Effects of Forest Fragmentation on the Vertical Stratification of Neotropical Bats
Abstract
:1. Introduction
- How does bat diversity, abundance and assemblage composition change between the understory and upper strata of continuous forest (CF) relative to different-sized (1, 10 and 100 ha) forest fragments? We predicted higher diversity across strata in CF and 100 ha fragments than in the small (10 and 1 ha) fragments, and across upper forest strata, relative to the understory. Additionally, we anticipated higher turnover of species within fragments and lower forest strata than in CF and upper forest strata.
- Which species are more often captured in the upper forest strata in relation to the understory? We expected to have higher capture rates of the Stenodermatinae subfamily in the upper forest strata, due to their preference for fruit tree species present in the subcanopy.
- How do stratification and fragmentation interact as predictors of both species richness and abundance? We hypothesized that there is a combined effect of stratification and fragmentation for certain ensembles (i.e., gleaning animalivores, frugivores), given species-specific associations with certain strata.
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.3. Data Analyses
2.3.1. Species Richness, Diversity and Dominance
2.3.2. Species Composition and Abundance
2.4. Model Selection and Spatial Autocorrelation
3. Results
3.1. Species Richness, Diversity and Dominance
3.2. Species Composition and Abundance
3.3. Species-Specific Strata Associations
3.4. Modelling Fragmentation Effects
4. Discussion
4.1. Vertical Stratification in CF and Forest Fragments
4.2. Species-Specific Strata Associations
4.3. Effects of Fragmentation on the Vertical Stratification Structure
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bradshaw, C.J.; Sodhi, N.S.; Brook, B.W. Tropical turmoil: A biodiversity tragedy in progress. Front. Ecol. Environ. 2009, 7, 79–87. [Google Scholar] [CrossRef] [Green Version]
- Ashton, L.A.; Nakamura, A.; Basset, Y.; Burwell, C.J.; Cao, M.; Eastwood, R.; Odell, E.; de Oliveira, E.G.; Hurley, K.; Katabuchi, M. Vertical stratification of moths across elevation and latitude. J. Biogeogr. 2016, 43, 59–69. [Google Scholar] [CrossRef]
- Gregorin, R.; Bernard, E.; Lobao, K.W.; Oliveira, L.F.; Machado, F.S.; Gil, B.B.; da Cunha Tavares, V. Vertical stratification in bat assemblages of the Atlantic Forest of south-eastern Brazil. J. Trop. Ecol. 2017, 33, 299–308. [Google Scholar] [CrossRef]
- Oliveira, B.F.; Scheffers, B.R. Vertical stratification influences global patterns of biodiversity. Ecography 2019, 42, 249. [Google Scholar] [CrossRef]
- Whitworth, A.; Beirne, C.; Pillco Huarcaya, R.; Whittaker, L.; Serrano Rojas, S.J.; Tobler, M.W.; MacLeod, R. Human disturbance impacts on rainforest mammals are most notable in the canopy, especially for larger-bodied species. Divers. Distrib. 2019, 25, 1166–1178. [Google Scholar] [CrossRef]
- Pfeifer, M.; Lefebvre, V.; Peres, C.; Banks-Leite, C.; Wearn, O.; Marsh, C.; Butchart, S.; Arroyo-Rodríguez, V.; Barlow, J.; Cerezo, A.; et al. Creation of forest edges has a global impact on forest vertebrates. Nature 2017, 551, 187. [Google Scholar] [CrossRef]
- Laurance, W.F.; Camargo, J.L.; Luizão, R.C.; Laurance, S.G.; Pimm, S.L.; Bruna, E.M.; Stouffer, P.C.; Williamson, G.B.; Benítez-Malvido, J.; Vasconcelos, H.L. The fate of Amazonian forest fragments: A 32-year investigation. Biol. Conserv. 2011, 144, 56–67. [Google Scholar] [CrossRef]
- Prodes, I.P. Monitoramento da Floresta Amazônica Brasileira por Satélite. 2014. Available online: Obt.inpe.br/prodes/index.php (accessed on 6 February 2020).
