PubMed]
- Colombo, M.; Damerau, M.; Hanel, R.; Salzburger, W.; Matschiner, M. Diversity and disparity through time in the adaptive radiation of Antarctic notothenioid fishes. J. Evol. Biol. 2015, 28, 376–394. [Google Scholar] [CrossRef] [PubMed]
- Chenuil, A.; Saucède, T.; Hemery, L.G.; Eléaume, M.; Féral, J.; Améziane, N.; David, B.; Lecointre, G.; Havermans, C. Understanding processes at the origin of species flocks with a focus on the marine Antarctic fauna. Biol. Rev. 2017, 93, 481–504. [Google Scholar] [CrossRef] [PubMed]
- Bowen, B.W.; Forsman, Z.H.; Whitney, J.L.; Faucci, A.; Hoban, M.; Canfield, S.J.; Johnston, E.C.; Coleman, R.R.; Copus, J.M.; Vicente, J.; et al. Species radiations in the sea: What the flock? J. Hered. 2020, 111, 70–83. [Google Scholar] [CrossRef] [PubMed]
- Arnason, U.; Gullberg, A.; Janke, A.; Kullberg, M.; Lehman, N.; Petrov, E.A.; Väinölä, R. Pinniped phylogeny and a new hypothesis for their origin and dispersal. Mol. Phylogenet. Evol. 2006, 41, 345–354. [Google Scholar] [CrossRef]
- Árnason, Ú.; Lammers, F.; Kumar, V.; Nilsson, M.A.; Janke, A. Whole-genome sequencing of the blue whale and other rorquals finds signatures for introgressive gene flow. Sci. Adv. 2018, 4, eaap9873. [Google Scholar] [CrossRef]
- Fulton, T.L.; Strobeck, C. Multiple fossil calibrations, nuclear loci and mitochondrial genomes provide new insight into biogeography and divergence timing for true seals (Phocidae, Pinnipedia). J. Biogeogr. 2010, 37, 814–829. [Google Scholar] [CrossRef]
- Crame, J.A. Key stages in the evolution of the Antarctic marine fauna. J. Biogeogr. 2018, 45, 986–994. [Google Scholar] [CrossRef]
- Vianna, J.A.; Fernandes, F.A.N.; Frugone, M.J.; Figueiró, H.V.; Pertierra, L.R.; Noll, D.; Bi, K.; Wang-Claypool, C.Y.; Lowther, A.; Parker, P.; et al. Genome-wide analyses reveal drivers of penguin diversification. Proc. Natl. Acad. Sci. USA 2020, 117, 22303–22310. [Google Scholar] [CrossRef] [PubMed]
- Streelman, J.T.; Alfaro, M.; Westneat, M.W.; Bellwood, D.R.; Karl, S.A. Evolutionary history of the parrotfishes: Biogeography, ecomorphology, and comparative diversity. Evolution 2002, 56, 961–971. [Google Scholar] [PubMed]
- Streelman, J.T.; Danley, P.D. The stages of vertebrate evolutionary radiation. Trends Ecol. Evol. 2003, 18, 126–131. [Google Scholar] [CrossRef]
- Gavrilets, S.; Losos, J.B.; Rowland, J.M.; Emlen, D.J. Adaptive Radiation: Contrasting Theory with Data. Science 2009, 323, 732–737. [Google Scholar] [CrossRef] [PubMed]
- Eastman, J.T.; Witmer, L.M.; Ridgely, R.C.; Kuhn, K.L. Divergence in skeletal mass and bone morphology in Antarctic notothenioid fishes. J. Morphol. 2014, 275, 841–861. [Google Scholar] [CrossRef] [PubMed]
- Eastman, J.T. Bathymetric distributions of notothenioid fishes. Polar Biol. 2017, 40, 2077–2095. [Google Scholar] [CrossRef]
- Eastman, J.T. An analysis of maximum body size and designation of size categories for notothenioid fishes. Polar Biol. 2019, 42, 1131–1145. [Google Scholar] [CrossRef]
- Eastman, J.T. The buoyancy-based biotope axis of the evolutionary radiation of Antarctic cryonotothenioid fishes. Polar Biol. 2020, 43, 1217–1231. [Google Scholar] [CrossRef]
- La Mesa, M.; Llompart, F.; Riginella, E.; Eastman, J.T. Parental care and reproductive strategies in notothenioid fishes. Fish Fish. 2020, 22, 356–376. [Google Scholar] [CrossRef]
- Eastman, J.T.; Eakin, R.R. Checklist of the species of notothenioid fishes. Antarct. Sci. 2021, 33, 273–280. [Google Scholar] [CrossRef]
- Near, T.J.; Dornburg, A.; Eytan, R.I.; Keck, B.P.; Smith, W.L.; Kuhn, K.L.; Moore, J.A.; Price, S.A.; Burbrink, F.T.; Friedman, M.; et al. Phylogeny and tempo of diversification in the superradiation of spiny-rayed fishes. Proc. Natl. Acad. Sci. USA 2013, 110, 12738–12743. [Google Scholar] [CrossRef] [PubMed]
- Sheiko, B.A. Comments on the nomenclature of genus- and family-series taxa of notothenioid fishes (Perciformes, Notothenioidei). Bionomina 2019, 16, 46–82. [Google Scholar] [CrossRef]
- Haedrich, R.L. Deep-water fishes: Evolution and adaptation in the earth’s largest living spaces*. J. Fish Biol. 1996, 49, 40–53. [Google Scholar] [CrossRef]
- Ingram, T. Speciation along a depth gradient in a marine adaptive radiation. Proc. R. Soc. B Biol. Sci. 2010, 278, 613–618. [Google Scholar] [CrossRef] [PubMed]
- Nybelin, O. Antarctic fishes. In Scientific Results Norwegian Antarctic expeditions 1927–1928 et sqq.; No. 26; I Kommisjon hos J. Dybwad: Oslo, Norway, 1947; pp. 1–76. [Google Scholar]
- Andriashev, A.P. A general review of the Antarctic fish fauna. In Biogeography and Ecology in Antarctica, Monographiae Biologicae; Van Oye, P., Van Mieghem, J., Eds.; Junk: The Hague, The Netherlands, 1965; Volume XV, pp. 491–550. [Google Scholar]
- Andriashev, A.P. A general review of the Antarctic bottom fish fauna. In Proceedings of the Fifth Congress of European Ichthyologists, Stockholm, Sweden, 12 September 1985; Kullander, S.O., Fernholm, B., Eds.; Swedish Museum of Natural History: Stockholm, Sweden, 1987; pp. 357–372. [Google Scholar]
- Linley, T.D.; Gerringer, M.E.; Yancey, P.H.; Drazen, J.C.; Weinstock, C.L.; Jamieson, A.J. Fishes of the hadal zone including new species, in situ observations and depth records of Liparidae. Deep Sea Res. Part I Oceanogr. Res. Pap. 2016, 114, 99–110. [Google Scholar] [CrossRef]
- Dewitt, H.H. Coastal and deep-water benthic fishes of the Antarctic. In Antarctic Map Folio Series, Folio 15; Bushnell, V.C., Ed.; American Geographical Society: New York, NY, USA, 1971; pp. 1–10. [Google Scholar]
- Griffiths, H.J.; Van de Putte, A.; Danis, B. Data distribution: Patterns and implications. In Biogeographic Atlas of the Southern Ocean; De Broyer, C., Koubbi, P., Griffiths, H.J., Raymond, B., Udekem D’acoz, C.D., Eds.; Scientific Committee on Antarctic Research: Cambridge, UK, 2014; pp. 16–26. [Google Scholar]
- Angel, M.V. What is the deep-sea? In Fish Physiology: Deep-Sea Fishes; Randall, D.J., Farrell, A.P., Eds.; Academic Press: San Diego, CA, USA, 1997; Volume 16, pp. 1–41. [Google Scholar]
- Priede, I.G.; Froese, R. Colonization of the deep sea by fishes. J. Fish Biol. 2013, 83, 1528–1550. [Google Scholar] [CrossRef] [PubMed]
- Eastman, J.T.; La Mesa, M. Neuromorphological disparity in deep-living sister species of the Antarctic fish genus Trematomus. Polar Biol. 2021, 44, 315–334. [Google Scholar] [CrossRef]
- Amsler, M.O.; Eastman, J.T.; Smith, K.E.; Mcclintock, J.B.; Singh, H.; Thatje, S.; Aronson, R.B. Zonation of demersal fishes off Anvers Island, western Antarctic Peninsula. Antarct. Sci. 2015, 28, 44–50. [Google Scholar] [CrossRef]
- Eastman, J.T. The evolution of neutrally buoyant notothenioid fishes: Their specializations and potential interactions in the Antarctic marine food web. In Antarctic Nutrient Cycles and Food Webs; Siegfried, W.R., Condy, P.R., Laws, R.M., Eds.; Springer: Berlin/Heidelberg, Germany, 1985; pp. 430–436. [Google Scholar]
- Eastman, J.T. Antarctic Fish Biology: Evolution in a Unique Environment; Academic Press: San Diego, CA, USA, 1993; 322p. [Google Scholar]
- Devries, A.L.; Eastman, J.T. Lipid sacs as a buoyancy adaptation in an Antarctic fish. Nature 1978, 271, 352–353. [Google Scholar] [CrossRef]
- Near, T.J.; Russo, S.E.; Jones, C.D.; DeVries, A.L. Ontogenetic shift in buoyancy and habitat in the Antarctic toothfish, Dissostichus mawsoni (Perciformes: Nototheniidae). Polar Biol. 2002, 26, 124–128. [Google Scholar] [CrossRef]
- Lincoln, R.; Boxshall, G.; Clark, P. A Dictionary of Ecology, Evolution and Systematics, 2nd ed.; Cambridge University Press: Cambridge, UK, 1998; 361p. [Google Scholar]
- Klingenberg, C.P.; Ekau, W. A combined morphometric and phylogenetic analysis of an ecomorphological trend: Pelagization in Antarctic fishes (Perciformes: Nototheniidae). Biol. J. Linn. Soc. 1996, 59, 143–177. [Google Scholar] [CrossRef]
