Silk Foams with Metallic Nanoparticles as Scaffolds for Soft Tissue Regeneration
Abstract
:1. Introduction
2. Results
2.1. Structure and Composition of the Foam
2.1.1. Structure
2.1.2. Compression Tests
2.1.3. Swelling
2.2. Biological Behavior
2.2.1. Viability
2.2.2. Cell Adhesion and Spreading
2.2.3. Irritation and Inflammatory Response
2.2.4. In Vivo Implantation and Histology
3. Discussion
4. Materials and Methods
4.1. Foam Production
4.1.1. Silk Extraction
4.1.2. Nanoparticle Solutions
Gold Nanoparticles (Au NPs)
Silver Nanoparticles (Ag NPs)
Iron Oxide Nanoparticles (Fe NPs)
4.1.3. Foam Formation
4.2. Characterization
4.2.1. Mechanical Properties
4.2.2. Swelling Ratio
4.2.3. Pores Interconnectivity Measurement
4.2.4. Transmission Electron Microscopy (TEM)
4.2.5. Scanning Electron Microscopy (SEM)
4.3. In Vitro Test
4.3.1. Viability Test
4.3.2. DAPI Staining
4.3.3. Scanning Electron Microscopy (SEM)
4.3.4. Metabolic Activity
4.4. In Vivo Tests
Histology
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, D.X.B. Scaffold Design. In Extrusion Bioprinting of Scaffolds for Tissue Engineering Applications; Chen, D.X.B., Ed.; Springer International Publishing: Cham, Switzerland, 2019; pp. 15–31. [Google Scholar] [CrossRef]
- Makvandi, P.; Iftekhar, S.; Pizzetti, F.; Zarepour, A.; Zare, E.N.; Ashrafizadeh, M.; Agarwal, T.; Padil, V.V.T.; Mohammadinejad, R.; Sillanpaa, M.; et al. Functionalization of polymers and nanomaterials for water treatment, food packaging, textile and biomedical applications: A review. Environ. Chem. Lett. 2021, 19, 583–611. [Google Scholar] [CrossRef]
- Eltom, A.; Zhong, G.; Muhammad, A. Scaffold Techniques and Designs in Tissue Engineering Functions and Purposes: A Review. Adv. Mater. Sci. Eng. 2019, 2019, e3429527. [Google Scholar] [CrossRef]
- Boehler, R.M.; Graham, J.G.; Shea, L.D. Tissue engineering tools for modulation of the immune response. BioTechniques 2011, 51, 239–254. [Google Scholar] [CrossRef] [PubMed]
- Thilagavathi, G.; Viju, S. 11—Silk as a suture material. In Advances in Silk Science and Technology; Woodhead Publishing Series in Textiles; Basu, A., Ed.; Woodhead Publishing: Derbyshire, UK, 2015; pp. 219–232. [Google Scholar] [CrossRef]
- Zhang, W.; Chen, L.; Chen, J.; Wang, L.; Gui, X.; Ran, J.; Xu, G.; Zhao, H.; Zeng, M.; Ji, J.; et al. Silk Fibroin Biomaterial Shows Safe and Effective Wound Healing in Animal Models and a Randomized Controlled Clinical Trial. Adv. Healthc. Mater. 2017, 6, 1700121. [Google Scholar] [CrossRef]
- Rockwood, D.N.; Preda, R.C.; Yücel, T.; Wang, X.; Lovett, M.L.; Kaplan, D.L. Materials fabrication from Bombyx mori silk fibroin. Nat. Protoc. 2011, 6, 1612–1631. [Google Scholar] [CrossRef]
- Sang, Y.; Li, M.; Liu, J.; Yao, Y.; Ding, Z.; Wang, L.; Xiao, L.; Lu, Q.; Fu, X.; Kaplan, D.L. Biomimetic Silk Scaffolds with an Amorphous Structure for Soft Tissue Engineering. ACS Appl. Mater. Interfaces 2018, 10, 9290–9300. [Google Scholar] [CrossRef]
- Brown, J.E.; Moreau, J.E.; Berman, A.M.; McSherry, H.J.; Coburn, J.M.; Schmidt, D.F.; Kaplan, D.L. Shape Memory Silk Protein Sponges for Minimally Invasive Tissue Regeneration. Adv. Healthc. Mater. 2017, 6, 1600762. [Google Scholar] [CrossRef]