- Peres, C.A.; Gardner, T.A.; Barlow, J.; Zuanon, J.; Michalski, F.; Lees, A.C.; Vieira, I.C.; Moreira, F.M.; Feeley, K.J. Biodiversity conservation in human-modified Amazonian forest landscapes. Biol. Conserv. 2010, 143, 2314–2327. [Google Scholar] [CrossRef]
- Palmeirim, A.F.; Vieira, M.V.; Peres, C.A. Non-Random lizard extinctions in land-bridge Amazonian forest islands after 28 years of isolation. Biol. Conserv. 2017, 214, 55–65. [Google Scholar] [CrossRef]
- Aninta, S.G.; Rocha, R.; López-Baucells, A.; Meyer, C.F. Erosion of phylogenetic diversity in Neotropical bat assemblages: Findings from a whole-ecosystem fragmentation experiment. Biodivers. Conserv. 2019, 28, 4047–4063. [Google Scholar] [CrossRef] [Green Version]
- Burgin, C.J.; Colella, J.P.; Kahn, P.L.; Upham, N.S. How many species of mammals are there? J. Mammal. 2018, 99, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Nogueira, M.; Gregorin, R.; de Lima, I.; Tavares, V.; Moratelli, R.; Peracchi, A. Checklist of Brazilian bats, with comments on original records. Check List 2014, 10, 808. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Baucells, A.; Rocha, R.; Bobrowiec, P.; Palmeirim, J.; Meyer, C. Field Guide to Amazonian Bats; National Institute of Amazonian Research (INPA): Petrópolis, Brazil, 2016. [Google Scholar]
- Francis, C.M. Vertical stratification of fruit bats (Pteropodidae) in lowland dipterocarp rainforest in Malaysia. J. Trop. Ecol. 1994, 10, 523–530. [Google Scholar] [CrossRef]
- Bernard, E. Vertical stratification of bat communities in primary forests of Central Amazon, Brazil. J. Trop. Ecol. 2001, 17, 115–126. [Google Scholar] [CrossRef]
- Henry, M.; Barriere, P.; Gautier-Hion, A.; Colyn, M. Species composition, abundance and vertical stratification of a bat community (Megachiroptera: Pteropodidae) in a West African rain forest. J. Trop. Ecol. 2004, 20, 21–29. [Google Scholar] [CrossRef]
- Marques, J.T.; Ramos Pereira, M.; Palmeirim, J. Patterns in the use of rainforest vertical space by Neotropical aerial insectivorous bats: All the action is up in the canopy. Ecography 2016, 39, 476–486. [Google Scholar] [CrossRef]
- Kunz, T.H.; Braun de Torrez, E.; Bauer, D.; Lobova, T.; Fleming, T.H. Ecosystem services provided by bats. Ann. N. Y. Acad. Sci. 2011, 1223, 1–38. [Google Scholar] [CrossRef]
- Farneda, F.Z.; Rocha, R.; López-Baucells, A.; Sampaio, E.M.; Palmeirim, J.M.; Bobrowiec, P.E.; Grelle, C.E.; Meyer, C.F. Functional recovery of Amazonian bat assemblages following secondary forest succession. Biol. Conserv. 2018, 218, 192–199. [Google Scholar] [CrossRef]
- Kemp, J.; López-Baucells, A.; Rocha, R.; Wangensteen, O.S.; Andriatafika, Z.; Nair, A.; Cabeza, M. Bats as potential suppressors of multiple agricultural pests: A case study from Madagascar. Agric. Ecosyst. Environ. 2019, 269, 88–96. [Google Scholar] [CrossRef] [Green Version]
- Medellín, R.A.; Equihua, M.; Amin, M.A. Bat diversity and abundance as indicators of disturbance in Neotropical rainforests. Conserv. Biol. 2000, 14, 1666–1675. [Google Scholar] [CrossRef]
- Meyer, C.F.; Struebig, M.J.; Willig, M.R. Responses of tropical bats to habitat fragmentation, logging, and deforestation. In Bats in the Anthropocene: Conservation of Bats in a Changing World; Springer: Cham, Switzerland, 2016; pp. 63–103. [Google Scholar]