- Eastman, J.; Barrera-Oro, E.; Moreira, E. Adaptive radiation at a low taxonomic level: Divergence in buoyancy of the ecologically similar Antarctic fish Notothenia coriiceps and N. rossii. Mar. Ecol. Prog. Ser. 2011, 438, 195–206. [Google Scholar] [CrossRef]
- Barrera-Oro, E.R.; Casaux, R.J. Feeding selectivity in Notothenia neglecta, Nybelin, from Potter Cove, South Shetland Islands, Antarctica. Antarct. Sci. 1990, 2, 207–213. [Google Scholar] [CrossRef]
- North, A.W. Locomotory activity and behaviour of the Antarctic teleost Notothenia coriiceps. Mar. Biol. 1996, 126, 125–132. [Google Scholar] [CrossRef]
- Barrera-Oro, E.; Moreira, E.; Seefeldt, M.A.; Francione, M.V.; Quartino, M.L. The importance of macroalgae and associated amphipods in the selective benthic feeding of sister rockcod species Notothenia rossii and N. coriiceps (Nototheniidae) in West Antarctica. Polar Biol. 2018, 42, 317–334. [Google Scholar] [CrossRef]
- Targett, T. Trophic Ecology and Structure of Coastal Antarctic Fish Communities. Mar. Ecol. Prog. Ser. 1981, 4, 243–263. [Google Scholar] [CrossRef]
- Dewitt, H.H.; Heemstra, P.C.; Gon, O. Nototheniidae. In Fishes of the Southern Ocean; Gon, O., Heemstra, P.C., Eds.; J.L.B. Smith Institute of Ichthyology: Grahamstown, South Africa, 1990; pp. 279–331. [Google Scholar]
- Bushula, T.; Pakhomov, E.A.; Kaehler, S.; Davis, S.; Kalin, R.M. Diet and daily ration of two nototheniid fish on the shelf of the sub-Antarctic Prince Edward Islands. Polar Biol. 2005, 28, 585–593. [Google Scholar] [CrossRef]
- Daniels, R.A. Feeding ecology of some fishes of the Antarctic Peninsula. Fish. Bull. 1982, 80, 575–588. [Google Scholar]
- Permitin, Y.E. The consumption of krill by Antarctic fishes. In Antarctic Ecology; Holdgate, M.W., Ed.; Academic Press: London, UK, 1970; Volume 1, pp. 177–182. [Google Scholar]
- Permitin, Y.Y.; Tarverdiyeva, M.I. The food of some Antarctic fish in the South Georgia area. J. Ichthyol. 1972, 12, 104–114. [Google Scholar]
- Barrera-Oro, E.; Tomo, A. Feeding and ecology of Notothenia larseni, Lönnberg. In Antarctic Aquatic Biology; BIOMASS Scientific Series No. 7; El-Sayed, S., Ed.; Cambridge University Press: Cambridge, UK, 1987; pp. 99–106. [Google Scholar]
- Takahashi, M.; Iwami, T. The summer diet of demersal fish at the South Shetland Islands. Antarct. Sci. 1997, 9, 407–413. [Google Scholar] [CrossRef]
- Shust, K.V.; Pinskaya, I.A. Age and rate of growth of six species of nototheniid fish (family Nototheniidae). J. Ichthyol. 1978, 18, 743–749. [Google Scholar]
- Gröhsler, T. Feeding habits as indicators of ecological niches: Investigations of Antarctic fish conducted near Elephant Island in late autumn/winter 1986. Arch. Fish. Mar. Res. 1994, 42, 17–34. [Google Scholar]
- Kock, K.-H. Krill consumption by Antarctic notothenioid fishes. In Antarctic Nutrient Cycles and Food Webs; Siegfried, W.R., Condy, P.R., Laws, R.M., Eds.; Springer: Berlin/Heidelberg, Germany, 1985; pp. 437–444. [Google Scholar]
- Grant, P.R.; Grant, B.R. How and Why Species Multiply: The Radiation of Darwin’s Finches; Princeton University Press: Princeton, NJ, USA, 2008; 218p. [Google Scholar]
- Losos, J.B. Lizards in an Evolutionary Tree: Ecology and Adaptive Radiation of Anoles; University of California Press: Berkeley, CA, USA, 2009; 507p. [Google Scholar]
- Wainwright, P.C.; Richard, B.A. Predicting patterns of prey use from morphology of fishes. Environ. Biol. Fishes 1995, 44, 97–113. [Google Scholar] [CrossRef]
- Knouft, J.H.; Page, L.M. The evolution of body size in extant groups of North American freshwater fishes: Speciation, size distributions, and Cope’s rule. Am. Nat. 2003, 161, 413–421. [Google Scholar] [CrossRef] [PubMed]
- Barneche, D.R.; Robertson, D.R.; White, C.R.; Marshall, D.J. Fish reproductive-energy output increases disproportionately with body size. Science 2018, 360, 642–644. [Google Scholar] [CrossRef] [PubMed]
- Ainley, D.G.; Cziko, P.A.; Nur, N.; Rotella, J.J.; Eastman, J.T.; Larue, M.; Stirling, I.; Abrams, P.A. Further evidence that Antarctic toothfish are important to Weddell seals. Antarct. Sci. 2020, 33, 17–29. [Google Scholar] [CrossRef]
- Balushkin, A.V. Morphological Bases of the Systematics and Phylogeny of the Nototheniid Fishes; Academy of Sciences of the USSR, Zoological Institute: St. Petersburg, Russia, 1984; 153p, [In Russian; English Translation for Division of Polar Programs, National Science Foundation, 1989. 153 pp. Also available as Russian Translation Series No. 73, 1990, from A.A. Balkema, Rotterdam.]. [Google Scholar]
- Kock, K.-H. Antarctic Fish and Fisheries; Cambridge University Press: Cambridge, UK, 1992; 359p. [Google Scholar]
- Moyle, P.B.; Cech, J.J., Jr. Fishes: An Introduction to Ichthyology, 5th ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2004; 726p. [Google Scholar]
- Helfman, G.S.; Collette, B.B.; Facey, D.E.; Bowen, B.W. The Diversity of Fishes: Biology: Evolution, and Ecology, 2nd ed.; Wiley-Blackwell: Chichester, UK, 2009. [Google Scholar]
- Paxton, C. A Cumulative Species Description Curve for Large Open Water Marine Animals. J. Mar. Biol. Assoc. 1998, 78, 1389–1391. [Google Scholar] [CrossRef]
- Roberts, T.R. Systematics, biology, and distribution of the species of the oceanic oarfish genus Regalecus (Teleostei, Lampridiformes, Regalecidae). Mém. Mus. Natl. Hist. Natur. 2012, 202, 1–268. [Google Scholar]
- McClain, C.R.; Balk, M.A.; Benfield, M.C.; Branch, T.A.; Chen, C.; Cosgrove, J.; Dove, A.D.; Gaskins, L.; Helm, R.R.; Hochberg, F.G.; et al. Sizing ocean giants: Patterns of intraspecific size variation in marine megafauna. PeerJ 2015, 3, e715. [Google Scholar] [CrossRef] [PubMed]
- Nelson, J.S. Fishes of the World, 4th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2006; 601p. [Google Scholar]
- Nelson, J.S.; Grande, T.C.; Wilson, M.V.H. Fishes of the World, 5th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2016; 707p. [Google Scholar]
- McCune, A.R.; Carlson, R.L. Twenty ways to lose your bladder: Common natural mutants in zebrafish and widespread convergence of swim bladder loss among teleost fishes. Evol. Dev. 2004, 6, 246–259. [Google Scholar] [CrossRef] [PubMed]
- Meunier, F.J. Skeleton. In Manual of Fish Sclerochronology; Panfili, J., De Pontual, H., Troadec, H., Wright, P.J., Eds.; Ifremer-IRD Coedition: Brest, France, 2002; pp. 65–88. [Google Scholar]
- Zimmermann, C.; Hubold, G. Respiration and activity of Arctic and Antarctic fish with different modes of life: A multivariate analysis of experimental data. In Fishes of Antarctica: A Biological Overview; Di Prisco, G., Pisano, E., Clarke, A., Eds.; Springer: Milan, Italy, 1998; pp. 163–174. [Google Scholar]
- Davenport, J.; Kjørsvik, E. Buoyancy in the Lumpsucker Cyclopterus Lumpus. J. Mar. Biol. Assoc. 1986, 66, 159–174. [Google Scholar] [CrossRef]
- Alexander, R.M. Principles of Animal Locomotion; Princeton University Press: Princeton, NJ, USA, 2003; 371p. [Google Scholar]
- Pelster, B. Buoyancy at depth. In Deep-Sea Fishes: Fish Physiology; Randall, D.J., Farrell, A.P., Eds.; Academic Press: San Diego, CA, USA, 1997; Volume 16, pp. 195–237. [Google Scholar]
- Pelster, B. Buoyancy control in aquatic vertebrates. In Cardio-Respiratory Control in Vertebrates; Glass, M.L., Wood, S.C., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 65–98. [Google Scholar]
- Griffith, R.W.; Mathews, M.B.; Umminger, B.L.; Grant, B.F.; Pang, P.K.T.; Thomson, K.S.; Pickford, G.E. Composition of fluid from the notochordal canal of the coelacanth, Latimeria chalumnae. J. Exp. Zool. 1975, 192, 165–171. [Google Scholar] [CrossRef] [PubMed]
- Griffith, R.W. Chemistry of the body fluids of the coelacanth, Latimeria chalumnae. Proc. R. Soc. Lond. Ser. B. Biol. Sci. 1980, 208, 329–347. [Google Scholar] [CrossRef]