- Ornell, K.J.; Taylor, J.S.; Zeki, J.; Ikegaki, N.; Shimada, H.; Coburn, J.M.; Chiu, B. Local delivery of dinutuximab from lyophilized silk fibroin foams for treatment of an orthotopic neuroblastoma model. Cancer Med. 2020, 9, 2891–2903. [Google Scholar] [CrossRef]
- Chambre, L.; Parker, R.N.; Allardyce, B.J.; Valente, F.; Rajkhowa, R.; Dilley, R.J.; Wang, X.; Kaplan, D.L. Tunable Biodegradable Silk-Based Memory Foams with Controlled Release of Antibiotics. ACS Appl. Bio Mater. 2020, 3, 2466–2472. [Google Scholar] [CrossRef]
- Bellas, E.; Lo, T.J.; Fournier, E.P.; Brown, J.E.; Abbott, R.D.; Gil, E.S.; Marra, K.G.; Rubin, J.P.; Leisk, G.G.; Kaplan, D.L. Injectable Silk Foams for Soft Tissue Regeneration. Adv. Healthc. Mater. 2015, 4, 452–459. [Google Scholar] [CrossRef]
- Belda Marín, C.; Egles, C.; Humblot, V.; Lalatonne, Y.; Motte, L.; Landoulsi, J.; Guénin, E. Gold, Silver, and Iron Oxide Nanoparticle Incorporation into Silk Hydrogels for Biomedical Applications: Elaboration, Structure, and Properties. ACS Biomater. Sci. Eng. 2021, 7, 2358–2371. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Xiao, J.; Wang, Y.; Meng, M. In situ synthesis of silver nanoparticles uniformly distributed on polydopamine-coated silk fibers for antibacterial application. J. Colloid Interface Sci. 2015, 452, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Annadhasan, M.; Muthukumarasamyvel, T.; Sankar Babu, V.R.; Rajendiran, N. Green Synthesized Silver and Gold Nanoparticles for Colorimetric Detection of Hg2+, Pb2+, and Mn2+ in Aqueous Medium. ACS Sustain. Chem. Eng. 2014, 2, 887–896. [Google Scholar] [CrossRef]
- Chandrasekharan, D.K.; Khanna, P.K.; Kagiya, T.V.; Nair, C.K.K. Synthesis of nanosilver using a vitamin C derivative and studies on radiation protection. Cancer Biother. Radiopharm. 2011, 26, 249–257. [Google Scholar] [CrossRef]
- Das, S.; Sharma, M.; Saharia, D.; Sarma, K.K.; Sarma, M.G.; Borthakur, B.B.; Bora, U. In vivo studies of silk based gold nano-composite conduits for functional peripheral nerve regeneration. Biomaterials 2015, 62, 66–75. [Google Scholar] [CrossRef]
- Guo, C.; Hall, G.N.; Addison, J.B.; Yarger, J.L. Gold nanoparticle-doped silk film as biocompatible SERS substrate. RSC Adv. 2014, 5, 1937–1942. [Google Scholar] [CrossRef]
- Belda Marín, C. Silk Bionanocomposites: Design, Characterization and Potential Applications. Ph.D. Thesis, Université de Technologie de Compiègne, Compiègne, France, 2020. [Google Scholar]
- Sangnier, A.P.; Aufaure, R.; Cheong, S.; Motte, L.; Palpant, B.; Tilley, R.D.; Guenin, E.; Wilhelm, C.; Lalatonne, Y. Raspberry-like small multicore gold nanostructures for efficient photothermal conversion in the first and second near-infrared windows. Chem. Commun. 2019, 55, 4055–4058. [Google Scholar] [CrossRef]
- Liang, B.; Yu, K.; Ling, Y.; Kolios, M.; Exner, A.; Wang, Z.; Hu, B.; Zuo, G.; Chen, Y.; Zheng, Y. An artificially engineered “tumor bio-magnet” for collecting blood-circulating nanoparticles and magnetic hyperthermia. Biomater. Sci. 2019, 7, 1815–1824. [Google Scholar] [CrossRef]