- Farneda, F.Z.; Grelle, C.E.; Rocha, R.; Ferreira, D.F.; López-Baucells, A.; Meyer, C.F. Predicting biodiversity loss in island and countryside ecosystems through the lens of taxonomic and functional biogeography. Ecography 2020, 43, 97–106. [Google Scholar] [CrossRef]
- García-Morales, R.; Badano, E.I.; Moreno, C.E. Response of Neotropical bat assemblages to human land use. Conserv. Biol. 2013, 27, 1096–1106. [Google Scholar] [CrossRef] [PubMed]
- Rocha, R.; López-Baucells, A.; Farneda, F.Z.; Groenenberg, M.; Bobrowiec, P.E.; Cabeza, M.; Palmeirim, J.M.; Meyer, C.F. Consequences of a large-scale fragmentation experiment for Neotropical bats: Disentangling the relative importance of local and landscape-scale effects. Landsc. Ecol. 2017, 32, 31–45. [Google Scholar] [CrossRef] [Green Version]
- Tregidgo, D.J.; Qie, L.; Barlow, J.; Sodhi, N.S.; Lim, S.L.H. Vertical stratification responses of an arboreal dung beetle species to tropical forest fragmentation in Malaysia. Biotropica 2010, 42, 521–525. [Google Scholar] [CrossRef]
- Martins, A.C.; Willig, M.R.; Presley, S.J.; Marinho-Filho, J. Effects of forest height and vertical complexity on abundance and biodiversity of bats in Amazonia. For. Ecol. Manag. 2017, 391, 427–435. [Google Scholar] [CrossRef]
- Nuñez, S.F.; Baucells, A.L.; Rocha, R.; Farneda, F.Z.; Bobrowiec, P.E.; Palmeirim, J.M.; Meyer, C.F. Echolocation and wing morphology: Key trait correlates of vulnerability of insectivorous bats to tropical forest fragmentation. Front. Ecol. Evol. 2019, 7, 373. [Google Scholar] [CrossRef] [Green Version]
- Kalko, E.K.; Handley, C.O. Neotropical bats in the canopy: Diversity, community structure, and implications for conservation. Plant. Ecol. 2001, 153, 319–333. [Google Scholar] [CrossRef]
- Peters, S.L.; Malcolm, J.R.; Zimmerman, B.L. Effects of selective logging on bat communities in the southeastern Amazon. Conserv. Biol. 2006, 20, 1410–1421. [Google Scholar] [CrossRef]
- Rex, K.; Kelm, D.H.; Wiesner, K.; Kunz, T.H.; Voigt, C.C. Species richness and structure of three Neotropical bat assemblages. Biol. J. Linn. Soc. 2008, 94, 617–629. [Google Scholar] [CrossRef]
- Pereira, M.J.R.; Marques, J.T.; Palmeirim, J.M. Vertical stratification of bat assemblages in flooded and unflooded Amazonian forests. Curr. Zool. 2010, 56, 469–478. [Google Scholar] [CrossRef]
- Rex, K.; Michener, R.; Kunz, T.H.; Voigt, C.C. Vertical stratification of Neotropical leaf-nosed bats (Chiroptera: Phyllostomidae) revealed by stable carbon isotopes. J. Trop. Ecol. 2011, 27, 211–222. [Google Scholar] [CrossRef]
- Lim, B.K.; Engstrom, M.D. Bat community structure at Iwokrama forest, Guyana. J. Trop. Ecol. 2001, 17, 647–665. [Google Scholar] [CrossRef]
- Carvalho, F.; Fabián, M.E.; Menegheti, J.O. Vertical structure of an assemblage of bats (Mammalia: Chiroptera) in a fragment of Atlantic Forest in Southern Brazil. Zoologia 2013, 30, 491–498. [Google Scholar] [CrossRef] [Green Version]
- García-García, J.L.; Santos-Moreno, A.; Kraker-Castañeda, C. Ecological traits of phyllostomid bats associated with sensitivity to tropical forest fragmentation in Los Chimalapas, Mexico. Trop. Conserv. Sci. 2014, 7, 457–474. [Google Scholar] [CrossRef]
- Ferreira, D.F.; Rocha, R.; López-Baucells, A.; Farneda, F.Z.; Carreiras, J.M.; Palmeirim, J.M.; Meyer, C.F. Season-Modulated responses of Neotropical bats to forest fragmentation. Ecol. Evol. 2017, 7, 4059–4071. [Google Scholar] [CrossRef] [PubMed]