- Odani, K.; Imamura, H.; Nakaya, K. Osteological description of the Brazilian flathead, Percophis brasiliensis (Actinopterygii: Perciformes: Percophidae), with comments on its phylogenetic position. Species Divers. 2006, 11, 277–294. [Google Scholar] [CrossRef]
- Meunier, F.J.; Lecomte, F.; Duhamel, G. Some histological data on bone and teeth in the grey notothen (Lepidonotothen squamifrons) and in the mackerel icefish (Champsocephalus gunnari) (Notothenioidei; Perciformes; Teleostei). Cybium 2018, 42, 91–97. [Google Scholar]
- Ashique, A.M.; Atake, O.J.; Ovens, K.; Guo, R.; Pratt, I.V.; Detrich, H.W.; Cooper, D.M.L.; Desvignes, T.; Postlethwait, J.H.; Eames, B.F. Bone microstructure and bone mineral density are not systemically different in Antarctic icefishes and related Antarctic notothenioids. J. Anat. 2021, 240, 34–49. [Google Scholar] [CrossRef] [PubMed]
- Schaeffer, B. Differential ossification in the fishes. Trans. N. Y. Acad. Sci. 1961, 23, 501–505. [Google Scholar] [CrossRef]
- Gosline, W.A. Functional Morphology and Classification of Teleostean Fishes; University Press of Hawaii: Honolulu, HI, USA, 1971; 208p. [Google Scholar]
- Witten, P.E.; Hall, B.K. Teleost Skeletal Plasticity: Modulation, Adaptation, and Remodelling. Copeia 2015, 103, 727–739. [Google Scholar] [CrossRef]
- Loeb, V.J.; Kellermann, A.K.; Koubbi, P.; North, A.W.; White, M.G. Antarctic larval fish assemblages: A review. Bull. Mar. Sci. 1993, 53, 416–449. [Google Scholar]
- Andrew, T.G.; Hecht, T.; Heemstra, P.C.; Lutjeharms, J.R.E. Fishes of the Tristan da Cunha Group and Gough Island, South Atlantic Ocean. Ichthyol. Bull. JLB Smith Inst. Ichthyol. 1995, 63, 1–41. [Google Scholar]
- Rodrigues, K.A.; Jaureguizar, A.J.; Guerrero, R.A. Environmental factors that define the spawning and nursery areas for Percophis brasiliensis (Teleostei: Percophididae) in a multispecific reproductive coastal zone, El Rincón (39°–41°S), Argentina. Hydrobiologia 2013, 709, 1–10. [Google Scholar] [CrossRef]
- Voskoboinikova, O.S. Evolutionary significance of heterochronies in the development of the bony skeleton in fishes of the suborder Notothenioidei (Perciformes). J. Ichthyol. 2001, 41, 415–424. [Google Scholar]
- Voskoboinikova, O.S. The growth rate of skeleton in ontogeny of the Antarctic fish from the suborder Notothenioidae (Perciformes, Pisces) and the problem of cold compensation. Doklady Biol. Sci. 2007, 415, 307–309. [Google Scholar] [CrossRef] [PubMed]
- Voskoboinikova, O.S. Ontogenetic Bases of the Notothenioid Evolution. Explorations of the Fauna of the Seas; NAUKA: St. Petersburg, Russia, 2010; Volume 64, 319p. (In Russian) [Google Scholar]
- Voskoboinikova, O.S.; Detrich, H.W., III; Albertson, R.C.; Postlethwait, J.H.; Ghigliotti, L.; Pisano, E. Evolution reshaped life for the water column: The skeleton of the Antarctic silverfish Pleuragrama antarctica Boulenger, 1902. In The Antarctic Silverfish: A Keystone Species in a Changing Ecosystem, Advances in Polar Ecology; Vacchi, M., Pisano, E., Ghigliotti, L., Eds.; Springer International: Cham, Switzerland, 2017; Volume 3, pp. 3–26. [Google Scholar]
- Albertson, R.C.; Yan, Y.-L.; Titus, T.A.; Pisano, E.; Vacchi, M.; Yelick, P.C.; Detrich, H.W.; Postlethwait, J.H. Molecular pedomorphism underlies craniofacial skeletal evolution in Antarctic notothenioid fishes. BMC Evol. Biol. 2010, 10, 4. [Google Scholar] [CrossRef] [PubMed]
- Postlethwait, J.H.; Yan, Y.; Desvignes, T.; Allard, C.; Titus, T.; Le François, N.R.; Detrich, H.W. Embryogenesis and early skeletogenesis in the antarctic bullhead notothen, Notothenia coriiceps. Dev. Dyn. 2016, 245, 1066–1080. [Google Scholar] [CrossRef] [PubMed]
- Eastman, J.T.; DeVries, A.L. Buoyancy adaptations in a swim-bladderless Antarctic fish. J. Morphol. 1981, 167, 91–102. [Google Scholar] [CrossRef] [PubMed]
- Eastman, J.T.; DeVries, A.L. Buoyancy Studies of Notothenioid Fishes in McMurdo Sound, Antarctica. Copeia 1982, 1982, 385. [Google Scholar] [CrossRef]
- Eastman, J.T.; DeVries, A.L. Ultrastructure of the lipid sac wall in the Antarctic notothenioid fish Pleuragramma antarcticum. Polar Biol. 1989, 9, 333–335. [Google Scholar] [CrossRef]
- Chen, L.; Lu, Y.; Li, W.; Ren, Y.; Yu, M.; Jiang, S.; Fu, Y.; Wang, J.; Peng, S.; Bilyk, K.T.; et al. The genomic basis for colonizing the freezing Southern Ocean revealed by Antarctic toothfish and Patagonian robalo genomes. GigaScience 2019, 8, giz016. [Google Scholar] [CrossRef] [PubMed]
- Wainwright, S.A.; Biggs, W.D.; Currey, J.D.; Gosline, J.M. Mechanical Design in Organisms; Princeton University Press: Princeton, NJ, USA, 1976; 423p. [Google Scholar]
- Pelster, B. Buoyancy. In The Physiology of Fishes, 2nd ed.; Evans, D.H., Ed.; CRC Press: Boca Raton, FL, USA, 1998; pp. 25–42. [Google Scholar]
- Voskoboinikova, O.S. Osteological development of the Channichthyidae (Teleostei: Notothenioidei). Cybium 1997, 21, 369–379. [Google Scholar]
- Arratia, G.; Schultze, H.; Casciotta, J. Vertebral column and associated elements in dipnoans and comparison with other fishes: Development and homology. J. Morphol. 2001, 250, 101–172. [Google Scholar] [CrossRef] [PubMed]
- Bensimon-Brito, A.; Cardeira, J.; Cancela, M.L.; Huysseune, A.; Witten, P.E. Distinct patterns of notochord mineralization in zebrafish coincide with the localization of Osteocalcin isoform 1 during early vertebral centra formation. BMC Dev. Biol. 2012, 12, 28. [Google Scholar] [CrossRef] [PubMed]
- Clarke, A.; Doherty, N.; DeVries, A.L.; Eastman, J.T. Lipid content and composition of three species of Antarctic fish in relation to buoyancy. Polar Biol. 1984, 3, 77–83. [Google Scholar] [CrossRef]
- Eastman, J.T. Lipid storage systems and the biology of two neutrally buoyant Antarctic notothenioid fishes. Comp. Biochem. Physiol. Part B Comp. Biochem. 1988, 90, 529–537. [Google Scholar] [CrossRef]
- Eastman, J.T. Phyletic divergence and specialization for pelagic life in the Antarctic nototheniid fish Pleuragramma antarcticum. Comp. Biochem. Physiol. 1997, 118A, 1095–1101. [Google Scholar] [CrossRef]
- Fenaughty, J.M.; Eastman, J.T.; Sidell, B.D. Biological implications of low condition factor “axe handle” specimens of the Antarctic toothfish, Dissostichus mawsoni, from the Ross Sea. Antarct. Sci. 2008, 20, 537–551. [Google Scholar] [CrossRef]
- La Mesa, M.; Eastman, J.T. Antarctic silverfish: Life strategies of a key species in the high-Antarctic ecosystem. Fish Fish. 2011, 13, 241–266. [Google Scholar] [CrossRef]
- Bock, C.; Wermter, F.C.; Mintenbeck, K. MRI and MRS on preserved samples as a tool in fish ecology. Magn. Reson. Imaging 2017, 38, 39–46. [Google Scholar] [CrossRef]
- Hagen, W.; Kattner, G. The role of lipids in the life history of the Antarctic silverfish Pleuragramma antarctica. In The Antarctic Silverfish: A Keystone Species in a Changing Ecosystem, Advances in Polar Ecology; Vacchi, M., Pisano, E., Ghigliotti, L., Eds.; Springer International: Cham, Switzerland, 2017; Volume 3, pp. 131–148. [Google Scholar]
- Fenaughty, J.M.; Stevens, D.W.; Hanchet, S.M. Diet of the Antarctic toothfish (Dissostichus mawsoni) from the Ross Sea, Antarctica (Subarea 88.1). CCAMLR Sci. 2003, 10, 113–123. [Google Scholar]
- Petrov, A.F.; Tatarnikov, V.A. Results of investigation of the diet of Antarctic toothfish Dissostichus mawsoni (Nototheniidae) in the Lazarev Sea. J. Ichthyol. 2011, 51, 131–135. [Google Scholar] [CrossRef]
- Roberts, J.; Xavier, J.C.; Agnew, D.J. The diet of toothfish species Dissostichus eleginoides and Dissostichus mawsoni with overlapping distributions. J. Fish Biol. 2011, 79, 138–154. [Google Scholar] [CrossRef] [PubMed]
- Maes, J.; Van de Putte, A.; Hecq, J.H.; Volckaert, F.A.M. State-dependent energy allocation in the pelagic Antarctic silverfish Pleuragramma antarcticum: Trade-off between winter reserves and buoyancy. Mar. Ecol. Prog. Ser. 2006, 326, 269–282. [Google Scholar] [CrossRef]
- Barton, M. Bond’s Biology of Fishes, 3rd ed.; Thomson Brooks/Cole: Belmont, CA, USA, 2007; 891p. [Google Scholar]
- Friedman, S.T.; Price, S.A.; Corn, K.A.; Larouche, O.; Martinez, C.M.; Wainwright, P.C. Body shape diversification along the benthic-pelagic axis in marine fishes: Effects of habitat on fish body shape. Proc. Biol. Sci. 2020, 287, 20201053. [Google Scholar] [CrossRef]
- Price, S.A.; Friedman, S.T.; Corn, K.A.; Martinez, C.M.; Larouche, O.; Wainwright, P.C. Building a Body Shape Morphospace of Teleostean Fishes. Integr. Comp. Biol. 2019, 59, 716–730. [Google Scholar] [CrossRef] [PubMed]
- Macdonald, J.A.; Wells, R.M.G. Viscosity of body fluids from Antarctic notothenioid fish. In Biology of Antarctic Fish; di Prisco, G., Maresca, B., Tota, B., Eds.; Springer: Berlin/Heidelberg, Germany, 1991; pp. 163–178. [Google Scholar]
- Neat, F.C.; Campbell, N. Proliferation of elongate fishes in the deep sea. J. Fish Biol. 2013, 83, 1576–1591. [Google Scholar] [CrossRef] [PubMed]
- Brey, T.; Gerdes, D. Is Antarctic benthic biomass really higher than elsewhere? Antarct. Sci. 1997, 9, 266–267. [Google Scholar] [CrossRef]
- Clarke, A.; Johnston, N.M. Antarctic marine benthic diversity. Oceanogr. Mar. Biol. Ann. Rev. 2003, 41, 47–114. [Google Scholar]
- Mincks, S.L.; Smith, C.R.; DeMaster, D.J. Persistence of labile organic matter and microbial biomass in Antarctic shelf sediments: Evidence of a sediment ‘food bank’. Mar. Ecol. Prog. Ser. 2005, 300, 3–19. [Google Scholar] [CrossRef]
- Smith, C.R.; Mincks, S.; DeMaster, D.J. A synthesis of bentho-pelagic coupling on the Antarctic shelf: Food banks, ecosystem inertia and global climate change. Deep. Sea Res. Part II Top. Stud. Oceanogr. 2006, 53, 875–894. [Google Scholar] [CrossRef]
- Targett, T.E.; Young, K.E.; Konecki, J.T.; Grecay, P. Research on wintertime feeding in Antarctic fishes. Antarct. J. US 1987, 22, 211–213. [Google Scholar]
- Obermüller, B.E.; Truebano, M.; Peck, L.S.; Eastman, J.T.; Morley, S.A. Reduced seasonality in elemental CHN composition of Antarctic marine benthic predators and scavengers. J. Exp. Mar. Biol. Ecol. 2013, 446, 328–333. [Google Scholar] [CrossRef]
- Casaux, R.J.; Mazzotta, A.S.; Barrera-Oro, E.R. Seasonal aspects of the biology and diet of nearshore nototheniid fish at Potter Cove, South Shetland Islands, Antarctica. Polar Biol. 1990, 11, 63–72. [Google Scholar] [CrossRef]
- Casaux, R.; Barrera-Oro, E.; Baroni, A.; Ramón, A. Ecology of inshore notothenioid fish from the Danco Coast, Antarctic Peninsula. Polar Biol. 2003, 26, 157–165. [Google Scholar] [CrossRef]
- McKenna, J.E., Jr. Trophic relationships within the Antarctic demersal fish community of South Georgia Island. Fish. Bull. 1991, 89, 643–654. [Google Scholar]
- Kiest, K.A. A relationship of diet to prey abundance and the foraging behavior of Trematomus bernacchii. Polar Biol. 1993, 13, 291–296. [Google Scholar] [CrossRef]
- Montgomery, J.C.; Foster, B.A.; Milton, R.C.; Carr, E. Spatial and temporal variations in the diet of nototheniid fish in McMurdo Sound, Antarctica. Polar Biol. 1993, 13, 429–431. [Google Scholar] [CrossRef]
- Vacchi, M.; La Mesa, M.; Castelli, A. Diet of two coastal nototheniid fish from Terra Nova Bay, Ross Sea. Antarct. Sci. 1994, 6, 61–65. [Google Scholar] [CrossRef]
- Vacchi, M.; Cattaneo-Vietti, R.; Chiantore, M.; Dalu, M. Predator-prey relationship between the nototheniid fish Trematomus bernacchii and the Antarctic scallop Adamussium colbecki at Terra Nova Bay (Ross Sea). Antarct. Sci. 2000, 12, 64–68. [Google Scholar] [CrossRef]
- Barrera-Oro, E. Analysis of dietary overlap in Antarctic fish (Notothenioidei) from the South Shetland Islands: No evidence of food competition. Polar Biol. 2003, 26, 631–637. [Google Scholar] [CrossRef]
- La Mesa, M.; Dalú, M.; Vacchi, M. Trophic ecology of the emerald notothen Trematomus bernacchii (Pisces, Nototheniidae) from Terra Nova Bay, Ross Sea, Antarctica. Polar Biol. 2004, 27, 721–728. [Google Scholar] [CrossRef]
- La Mesa, M.; Eastman, J.T.; Vacchi, M. The role of notothenioid fish in the food web of the Ross Sea shelf waters: A review. Polar Biol. 2004, 27, 321–338. [Google Scholar] [CrossRef]
- Brey, T. Population Dynamics in Benthic Invertebrates. A Virtual Handbook; Alfred Wegener Institute for Polar and Marine Research: Bremerhaven, Germany, 2001; Available online: http://www.awi-bremerhaven.de/Benthic/Ecosystem/FoodWeb/Handbook/main.html (accessed on 1 January 2024).
- Barrera-Oro, E. The role of fish in the Antarctic marine food web: Differences between inshore and offshore waters in the southern Scotia Arc and west Antarctic Peninsula. Antarct. Sci. 2002, 14, 293–309. [Google Scholar] [CrossRef]
- Foster, B.A.; Montgomery, J.C. Planktivory in benthic nototheniid fish in McMurdo Sound, Antarctica. Environ. Biol. Fish. 1993, 36, 313–318. [Google Scholar] [CrossRef]
- Pakhomov, E.A. Feeding and exploitation of the food supply by demersal fishes in the Antarctic part of the Indian Ocean. J. Ichthyol. 1997, 37, 360–380. [Google Scholar]
- Stowasser, G.; Pond, D.W.; Collins, M.A. Fatty acid trophic markers elucidate resource partitioning within the demersal fish community of South Georgia and Shag Rocks (Southern Ocean). Mar. Biol. 2012, 159, 2299–2310. [Google Scholar] [CrossRef]
- Casaux, R.; Barrera-Oro, E. Dietary overlap in inshore notothenioid fish from the Danco Coast, western Antarctic Peninsula. Polar Res. 2013, 32, 21319. [Google Scholar] [CrossRef]
- Eastman, J.T. Pleuragramma antarcticum (Pisces, Nototheniidae) as food for other fishes in McMurdo Sound, Antarctica. Polar Biol. 1985, 4, 155–160. [Google Scholar] [CrossRef]
- Friedrich, C.; Hagen, W. Lipid contents of five species of notothenioid fish from high-Antarctic waters and ecological implications. Polar Biol. 1994, 14, 359–369. [Google Scholar] [CrossRef]
- VNIRO. Chemical Composition and Processing Properties of Marine and Ocean Fishes: Handbook-M; VNIRO: Moscow, Russia, 2000; 376p. [Google Scholar]
- Liem, K.F. Adaptive Significance of Intra- and Interspecific Differences in the Feeding Repertoires of Cichlid Fishes. Am. Zool. 1980, 20, 295–314. [Google Scholar] [CrossRef]
- Lauder, G.V. Patterns of Evolution in the Feeding Mechanism of Actinopterygian Fishes. Am. Zool. 1982, 22, 275–285. [Google Scholar] [CrossRef]
- Liem, K.F. Ecomorphology of the teleostean skull. In The Skull, Vol. 3, Functional and Evolutionary Mechanisms; Hanken, J., Hall, B.K., Eds.; University of Chicago Press: Chicago, IL, USA, 1993; pp. 422–452. [Google Scholar]
- Westneat, M.W. Skull biomechanics and suction feeding in fishes. In Fish Physiology: Fish Biomechanics; Shadwick, R.E., Lauder, G.V., Eds.; Academic Press: San Diego, CA, USA, 2006; Volume 23, pp. 29–75. [Google Scholar]
- Norton, S.F.; Brainerd, E.L. Convergence in the Feeding Mechanics of Ecomorphologically Similar Species in the Centrarchidae and Cichlidae. J. Exp. Biol. 1993, 176, 11–29. [Google Scholar] [CrossRef]
- Bansode, M.A.; Eastman, J.T.; Aronson, R.B. Feeding biomechanics of five demersal Antarctic fishes. Polar Biol. 2014, 37, 1835–1848. [Google Scholar] [CrossRef]
- Carlig, E.; Di Blasi, D.; Ghigliotti, L.; Pisano, E.; Faimali, M.; O’driscoll, R.; Parker, S.; Vacchi, M. Diversification of feeding structures in three adult Antarctic nototheniid fish. Polar Biol. 2018, 41, 1701–1715. [Google Scholar] [CrossRef]
- Iwami, T. Osteology and relationships of the family Channichthyidae. Mem. Natl. Inst. Polar Res. Ser. E 1985, 36, 1–69. [Google Scholar]
- Pequeño, G. The geographical distribution and taxonomic arrangement of South American nototheniid fishes (Osteichthyes, Nototheniidae). Bol. Soc. Biol. Concepción 1989, 60, 183–200. [Google Scholar]