- Carreiras, J.M.; Jones, J.; Lucas, R.M.; Gabriel, C. Land use and land cover change dynamics across the Brazilian Amazon: Insights from extensive time-series analysis of remote sensing data. PLoS ONE 2014, 9, e104144. [Google Scholar] [CrossRef] [PubMed]
- Rocha, R.; Ovaskainen, O.; López-Baucells, A.; Farneda, F.Z.; Ferreira, D.F.; Bobrowiec, P.E.; Cabeza, M.; Palmeirim, J.M.; Meyer, C.F. Design matters: An evaluation of the impact of small man-made forest clearings on tropical bats using a before-after-control-impact design. For. Ecol. Manag. 2017, 401, 8–16. [Google Scholar] [CrossRef]
- López-Baucells, A.; Torrent, L.; Rocha, R.; Pavan, A.C.; Bobrowiec, P.E.D.; Meyer, C.F. Geographical variation in the high-duty cycle echolocation of the cryptic common mustached bat Pteronotus cf. rubiginosus (Mormoopidae). Bioacoustics 2018, 27, 341–357. [Google Scholar]
- Kalko, E. Organisation and diversity of tropical bat communities through space and time. Zoology 1998, 101, 281–297. [Google Scholar]
- Sikes, R.S.; Gannon, W.L. Guidelines of the American Society of Mammalogists for the use of wild mammals in research. J. Mammal. 2011, 92, 235–253. [Google Scholar] [CrossRef]
- Colwell, R. EstimateS: Statistical Estimation of Species Richness and Shared Species from Samples; Version 9. User’s Guide and application 2013; University of Connecticut: Storrs, CT, USA, 2016. [Google Scholar]
- Colwell, R.K.; Coddington, J.A. Estimating terrestrial biodiversity through extrapolation. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 1994, 345, 101–118. [Google Scholar]
- Brose, U.; Martinez, N.D. Estimating the richness of species with variable mobility. Oikos 2004, 105, 292–300. [Google Scholar] [CrossRef]
- Hill, M.O. Diversity and evenness: A unifying notation and its consequences. Ecology 1973, 54, 427–432. [Google Scholar] [CrossRef] [Green Version]
- Jost, L. Entropy and diversity. Oikos 2006, 113, 363–375. [Google Scholar] [CrossRef]
- Chao, A.; Gotelli, N.J.; Hsieh, T.; Sander, E.L.; Ma, K.; Colwell, R.K.; Ellison, A.M. Rarefaction and extrapolation with Hill numbers: A framework for sampling and estimation in species diversity studies. Ecol. Monogr. 2014, 84, 45–67. [Google Scholar] [CrossRef] [Green Version]
- Hsieh, T.; Ma, K.; Chao, A. iNEXT: An R package for rarefaction and extrapolation of species diversity (H ill numbers). Methods Ecol. Evol. 2016, 7, 1451–1456. [Google Scholar] [CrossRef]
- Zuur, A.; Ieno, E.N.; Walker, N.; Saveliev, A.A.; Smith, G.M. Mixed Effects Models and Extensions in Ecology with R.; Springer Science & Business Media: New York, NY, USA, 2009. [Google Scholar]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Lme4: Linear mixed-effects models using S4 classes. R package version 0.999999–2. 2016. J. Stat. Softw. 2016, 67. [Google Scholar] [CrossRef]
- Bolker, B.M.; Brooks, M.E.; Clark, C.J.; Geange, S.W.; Poulsen, J.R.; Stevens, M.H.H.; White, J.-S.S. Generalized linear mixed models: A practical guide for ecology and evolution. Trends Ecol. Evol. 2009, 24, 127–135. [Google Scholar] [CrossRef]
- Scholz, F.; Zhu, A. kSamples: K-Sample Rank Tests and their Combinations. R Package Version. 2016, Volume 1, pp. 2–3. Available online: https://cran.r-project.org/web/packages/kSamples/index.html (accessed on 6 February 2020).