- Licandeo, R.R.; Barrientos, C.A.; González, M.T. Age, growth rates, sex change and feeding habits of notothenioid fish Eleginops maclovinus from the central-southern Chilean coast. Env. Biol. Fish. 2006, 77, 51–61. [Google Scholar] [CrossRef]
- Brickle, P.; Arkhipkin, A.I.; Shcherbich, Z.N. age and growth in a temperate euryhaline notothenioid, Eleginops maclovinus from the Falkland islands. J. Mar. Biol. Assoc. 2005, 85, 1217–1221. [Google Scholar] [CrossRef]
- Brickle, P.; Laptikhovsky, V.; Arkhipkin, A. Reproductive strategy of a primitive temperate notothenioid Eleginops maclovinus. J. Fish Biol. 2005, 66, 1044–1059. [Google Scholar] [CrossRef]
- Pavés, H.; Pequeño, G.; Bertrán, C.; Vargas, L. Limnetic feeding in Eleginops maclovinus (Valenciennes, 1930) in the Valdivia River, Chile. Interciencia 2005, 30, 120–125. [Google Scholar]
- Troccoli, G.H.; Aguilar, E.; Martínez, P.A.; Belleggia, M. The diet of the Patagonian toothfish Dissostichus eleginoides, a deep-sea top predator off Southwest Atlantic Ocean. Polar Biol. 2020, 43, 1595–1604. [Google Scholar] [CrossRef]
- Collins, M.A.; Brickle, P.; Brown, J.; Belchier, M. The Patagonian toothfish: Biology, ecology and fishery. In Advances in Marine Biology; Lesser, M., Ed.; Academic Press: San Diego, CA, USA, 2010; Volume 58, pp. 227–300. [Google Scholar]
- Gregory, W.K. Fish Skulls: A Study of the Evolution of Natural Mechanisms. Trans. Am. Philos. Soc. 1933, 23, 75–481. [Google Scholar] [CrossRef]
- Voskoboinikova, O.S. Evolution of the visceral skeleton and phylogeny of Nototheniidae. J. Ichthyol. 1993, 33, 23–47. [Google Scholar]
- Peyer, B. Comparative Odontology; Zangerl, R., Ed.; University of Chicago Press: Chicago, IL, USA, 1968; 347p. [Google Scholar]
- Fink, W.L. Ontogeny and phylogeny of tooth attachment mode in actinopterygian fishes. J. Morphol. 1981, 167, 167–184. [Google Scholar] [CrossRef] [PubMed]
- Cohen, K.E.; Weller, H.I.; Summers, A.P. Not your father’s homodonty—Stress, tooth shape, and the functional homodont. J. Anat. 2020, 237, 837–848. [Google Scholar] [CrossRef] [PubMed]
- Andriashev, A.P.; Balushkin, A.V.; Voskoboinikova, O.S. Morphological validation of the subfamily Gymnodraconinae of the family Bathydraconidae. J. Ichthyol. 1989, 29, 147–156. [Google Scholar]
- Voskoboinikova, O.S. Comparative osteology of dragonfishes of the subfamily Gymnodraconinae (Bathydraconidae). J. Ichthyol. 1991, 31, 24–33. [Google Scholar]
- Balushkin, A.V.; Voskoboinikova, O.S. Antarctic Dragonfishes (Bathydraconidae). Explorations of the Fauna of the Seas; NAUKA: St. Petersburg, Russia, 2011; Volume 65, 222p. (In Russian) [Google Scholar]
- Ojeda, F.P. Morphological characterization of the alimentary tract of Antarctic fishes and its relation to feeding habits. Polar Biol. 1986, 5, 125–128. [Google Scholar] [CrossRef]
- Eastman, J.T.; DeVries, A.L. Morphology of the digestive system of Antarctic nototheniid fishes. Polar Biol. 1997, 17, 1–13. [Google Scholar] [CrossRef]
- Eastman, J.T. Aspects of the biology of the icefish Dacodraco hunteri (Notothenioidei, Channichthyidae) in the Ross Sea, Antarctica. Polar Biol. 1999, 21, 194–196. [Google Scholar] [CrossRef]
- Moreira, E.; Novillo, M.; Eastman, J.T.; Barrera-Oro, E. Degree of herbivory and intestinal morphology in nine notothenioid fishes from the western Antarctic Peninsula. Polar Biol. 2020, 43, 535–544. [Google Scholar] [CrossRef]
- Barrington, E.J.W. The alimentary canal and digestion. In The Physiology of Fishes; Brown, M.E., Ed.; Academic Press: New York, NY, USA, 1957; Volume 1, pp. 109–161. [Google Scholar]
- Eastman, J.T.; Amsler, M.O.; Aronson, R.B.; Thatje, S.; McClintock, J.B.; Vos, S.C.; Kaeli, J.W.; Singh, H.; La Mesa, M. Photographic survey of benthos provides insights into the Antarctic fish fauna from the Marguerite Bay slope and the Amundsen Sea. Antarct. Sci. 2012, 25, 31–43. [Google Scholar] [CrossRef]
- Voronina, E.P.; Neelov, A.V. Structural traits of alimentary tract of fishes of the family Channichthyidae (Notothenioidei). J. Ichthyol. 2001, 41, 778–788. [Google Scholar]
- Iwami, T.; Kock, K.-H. Channichthyidae. In Fishes of the Southern Ocean; Gon, O., Heemstra, P.C., Eds.; J.L.B. Smith Institute of Ichthyology: Grahamstown, South Africa, 1990; pp. 381–399. [Google Scholar]
- Duhamel, G.; Gasco, N.; Davaine, P. Poissons des îles Kerguelen et Crozet. Guide Régional de L’océan Austral. Patrimoines Naturels; Muséum National d’Histoire Naturelle: Paris, France, 2005; Volume 63, 419p. (In French) [Google Scholar]
- Kock, K.-H. Antarctic icefishes (Channichthyidae): A unique family of fishes. A review, Part I. Polar Biol. 2005, 28, 862–895. [Google Scholar] [CrossRef]
- Reid, W.D.K.; Clarke, S.; Collins, M.A.; Belchier, M. Distribution and ecology of Chaenocephalus aceratus (Channichthyidae) around South Georgia and Shag Rocks (Southern Ocean). Polar Biol. 2007, 30, 1523–1533. [Google Scholar] [CrossRef]
- Kock, K.-H.; Gröger, J.; Jones, C.D. Interannual variability in the feeding of ice fish (Notothenioidei, Channichthyidae) in the southern Scotia Arc and the Antarctic Peninsula region (CCAMLR subareas 48.1 and 48.2). Polar Biol. 2013, 36, 1451–1462. [Google Scholar] [CrossRef]
- La Mesa, M.; Vacchi, M.; Iwami, T.; Eastman, J.T. Taxonomic studies of the Antarctic icefish genus Cryodraco Dollo, 1900 (Notothenioidei: Channichthyidae). Polar Biol. 2002, 25, 384–390. [Google Scholar] [CrossRef]
- La Mesa, M.; Vacchi, M. Morphometric analysis of Cryodraco specimens (Notothenioidei: Channichthyidae) from Terra Nova Bay, Ross Sea. Cybium 1997, 21, 363–368. [Google Scholar]
- Ekau, W.; Gutt, J. Notothenioid fishes from the Weddell Sea and their habitat, observed by underwater photography and television. Proc. NIPR Symp. Polar Biol. 1991, 4, 36–49. [Google Scholar]
- Kock, K.-H.; Jones, C.D. The biology of the icefish Cryodraco antarcticus Dollo, 1900 (Pisces, Channichthyidae) in the southern Scotia Arc (Antarctica). Polar Biol. 2002, 25, 416–424. [Google Scholar] [CrossRef]
- Chen, W.-J.; Bonillo, C.; Lecointre, G. Phylogeny of the Channichthyidae (Notothenioidei, Teleostei) based on two mitochondrial genes. In Fishes of Antarctica: A Biological Overview; Di Prisco, G., Pisano, E., Clarke, A., Eds.; Springer: Milan, Italy, 1998; pp. 287–298. [Google Scholar]
- Abe, T.; Suzuki, M. Notes on some fishes associated with the Antarctic krill I. Neopagetopsis ionah. Antarct. Rec. Natl. Inst. Polar Res. 1978, 62, 23–28. [Google Scholar]
- Abe, T.; Suzuki, M. Notes on some fishes associated with the Antarctic krill. II. On Xenocyttus nemotoi Abe, and again on Neopagetopsis ionah Nybelin. Antarct. Rec. Natl. Inst. Polar Res. 1981, 71, 121–129. [Google Scholar]
- O’Driscoll, R.L.; Macaulay, G.J.; Gauthier, S.; Pinkerton, M.; Hanchet, S. Distribution, abundance and acoustic properties of Antarctic silverfish (Pleuragramma antarcticum) in the Ross Sea. Deep Sea Res. Part II Top. Stud. Oceanogr. 2011, 58, 181–195. [Google Scholar] [CrossRef]
- Balushkin, A.V.; Prut’ko, V.G. On occurrences of Chionobathyscus dewitti (Notothenioidei Channichthyidae) in the Ross Sea. J. Ichthyol. 2006, 46, 271–273. [Google Scholar] [CrossRef]
- Sutton, C.P.; Manning, M.J.; Stevens, D.W.; Marriott, P.M. Biological parameters for icefish (Chionobathyscus dewitti) in the Ross Sea, Antarctica. CCAMLR Sci. 2008, 15, 139–165. [Google Scholar]
- Petrov, A.F. New data on the diet of deep-sea icefish Chionobathyscus dewitti (Channichthyidae) in the Ross Sea in 2010. J. Ichthyol. 2011, 51, 692–694. [Google Scholar] [CrossRef]
- Gutt, J.; Ekau, W. Habitat partitioning of dominant high Antarctic demersal fish in the Weddell Sea and Lazarev Sea. J. Exp. Mar. Biol. Ecol. 1996, 206, 25–37. [Google Scholar] [CrossRef]
- Gon, O. Bathydraconidae. In Fishes of the Southern Ocean; Gon, O., Heemstra, P.C., Eds.; J.L.B. Smith Institute of Ichthyology: Grahamstown, South Africa, 1990; pp. 364–380. [Google Scholar]
- Kuhn, K.L.; Near, T.J.; Detrich, H.W., III; Eastman, J.T. Biology of the Antarctic dragonfish Vomeridens infuscipinnis (Notothenioidei: Bathydraconidae). Antarct. Sci. 2011, 23, 18–26. [Google Scholar] [CrossRef]
- Huber, R.; Rylander, M.K. Brain morphology and turbidity preference in Notropis and related genera (Cyprinidae, Teleostei). Environ. Biol. Fishes 1992, 33, 153–165. [Google Scholar] [CrossRef]
- Kotrschal, K.; Palzenberger, M. Neuroecology of cyprinids: Comparative, quantitative histology reveals diverse brain patterns. Environ. Biol. Fishes 1992, 33, 135–152. [Google Scholar] [CrossRef]
- Wagner, H.-J. Brain Areas in Abyssal Demersal Fishes. Brain, Behav. Evol. 2001, 57, 301–316. [Google Scholar] [CrossRef] [PubMed]
- Wagner, H.-J. Volumetric analysis of brain areas indicates a shift in sensory orientation during development in the deep-sea grenadier Coryphaenoides armatus. Mar. Biol. 2003, 142, 791–797. [Google Scholar] [CrossRef]
- Deng, X.; Wagner, H.; Popper, A.N. Interspecific Variations of Inner Ear Structure in the Deep-Sea Fish Family Melamphaidae. Anat. Rec. 2013, 296, 1064–1082. [Google Scholar] [CrossRef] [PubMed]
- Munk, O. The eyes of three benthic deep-sea fishes caught at great depths. Galathea Rep. 1964, 7, 137–149. [Google Scholar]
- Stein, D.L. Description of a new hadal Notoliparis from the Kermadec Trench, New Zealand, and redescription of Notoliparis kermadecensis (Nielsen) (Liparidae, Scorpaeniformes). Copeia 2016, 2016, 907–920. [Google Scholar] [CrossRef]
- Fine, M.L.; Horn, M.H.; Cox, B. Acanthonus armatus, a deep-sea teleost with a minute brain and large ears. Proc. R. Soc. Lond. 1987, 230B, 257–265. [Google Scholar]
- Country, M.W. Retinal metabolism: A comparative look at energetics in the retina. Brain Res. 2017, 1672, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Iglesias, T.L.; Dornburg, A.; Brandley, M.C.; Alfaro, M.E.; Warren, D.L. Life in the unthinking depths: Energetic constraints on encephalization in marine fishes. J. Evol. Biol. 2015, 28, 1080–1090. [Google Scholar] [CrossRef]
- Montgomery, J.C.; MacDonald, J.A. Sensory Tuning of Lateral Line Receptors in Antarctic Fish to the Movements of Planktonic Prey. Science 1987, 235, 195–196. [Google Scholar] [CrossRef]
- Eastman, J.T. Ocular morphology in antarctic notothenioid fishes. J. Morphol. 1988, 196, 283–306. [Google Scholar] [CrossRef] [PubMed]
- Montgomery, J.C.; Macdonald, J.A.; Housley, G.D. Lateral line function in an antarctic fish related to the signals produced by planktonic prey. J. Comp. Physiol. A 1988, 163, 827–833. [Google Scholar] [CrossRef]
- Montgomery, J.; Coombs, S.; Janssen, J. Form and Function Relationships in Lateral Line Systems: Comparative Data from Six Species of Antarctic Notothenioid Fish. Brain, Behav. Evol. 1994, 44, 299–306. [Google Scholar] [CrossRef] [PubMed]
- Pankhurst, N.W.; Montgomery, J.C. Visual Function in Four Antarctic Nototheniid Fishes. J. Exp. Biol. 1989, 142, 311–324. [Google Scholar] [CrossRef]
- Pankhurst, N.W.; Montgomery, J.C. Ontogeny of vision in the Antarctic fish Pagothenia borchgrevinki (Nototheniidae). Polar Biol. 1990, 10, 419–422. [Google Scholar] [CrossRef]
- Janssen, J.; Jones, W.; Slattery, M. Locomotion and feeding responses to mechanical stimuli in Histiodraco velifer (Artedidracondiae). Copeia 1993, 1993, 885–889. [Google Scholar] [CrossRef]
- Eastman, J.T.; Lannoo, M.J. Diversification of brain morphology in antarctic notothenioid fishes: Basic descriptions and ecological considerations. J. Morphol. 1995, 223, 47–83. [Google Scholar] [CrossRef] [PubMed]
- Eastman, J.T.; Lannoo, M.J. Anatomy and histology of the brain and sense organs of the Antarctic plunderfish Dolloidraco longedorsalis (Perciformes: Notothenioidei: Artedidraconidae), with comments on the brain morphology of other artedidraconids and closely related harpagiferids. J. Morphol. 2003, 255, 358–377. [Google Scholar] [CrossRef] [PubMed]
- Eastman, J.T.; Lannoo, M.J. Diversification of brain and sense organ morphology in Antarctic dragonfishes (Perciformes: Notothenioidei: Bathydraconidae). J. Morphol. 2003, 258, 130–150. [Google Scholar] [CrossRef]
- Eastman, J.T.; Lannoo, M.J. Brain and sense organ anatomy and histology in hemoglobinless Antarctic icefishes (Perciformes: Notothenioidei: Channichthyidae). J. Morphol. 2004, 260, 117–140. [Google Scholar] [CrossRef]
- Eastman, J.T.; Lannoo, M.J. Brain and sense organ anatomy and histology of two species of phyletically basal non-Antarctic thornfishes of the Antarctic suborder Notothenioidei (Perciformes: Bovichtidae). J. Morphol. 2007, 268, 485–503. [Google Scholar] [CrossRef] [PubMed]
- Eastman, J.T.; Lannoo, M.J. Brain and sense organ anatomy and histology of the Falkland Islands mullet, Eleginops maclovinus (Eleginopidae), the sister group of the Antarctic notothenioid fishes (Perciformes: Notothenioidei). J. Morphol. 2007, 269, 84–103. [Google Scholar] [CrossRef] [PubMed]
- Eastman, J.T.; Lannoo, M.J. Divergence of brain and retinal anatomy and histology in pelagic Antarctic notothenioid fishes of the sister taxa Dissostichus and Pleuragramma. J. Morphol. 2011, 272, 419–441. [Google Scholar] [CrossRef] [PubMed]
- Janssen, J. Use of the lateral line and tactile senses in feeding in four antarctic nototheniid fishes. Environ. Biol. Fishes 1996, 47, 51–64. [Google Scholar] [CrossRef]
- Montgomery, J.C. An ontogenetic shift in the use of visual and non-visual senses in Antarctic notothenioid fishes. In Antarctic Communities: Species, Structure and Survival; Battaglia, B., Valencia, J., Walton, D.W.H., Eds.; Cambridge University Press: Cambridge, UK, 1997; pp. 217–220. [Google Scholar]
- Lannoo, M.J.; Eastman, J.T. Nervous and sensory system correlates of an epibenthic evolutionary radiation in Antarctic notothenioid fishes, genus Trematomus (Perciformes; Nototheniidae). J. Morphol. 2000, 245, 67–79. [Google Scholar] [CrossRef] [PubMed]
- Wujcik, J.M.; Wang, G.; Eastman, J.T.; Sidell, B.D. Morphometry of retinal vasculature in Antarctic fishes is dependent upon the level of hemoglobin in circulation. J. Exp. Biol. 2007, 210, 815–824. [Google Scholar] [CrossRef] [PubMed]
- Bauchot, R.; Ridet, J.-M.; Bauchot, M.-L. The brain organization of butterflyfishes. Environ. Biol. Fishes 1989, 25, 205–219. [Google Scholar] [CrossRef]
- Huber, R.; Van Staaden, M.J.; Kaufman, L.S.; Liem, K.F. Microhabitat use, trophic patterns, and the evolution of brain structure in African cichlids. Brain Behav. Evol. 1997, 50, 167–182. [Google Scholar] [CrossRef] [PubMed]
- Montgomery, J.; Clements, K. Disaptation and recovery in the evolution of Antarctic fishes. Trends Ecol. Evol. 2000, 15, 267–271. [Google Scholar] [CrossRef]
- Eakin, R.R.; Eastman, J.T. Artedidraconidae. In. Fishes of the Southern Ocean, 2nd ed.; Gon, O., Ed.; South African Institute of Aquatic Biodiversity: Grahamstown, South Africa, 2023; in press. [Google Scholar]
- Coombs, S.; Janssen, J.; Webb, J.F. Diversity of lateral line systems: Evolutionary and functional considerations. In Sensory Biology of Aquatic Animals; Atema, J., Fay, R.R., Popper, A.N., Tavolga, W.N., Eds.; Springer: New York, NY, USA, 1988; pp. 553–593. [Google Scholar]
- Montgomery, J.; Pankhurst, N. Sensory physiology. In Deep-Sea Fishes; Randall, D.J., Farrell, A.P., Eds.; Academic Press: San Diego, CA, USA, 1997; pp. 325–349. [Google Scholar]
- Popper, A.N.; Hawkins, A.D. Hearing. In The Physiology of Fishes, 5th ed.; Currie, S., Evans, D.H., Eds.; CRC Press: Boca Raton, FL, USA, 2020; pp. 143–157. [Google Scholar]
- Walls, G.L. The Vertebrate Eye and Its Adaptive Radiation; Cranbrook Institute of Science Bulletin No. 19.; Cranbrook Press: Bloomfield Hills, MI, USA, 1942; 785p. [Google Scholar]
- Nicol, J.A.C. The Eyes of Fishes; Oxford University Press: Oxford, UK, 1989; 308p. [Google Scholar]