- Hallett, L.M.; Jones, S.K.; MacDonald, A.A.M.; Jones, M.B.; Flynn, D.F.; Ripplinger, J.; Slaughter, P.; Gries, C.; Collins, S.L. Codyn: An R package of community dynamics metrics. Methods Ecol. Evol. 2016, 7, 1146–1151. [Google Scholar] [CrossRef]
- Cleland, E.E.; Collins, S.L.; Dickson, T.L.; Farrer, E.C.; Gross, K.L.; Gherardi, L.A.; Hallett, L.M.; Hobbs, R.J.; Hsu, J.S.; Turnbull, L. Sensitivity of grassland plant community composition to spatial vs. temporal variation in precipitation. Ecology 2013, 94, 1687–1696. [Google Scholar] [CrossRef] [Green Version]
- Collins, S.L.; Suding, K.N.; Cleland, E.E.; Batty, M.; Pennings, S.C.; Gross, K.L.; Grace, J.B.; Gough, L.; Fargione, J.E.; Clark, C.M. Rank clocks and plant community dynamics. Ecology 2008, 89, 3534–3541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harrison, X.A. Using observation-level random effects to model overdispersion in count data in ecology and evolution. PeerJ 2014, 2, e616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakagawa, S.; Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 2013, 4, 133–142. [Google Scholar] [CrossRef]
- Moreno, C.E.; Halffter, G. Assessing the completeness of bat biodiversity inventories using species accumulation curves. J. Appl. Ecol. 2000, 37, 149–158. [Google Scholar] [CrossRef] [Green Version]
- Bernard, E.; Fenton, M.B. Bats in a fragmented landscape: Species composition, diversity and habitat interactions in savannas of Santarém, Central Amazonia, Brazil. Biol. Conserv. 2007, 134, 332–343. [Google Scholar] [CrossRef]
- Farneda, F.Z.; Rocha, R.; López-Baucells, A.; Groenenberg, M.; Silva, I.; Palmeirim, J.M.; Bobrowiec, P.E.; Meyer, C.F. Trait-Related responses to habitat fragmentation in Amazonian bats. J. Appl. Ecol. 2015, 52, 1381–1391. [Google Scholar] [CrossRef]
- Rocha, R.; Ovaskainen, O.; López-Baucells, A.; Farneda, F.Z.; Sampaio, E.M.; Bobrowiec, P.E.; Cabeza, M.; Palmeirim, J.M.; Meyer, C.F. Secondary forest regeneration benefits old-growth specialist bats in a fragmented tropical landscape. Sci. Rep. 2018, 8, 3819. [Google Scholar] [CrossRef]
- Almeida, D.A.; Stark, S.; Schietti, J.; Camargo, J.; Amazonas, N.; Gorgens, E.; Rosa, D.M.; Smith, M.; Valbuena, R.; Saleska, S. Persistent effects of fragmentation on tropical rainforest canopy structure after 20 years of isolation. Ecol. Appl. 2019, 29, e01952. [Google Scholar] [CrossRef]
- Jung, K.; Kalko, E.K. Where forest meets urbanization: Foraging plasticity of aerial insectivorous bats in an anthropogenically altered environment. J. Mammal. 2010, 91, 144–153. [Google Scholar] [CrossRef]
- Adams, M.D.; Law, B.S.; French, K.O. Vegetation structure influences the vertical stratification of open-and edge-space aerial-foraging bats in harvested forests. For. Ecol. Manag. 2009, 258, 2090–2100. [Google Scholar] [CrossRef]
- Jung, K.; Kaiser, S.; Böhm, S.; Nieschulze, J.; Kalko, E.K. Moving in three dimensions: Effects of structural complexity on occurrence and activity of insectivorous bats in managed forest stands. J. Appl. Ecol. 2012, 49, 523–531. [Google Scholar] [CrossRef]
- Rocha, R.; Ferreira, D.F.; López-Baucells, A.; Farneda, F.Z.; Carreiras, J.M.; Palmeirim, J.M.; Meyer, C.F. Does sex matter? Gender-specific responses to forest fragmentation in Neotropical bats. Biotropica 2017, 49, 881–890. [Google Scholar] [CrossRef] [Green Version]