- Wittenberg, J.B.; Haedrich, R.L. The choroid rete mirabile of the fish eye. II. Distribution and relation to the pseudobranch and to the swimbladder rete mirabile. Biol. Bull. 1974, 146, 137–156. [Google Scholar] [CrossRef]
- Berenbrink, M.; Koldkjær, P.; Kepp, O.; Cossins, A.R. Evolution of Oxygen Secretion in Fishes and the Emergence of a Complex Physiological System. Science 2005, 307, 1752–1757. [Google Scholar] [CrossRef] [PubMed]
- Eastman, J.T. Aspects of the morphology of phyletically basal bovichtid fishes of the Antarctic suborder Notothenioidei (Perciformes). Polar Biol. 2006, 29, 754–763. [Google Scholar] [CrossRef]
- Demski, L.S. In a fish’s mind’s eye: The visual pallium of teleosts. In Sensory Processing in Aquatic Environments; Collin, S.P., Marshall, N.J., Eds.; Springer: New York, NY, USA, 2003; pp. 404–419. [Google Scholar]
- Montgomery, J.C.; Wells, R.M.G. Recent advances in the ecophysiology of Antarctic notothenioid fishes: Metabolic capacity and sensory performance. In Fish Ecophysiology; Rankin, J.C., Jensen, F.B., Eds.; Chapman and Hall: London, UK, 1993; pp. 341–374. [Google Scholar]
- Vrieze, L.A.; Bergstedt, R.A.; Sorensen, P.W. Olfactory-mediated stream-finding behavior of migratory adult sea lamprey (Petromyzon marinus). Can. J. Fish. Aquat. Sci. 2011, 68, 523–533. [Google Scholar] [CrossRef]
- Lim, H.; Sorensen, P.W. Common Carp Implanted with Prostaglandin F2α Release a Sex Pheromone Complex that Attracts Conspecific Males in Both the Laboratory and Field. J. Chem. Ecol. 2012, 38, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Pakhomov, E.A. Feeding plasticity of the Antarctic fish Trematomus hansoni Boulenger, 1902 (Pisces: Nototheniidae): The influence of fishery waste on the diet. Polar Biol. 1998, 19, 289–292. [Google Scholar] [CrossRef]
- Montgomery, J.C.; Diebel, C.; Halstead, M.B.D.; Downer, J. Olfactory search tracks in the Antarctic fish Trematomus bernacchii. Polar Biol. 1999, 21, 151–154. [Google Scholar] [CrossRef]
- Smale, D.A.; Barnes, D.K.; Fraser, K.P.; Mann, P.J.; Brown, M.P. Scavenging in Antarctica: Intense variation between sites and seasons in shallow benthic necrophagy. J. Exp. Mar. Biol. Ecol. 2007, 349, 405–417. [Google Scholar] [CrossRef]
- Alfaro, M.E.; Faircloth, B.C.; Harrington, R.C.; Sorenson, L.; Friedman, M.; Thacker, C.E.; Oliveros, C.H.; Černý, D.; Near, T.J. Explosive diversification of marine fishes at the Cretaceous–Palaeogene boundary. Nat. Ecol. Evol. 2018, 2, 688–696. [Google Scholar] [CrossRef] [PubMed]
- Douglas, P.M.J.; Affek, H.P.; Ivany, L.C.; Houben, A.J.P.; Sijp, W.P.; Sluijs, A.; Schouten, S.; Pagani, M. Pronounced zonal heterogeneity in Eocene southern high-latitude sea surface temperatures. Proc. Natl. Acad. Sci. USA 2014, 111, 6582–6587. [Google Scholar] [CrossRef]
- Ivany, L.C.; Lohmann, K.C.; Hasiuk, F.; Blake, D.B.; Glass, A.; Aronson, R.B.; Moody, R.M. Eocene climate record of a high southern latitude continental shelf: Seymour Island, Antarctica. Geol. Soc. Am. Bull. 2008, 120, 659–678. [Google Scholar] [CrossRef]
- Přikryl, T.; Vodrážka, R. A diverse Eocene fish scale assemblage from Seymour Island, Antarctica. Geodiversitas 2012, 34, 895–908. [Google Scholar] [CrossRef]
- Kriwet, J. Additions to the Eocene selachian fauna of Antarctica with comments on Antarctic selachian diversity. J. Vertebr. Paléontol. 2005, 25, 1–7. [Google Scholar] [CrossRef]
- Kriwet, J.; Hecht, T. A review of early gadiform evolution and diversification: First record of a rattail fish skull (Gadiformes, Macrouridae) from the Eocene of Antarctica, with otoliths preserved in situ. Sci. Nat. 2008, 95, 899–907. [Google Scholar] [CrossRef] [PubMed]
- Engelbrecht, A.; Mörs, T.; Reguero, M.A.; Kriwet, J. Revision of Eocene Antarctic carpet sharks (Elasmobranchii, Orectolobiformes) from Seymour Island, Antarctic Peninsula. J. Syst. Palaeontol. 2016, 15, 969–990. [Google Scholar] [CrossRef] [PubMed]
- Engelbrecht, A.; Mörs, T.; Reguero, M.A.; Kriwet, J. A new sawshark, Pristiophorus laevis, from the Eocene of Antarctica with comments on Pristiophorus lanceolatus. Hist. Biol. 2016, 29, 841–853. [Google Scholar] [CrossRef] [PubMed]
- Engelbrecht, A.; Mörs, T.; Reguero, M.; Kriwet, J. New carcharhiniform sharks (Chondrichthyes, Elasmobranchii) from the early to middle Eocene of Seymour Island, Antarctic Peninsula. J. Vert. Paleont. 2017, 37, e1371724. [Google Scholar] [CrossRef] [PubMed]
- Engelbrecht, A.; Mörs, T.; Reguero, M.A.; Kriwet, J. Eocene squalomorph sharks (Chondrichthyes, Elasmobranchii) from Antarctica. J. S. Am. Earth Sci. 2017, 78, 175–189. [Google Scholar] [CrossRef] [PubMed]
- Engelbrecht, A.; Mörs, T.; Reguero, M.A.; Kriwet, J. Skates and rays (Elasmobranchii, Batomorphii) from the Eocene La Meseta and Submeseta formations, Seymour Island, Antarctica. Hist. Biol. 2018, 31, 1028–1044. [Google Scholar] [CrossRef] [PubMed]
- Kriwet, J.; Engelbrecht, A.; Mörs, T.; Reguero, M.; Pfaff, C. Ultimate Eocene (Priabonian) chondrichthyans (Holocephali, Elasmobranchii) of Antarctica. J. Vertebr. Paléontol. 2016, 36, e1160911. [Google Scholar] [CrossRef]
- Schwarzhans, W.; Mörs, T.; Engelbrecht, A.; Reguero, M.; Kriwet, J. Before the freeze: Otoliths from the Eocene of Seymour Island, Antarctica, reveal dominance of gadiform fishes (Teleostei). J. Syst. Palaeontol. 2016, 15, 147–170. [Google Scholar] [CrossRef]
- Reguero, M.; Goin, F.; Acosta Hospitaleche, C.; Dutra, T.; Marenssi, S. South America/West Antarctica: Pacific affinities of the Weddellian Marine/coastal vertebrates. In Late Cretaceous/Paleocene West Antarctica Terrestrial Biota and Its Intercontinental Affinities; Reguero, M., Goin, F., Acosta Hospitaleche, C., Dutra, T., Marenssi, S., Eds.; Springer: Dordrecht, The Netherlands, 2013; pp. 27–54. [Google Scholar]
- Eastman, J.T.; Grande, L. Late Eocene gadiform (Teleostei) skull from Seymour Island, Antarctic Peninsula. Antarct. Sci. 1991, 3, 87–95. [Google Scholar] [CrossRef]
- Balushkin, A.V. Proeleginops grandeastmanorum gen. et sp. nov. (Perciformes, Notothenioidei, Eleginopsidae) from the Late Eocene of Seymour Island (Antarctica) is a fossil notothenioid, not a gadiform. J. Ichthyol. 1994, 34, 10–23. [Google Scholar]
- Claeson, K.M.; Eastman, J.T.; Macphee, R.D.E. Definitive specimens of Merlucciidae (Gadiformes) from the Eocene James Ross Basin of Isla Marambio (Seymour Island), Antarctic Peninsula. Antarct. Sci. 2012, 24, 467–472. [Google Scholar] [CrossRef]
- Grande, L.; Eastman, J.T. A review of Antarctic ichthyofaunas in the light of new fossil discoveries. Palaeontology 1986, 29, 113–137. [Google Scholar]
- Jerzmańska, A.; Świdnicki, J. Gadiform remains from the La Meseta Formation (Eocene) of Seymour Island, West Antarctica. Pol. Polar Res. 1992, 13, 241–253. [Google Scholar]
- Bieńkowska-Wasiluk, M.; Bonde, N.; Møller, P.R.; Gaździcki, A. Eocene relatives of cod icefishes (Perciformes: Notothenioidei) from Seymour Island. Geol. Q. 2013, 57, 567–582. [Google Scholar] [CrossRef]
- Germain, D.; Mondéjar-Fernández, J.; Meunier, F.J. The detection of weakly developed plicidentine in teleost teeth using 3D tomography. Cybium 2016, 40, 75–82. [Google Scholar]
- Schwarzhans, W. Reconstruction of the fossil marine bony fish fauna (Teleostei) from the Eocene to Pleistocene of New Zealand by means of otoliths. Soc. Ital. Sci. Nat. Mus. Stor. Nat. 2019, 46, 1–326. [Google Scholar]
- Mecklenburg, C.W.; Lynghammar, A.; Johannesen, E.; Byrkjedal, I.; Christiansen, J.S.; Dolgov, A.V.; Karamushko, O.V.; Mecklenburg, T.A.; Møller, P.R.; Steinke, D.; et al. Marine Fishes of the Arctic Region; Conservation of Arctic Flora and Fauna: Akureyri, Iceland, 2018; Volume I, Available online: https://caff.is/marine/marine-monitoring-publications/451-marine-fishes-of-the-arctic-region-vol-1 (accessed on 1 January 2024).
- Whittle, R.J.; Quaglio, F.; Griffiths, H.J.; Linse, K.; Crame, J.A. The Early Miocene Cape Melville Formation fossil assemblage and the evolution of modern Antarctic marine communities. Naturwissenschaften 2014, 101, 47–59. [Google Scholar] [CrossRef]
- Quilty, P.G.; Lirio, J.M.; Jillett, D. Stratigraphy of the Pliocene Sørsdal Formation, Marine Plain, Vestfold Hills, East Antarctica. Antarct. Sci. 2000, 12, 205–216. [Google Scholar] [CrossRef]
- Near, T.J.; Ghezelayagh, A.; Ojeda, F.P.; Dornburg, A. Recent diversification in an ancient lineage of Notothenioid fishes (Bovichtus: Notothenioidei). Polar Biol. 2019, 42, 943–952. [Google Scholar] [CrossRef]
- Roa-Varón, A.; Ortí, G. Phylogenetic relationships among families of Gadiformes (Teleostei, Paracanthopterygii) based on nuclear and mitochondrial data. Mol. Phylogenetics Evol. 2009, 52, 688–704. [Google Scholar] [CrossRef] [PubMed]
- Baalsrud, H.T.; Tørresen, O.K.; Solbakken, M.H.; Salzburger, W.; Hanel, R.; Jakobsen, K.S.; Jentoft, S. De Novo Gene Evolution of Antifreeze Glycoproteins in Codfishes Revealed by Whole Genome Sequence Data. Mol. Biol. Evol. 2017, 35, 593–606. [Google Scholar] [CrossRef] [PubMed]
- Zhaung, X.; Yang, C.; Murphy, K.R.; Cheng, C.-H.C. Molecular mechanism and history of non-sense to sense evolution of antifreeze glycoprotein gene in northern gadids. Proc. Natl. Acad. Sci. USA 2019, 116, 4400–4405. [Google Scholar] [CrossRef] [PubMed]
- Coleman, M.; Wernberg, T. The Silver Lining of Extreme Events. Trends Ecol. Evol. 2020, 35, 1065–1067. [Google Scholar] [CrossRef] [PubMed]
- Devries, A.L. Fish antifreeze proteins. In Antifreeze Proteins; Ramløv, H., Friis, D.S., Eds.; Springer Nature International: Cham, Switzerland, 2020; Volume 1, pp. 85–129. [Google Scholar]
- Chen, L.; Devries, A.L.; Cheng, C.-H.C. Evolution of antifreeze glycoprotein gene from a trypsinogen gene in Antarctic notothenioid fish. Proc. Natl. Acad. Sci. USA 1997, 94, 3811–3816. [Google Scholar] [CrossRef] [PubMed]
- DeVries, A.L. Antifreeze Peptides and Glycopeptides in Cold-Water Fishes. Annu. Rev. Physiol. 1983, 45, 245–260. [Google Scholar] [CrossRef] [PubMed]
- Jung, A.; Johnson, P.; Eastman, J.T.; DeVries, A.L. Protein content and freezing avoidance properties of the subdermal extracellular matrix and serum of the Antarctic snailfish, Paraliparis devriesi. Fish Physiol. Biochem. 1995, 14, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Evans, R.P.; Fletcher, G.L. Isolation and characterization of type I antifreeze proteins from Atlantic snailfish (Liparis atlanticus) and dusky snailfish (Liparis gibbus). Biochim. Biophys. Acta (BBA) Protein Struct. Mol. Enzym. 2001, 1547, 235–244. [Google Scholar] [CrossRef]
- Devries, A.L.; Cheng, C.-H.C. Antifreeze proteins and organismal freezing avoidance in polar fishes. In Fish Physiology: The Physiology of Polar Fishes; Farrell, A.P., Steffensen, J.F., Eds.; Academic Press: San Diego, CA, USA, 2005; Volume 22, pp. 155–201. [Google Scholar]
- Anderson, M.E.; Fedorov, V.V. Family Zoarcidae Swainson 1839—Eelpouts. Calif. Acad. Sci. Annot. Checklists Fish. 2004, 34, 1–58. [Google Scholar]
- Stein, D.L. Snailfishes (family Liparidae) of the Ross Sea, Antarctica, and closely adjacent waters. Zootaxa 2012, 3285, 1–120. [Google Scholar] [CrossRef]
- Stein, D.L. A review of the snailfishes (Liparidae, Scorpaeniformes) of New Zealand, including descriptions of a new genus and sixteen new species. Zootaxa 2012, 3588, 1–54. [Google Scholar] [CrossRef]
- Eastman, J.T.; Hikida, R.S.; Devries, A.L. Buoyancy studies and microscopy of skin and subdermal extracellular matrix of the antarctic snailfish, Paraliparis devriesi. J. Morphol. 1994, 220, 85–101. [Google Scholar] [CrossRef] [PubMed]
- Balushkin, A.V.; Moganova, M.V. New species of pelagic eelpouts of the genus Melanostigma (Zoarcidae) from Western Antarctica. J. Ichthyol. 2017, 57, 171–176. [Google Scholar] [CrossRef]
- Gerringer, M.E.; Drazen, J.C.; Linley, T.D.; Summers, A.P.; Jamieson, A.J.; Yancey, P.H. Distribution, composition and functions of gelatinous tissues in deep-sea fishes. R. Soc. Open Sci. 2017, 4, 171063. [Google Scholar] [CrossRef] [PubMed]
- Hobbs, R.S.; Hall, J.R.; Graham, L.A.; Davies, P.L.; Fletcher, G.L. Antifreeze protein dispersion in eelpouts and related fishes reveals migration and climate alteration within the last 20 Ma. PLoS ONE 2020, 15, e0243273. [Google Scholar] [CrossRef]
- Rabosky, D.L.; Santini, F.; Eastman, J.; Smith, S.A.; Sidlauskas, B.; Chang, J.; Alfaro, M.E. Rates of speciation and morphological evolution are correlated across the largest vertebrate radiation. Nat. Commun. 2013, 4, 1958. [Google Scholar] [CrossRef]
Substance | Density (kg m–3) |
---|---|
Hydroxyapatite, Ca10(PO4)6(OH)2 | 3190 |
(Mineral component of bone and ) | |
Calcium carbonate, CaCO3 | 2930 |
(Mineral component of otoliths) | |
Bone | 1300–2000 |
Cartilage | 1060–1180 |
Muscle | 1040–1080 |
Viscera | 1040 |
Gelatinous tissue c | 1025–1050 |
Notochordal fluid | Unknown d |
Seawater | 1026 e |
Freshwater | 1000 |
Triacylglycerols | 930 |
Wax esters | 860 |
Squalene | 860 |
Gases | ≈1 |
Falciform Process d | ||||
---|---|---|---|---|
Persistent | ||||
Choroid | Choroid | Lentiform | ||
Rete c | Fissure | Dreiecke e | Body f | |
Percophidae | + | ? | ? | ? |
Bovichtidae (4 spp.) | + | + | + | + |
Pseudaphritidae | + | – | – | + |
Eleginopidae | + | – | – | + |
Nototheniidae (33 spp.) | + or – | – | – | – or + |
Harpagiferidae (2 spp.) | – | – | – | – |
Artedidraconidae (13 spp.) | ± or – | – | – | – |
Bathydraconidae (13 spp.) | –, ± or + g | – | – | – |
Channichthyidae (15 spp.) | – | – | – | – |
Primary Habitat a | Choroid Rete b | Hyaloid Arteries c | Retinal Thickness (µm) d | Number of Retinal Cells e | |
---|---|---|---|---|---|
Percophidae | N | ++ | ? | ? | ? |
Bovichtidae | N | ++ | + | 221–241 | 342–474 |
Pseudaphritidae | N | ++ | ? | 288 | ? |
Eleginopidae | N | ++ | – | 272 | 314 |
Nototheniidae | A, S, N | ± (most) | + or ++ | 150–265 | 106–314 |
+ (some) | (most 110–200) | ||||
– (few) | |||||
Harpagiferidae | S | – | ? | ? | ? |
Artedidraconidae | A | ± or – | ? | 143–225 | 78–79 |
Bathydraconidae | A | – (most) | ++ or +++ | 132–202 | 98–184 |
± (some) | |||||
+ (one) | |||||
Channichthyidae | A | – | +++ | 166–211 | 99–172 |
Taxa | |
---|---|
Chondrichthyes (39 species) | Actinopterygii (continued) |
Callorhinchidae—plownose chimeras | * Notothenioidei – notothenioids |
Chimaeridae—shortnose chimaeras | †? Proeleginops grandeastmanorum |
Cetorhinidae—basking sharks | Gadiforms—cods |
Lamnidae—mackerel sharks | * Moridae—deepsea cods |
Trikaidae—hound sharks | * Macrouridae—grenadiers |
Carcharhinidae—requiem sharks | Merlucciidae—hakes |
Hexanchidae—cow sharks | * Gadidae—cods |
Stegostomatiidae—zebra sharks | †? Mesetaichthys jerzmanskae |
Ginglymostomatidae—nurse sharks | Berycidae—alfonsinos |
Odontaspididae—sand tigers | Trachichthyidae—roughies |
Squalidae—dogfish sharks | Haemulidae—grunts |
Squatinidae—angel sharks | Sparidae—porgies |
Pristiophoridae—saw sharks | Cepolidae—bandfishes |
Pristidae—sawfishes | Oplegnathidae—knife fishes |
* Rajidae—skates | Labridae—wrasses |
Myliobatidae—eagle rays | Trichiuridae—cutlasses fishes |
† Xiphiorhynchidae—billfishes | |
Actinopterygii (24 species) | # Pleuronectiformes—flatfishes |
Clupeidae—herrings | Percoidei, indeterminate |
Argentinidae—argentines | |
Paraulopidae—cucumber fishes | |
Myctophidae—lanternfishes | |
Siluriforms—catfishes | |
Ophidiidae—cusk-eels |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eastman, J.T. The Axes of Divergence for the Evolutionary Radiation of Notothenioid Fishes in Antarctica. Diversity 2024, 16, 214. https://doi.org/10.3390/d16040214
Eastman JT. The Axes of Divergence for the Evolutionary Radiation of Notothenioid Fishes in Antarctica. Diversity. 2024; 16(4):214. https://doi.org/10.3390/d16040214
Chicago/Turabian StyleEastman, Joseph T. 2024. "The Axes of Divergence for the Evolutionary Radiation of Notothenioid Fishes in Antarctica" Diversity 16, no. 4: 214. https://doi.org/10.3390/d16040214