- Rocha, R.; López-Baucells, A.; Farneda, F.; Ferreira, D.; Silva, I.; Acácio, M.; Palmeirim, J.; Meyer, C.F. Second-Growth and small forest clearings have little effect on the temporal activity patterns of Amazonian phyllostomid bats. Curr. Zool. 2019. [Google Scholar] [CrossRef]
- Castro-Arellano, I.; Presley, S.J.; Willig, M.R.; Wunderle, J.M.; Saldanha, L.N. Reduced-Impact logging and temporal activity of understorey bats in lowland Amazonia. Biol. Conserv. 2009, 142, 2131–2139. [Google Scholar] [CrossRef]
- Voigt, C.C. Insights into strata use of forest animals using the ‘canopy effect’. Biotropica 2010, 42, 634–637. [Google Scholar] [CrossRef]
- Jones, K.E.; Purvis, A.; Gittleman, J.L. Biological correlates of extinction risk in bats. Am. Nat. 2003, 161, 601–614. [Google Scholar] [CrossRef]
- Meyer, C.F.; Kalko, E.K. Assemblage-Level responses of phyllostomid bats to tropical forest fragmentation: Land-Bridge islands as a model system. J. Biogeogr. 2008, 35, 1711–1726. [Google Scholar] [CrossRef]
- Meyer, C.F.; Aguiar, L.M.; Aguirre, L.F.; Baumgarten, J.; Clarke, F.M.; Cosson, J.F.; Villegas, S.E.; Fahr, J.; Faria, D.; Furey, N. Accounting for detectability improves estimates of species richness in tropical bat surveys. J. Appl. Ecol. 2011, 48, 777–787. [Google Scholar] [CrossRef]
- Medellín, R.A. Chrotopterus auritus. Mamm. Species 1989, 343, 1–5. [Google Scholar] [CrossRef]
- Purvis, A.; Gittleman, J.L.; Cowlishaw, G.; Mace, G.M. Predicting extinction risk in declining species. Proc. R. Soc. Lond. Ser. B Biol. Sci. 2000, 267, 1947–1952. [Google Scholar] [CrossRef] [Green Version]
- Santos, M.; Aguirre, L.F.; Vázquez, L.B.; Ortega, J. Phyllostomus hastatus. Mamm. Species 2003, 2003, 1–6. [Google Scholar] [CrossRef]
- Schuldt, A.; Baruffol, M.; Böhnke, M.; Bruelheide, H.; Härdtle, W.; Lang, A.C.; Nadrowski, K.; Von Oheimb, G.; Voigt, W.; Zhou, H. Tree diversity promotes insect herbivory in subtropical forests of south-east China. J. Ecol. 2010, 98, 917–926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, B.K.; Engstrom, M.D. Species diversity of bats (Mammalia: Chiroptera) in Iwokrama Forest, Guyana, and the Guianan subregion: Implications for conservation. Biodivers. Conserv. 2001, 10, 613–657. [Google Scholar] [CrossRef]
- Sampaio, E.M.; Kalko, E.K.; Bernard, E.; Rodríguez-Herrera, B.; Handley, C.O. A biodiversity assessment of bats (Chiroptera) in a tropical lowland rainforest of Central Amazonia, including methodological and conservation considerations. Stud. Neotrop. Fauna Environ. 2003, 38, 17–31. [Google Scholar] [CrossRef]
- Galetti, M.; Morellato, L. Diet of the large fruit-eating bat Artibeus lituratus in a forest fragment in Brasil. Mammalia 1994, 58, 661–664. [Google Scholar]
- Laurance, W.F.; Nascimento, H.E.; Laurance, S.G.; Andrade, A.; Ribeiro, J.E.; Giraldo, J.P.; Lovejoy, T.E.; Condit, R.; Chave, J.; Harms, K.E. Rapid decay of tree-community composition in Amazonian forest fragments. Proc. Natl. Acad. Sci. USA 2006, 103, 19010–19014. [Google Scholar] [CrossRef] [Green Version]
Continuous Forest (CF) | Fragments (F) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Taxa | U | LM | UM | SC | CF Total | U | LM | UM | SC | F Total |
Mormoopidae | ||||||||||
Pteronotus cf. rubiginosus | 139 | 2 | 141 | 75 | 3 | 1 | 79 | |||
Phyllostomidae | ||||||||||
Carolliinae | ||||||||||
Carollia brevicauda | 25 | 4 | 1 | 30 | 32 | 1 | 1 | 34 | ||
Carollia castanea | 1 | 1 | ||||||||
Carollia perspicillata | 330 | 22 | 14 | 6 | 372 | 709 | 51 | 46 | 9 | 815 |
Rhinophylla pumilio | 132 | 11 | 8 | 2 | 153 | 220 | 23 | 42 | 8 | 293 |
Stenodermatinae | ||||||||||
Ametrida centurio | 1 | 3 | 11 | 15 | 2 | 3 | 1 | 6 | ||
Artibeus cinereus | 12 | 4 | 9 | 4 | 28 | 13 | 2 | 12 | 1 | 28 |
Artibeus concolor | 7 | 9 | 13 | 6 | 35 | 15 | 11 | 31 | 10 | 67 |
Artibeus gnomus | 12 | 8 | 7 | 1 | 28 | 10 | 5 | 10 | 5 | 30 |
Artibeus lituratus | 28 | 8 | 11 | 11 | 58 | 8 | 15 | 21 | 4 | 48 |
Artibeus obscurus | 39 | 1 | 4 | 4 | 48 | 33 | 5 | 5 | 1 | 44 |
Artibeus planirostris | 10 | 1 | 1 | 1 | 13 | 8 | 1 | 2 | 11 | |
Chiroderma trinitatum | 3 | 3 | ||||||||
Mesophylla macconnelli | 23 | 3 | 12 | 6 | 44 | 6 | 1 | 3 | 2 | 12 |
Platyrrhinus sp. | 2 | 1 | 3 | 1 | 1 | |||||
Sturnira tildae | 1 | 2 | 1 | 4 | 1 | 2 | 4 | 2 | 9 | |
Uroderma bilobatum | 1 | 1 | 2 | 4 | 3 | 7 | ||||
Vampyriscus bidens | 16 | 3 | 6 | 1 | 26 | 8 | 1 | 2 | 1 | 12 |
Vampyriscus brocki | 1 | 1 | 2 | 3 | 3 | |||||
Vampyressa thyone | 1 | 1 | ||||||||
Phyllostominae | ||||||||||
Chrotopterus auritus | 4 | 4 | 2 | 2 | ||||||
Glyphonycteris daviesi | 4 | 4 | ||||||||
Glyphonycteris sylvestris | 1 | 1 | 2 | |||||||
Lampronycteris brachyotis | 1 | 1 | ||||||||
Lophostoma brasiliense | 1 | 1 | ||||||||
Lophostoma carrikeri | 1 | 1 | 2 | 2 | 2 | |||||
Lophostoma schulzi | 5 | 5 | 4 | 4 | ||||||
Lophostoma silvicolum | 49 | 49 | 17 | 1 | 1 | 19 | ||||
Micronycteris hirsuta | 1 | 1 | ||||||||
Micronycteris megalotis | 2 | 2 | 2 | 2 | ||||||
Micronycteris microtis | 5 | 5 | 3 | 3 | ||||||
Micronycteris sanborni | 2 | 2 | ||||||||
Micronycteris schmidtorum | 1 | 1 | ||||||||
Gardnerycteris crenulatum | 22 | 1 | 23 | 26 | 26 | |||||
Phylloderma stenops | 9 | 9 | 7 | 7 | ||||||
Phyllostomus discolor | 3 | 6 | 7 | 1 | 17 | 3 | 38 | 42 | 83 | |
Phyllostomus elongatus | 18 | 18 | 6 | 6 | ||||||
Phyllostomus hastatus | 1 | 1 | 1 | 1 | 2 | 4 | ||||
Tonatia saurophila | 35 | 3 | 6 | 44 | 32 | 4 | 3 | 39 | ||
Trachops cirrhosus | 70 | 1 | 71 | 29 | 29 | |||||
Trinycteris nicefori | 4 | 4 | 2 | 2 | 2 | 6 | ||||
Glossophaginae | ||||||||||
Anoura caudifera | 1 | 1 | 1 | 1 | 2 | |||||
Choeroniscus minor | 1 | 1 | 2 | 6 | 6 | |||||
Glossophaga soricina | 2 | 1 | 3 | 5 | 1 | 6 | ||||
Hsunycteris thomasi | 24 | 24 | 16 | 1 | 17 | |||||
Desmodontinae | ||||||||||
Desmodus rotundus | 8 | 8 | 3 | 3 | ||||||
TOTAL | 1046 | 92 | 110 | 61 | 1308 | 1316 | 170 | 238 | 45 | 1769 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, I.; Rocha, R.; López-Baucells, A.; Farneda, F.Z.; Meyer, C.F.J. Effects of Forest Fragmentation on the Vertical Stratification of Neotropical Bats. Diversity 2020, 12, 67. https://doi.org/10.3390/d12020067
Silva I, Rocha R, López-Baucells A, Farneda FZ, Meyer CFJ. Effects of Forest Fragmentation on the Vertical Stratification of Neotropical Bats. Diversity. 2020; 12(2):67. https://doi.org/10.3390/d12020067
Chicago/Turabian StyleSilva, Inês, Ricardo Rocha, Adrià López-Baucells, Fábio Z. Farneda, and Christoph F. J. Meyer. 2020. "Effects of Forest Fragmentation on the Vertical Stratification of Neotropical Bats" Diversity 12, no. 2: 67. https://doi.org/10.3390/d12020067