- Cabana, S.; Curcio, A.; Michel, A.; Wilhelm, C.; Abou-Hassan, A. Iron Oxide Mediated Photothermal Therapy in the Second Biological Window: A Comparative Study between Magnetite/Maghemite Nanospheres and Nanoflowers. Nanomaterials 2020, 10, 1548. [Google Scholar] [CrossRef]
- Belda Marín, C.; Fitzpatrick, V.; Kaplan, D.L.; Landoulsi, J.; Guénin, E.; Egles, C. Silk Polymers and Nanoparticles: A Powerful Combination for the Design of Versatile Biomaterials. Front. Chem. 2020, 8, 604398. [Google Scholar] [CrossRef]
- Kuhn, H.; Medlin, D. Mechanical Testing and Evaluation; ASM International: Almere, The Netherlands, 2000. [Google Scholar] [CrossRef]
- Ouellet, S.; Cronin, D.; Worswick, M. Compressive response of polymeric foams under quasi-static, medium and high strain rate conditions. Polym. Test. 2006, 25, 731–743. [Google Scholar] [CrossRef]
- Rahimidehgolan, F.; Altenhof, W. Compressive behavior and deformation mechanisms of rigid polymeric foams: A review. Compos. Part B Eng. 2023, 253, 110513. [Google Scholar] [CrossRef]
- Rajput, S.; Burde, H.; Singh, U.S.; Kajaria, H.; Bhagchandani, R.K. Optimization of prosthetic leg using generative design and compliant mechanism. Mater. Today Proc. 2021, 46, 8708–8715. [Google Scholar] [CrossRef]
- Li, B.; Aspden, R.M. Composition and mechanical properties of cancellous bone from the femoral head of patients with osteoporosis or osteoarthritis. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. 1997, 12, 641–651. [Google Scholar] [CrossRef]
- ISO 10993-5:2009; Biological Evaluation of Medical Devices—Part 5: Tests for In Vitro Cytotoxicity. International Organization for Standardization: Geneva, Switzerland, 2009.
- Akturk, O.; Kismet, K.; Yasti, A.C.; Kuru, S.; Duymus, M.E.; Kaya, F.; Caydere, M.; Hucumenoglu, S.; Keskin, D. Wet electrospun silk fibroin/gold nanoparticle 3D matrices for wound healing applications. RSC Adv. 2016, 6, 13234–13250. [Google Scholar] [CrossRef]
- Tcharkhtchi, A.; Abdallah-Elhirtsi, S.; Ebrahimi, K.; Fitoussi, J.; Shirinbayan, M.; Farzaneh, S. Some New Concepts of Shape Memory Effect of Polymers. Polymers 2014, 6, 1144–1163. [Google Scholar] [CrossRef]
- Du, R.; Zhao, B.; Luo, K.; Wang, M.-X.; Yuan, Q.; Yu, L.-X.; Yang, K.-K.; Wang, Y.-Z. Shape Memory Polyester Scaffold Promotes Bone Defect Repair through Enhanced Osteogenic Ability and Mechanical Stability. ACS Appl. Mater. Interfaces 2023, 15, 42930–42941. [Google Scholar] [CrossRef]
- Miao, S.; Cui, H.; Esworthy, T.; Mahadik, B.; Lee, S.; Zhou, X.; Hann, S.Y.; Fisher, J.P.; Zhang, L.G. 4D Self-Morphing Culture Substrate for Modulating Cell Differentiation. Adv. Sci. 2020, 7, 1902403. [Google Scholar] [CrossRef]
- Mata, R.; Yao, Y.; Cao, W.; Ding, J.; Zhou, T.; Zhai, Z.; Gao, C. The Dynamic Inflammatory Tissue Microenvironment: Signality and Disease Therapy by Biomaterials. Research 2021, 2021, 4189516. [Google Scholar] [CrossRef]
- Tang, L.; Eaton, J.W. Inflammatory responses to biomaterials. Am. J. Clin. Pathol. 1995, 103, 466–471. [Google Scholar] [CrossRef]
- Li, C.; Guo, C.; Fitzpatrick, V.; Ibrahim, A.; Zwierstra, M.J.; Hanna, P.; Lechtig, A.; Nazarian, A.; Lin, S.J.; Kaplan, D.L. Design of biodegradable, implantable devices towards clinical translation. Nat. Rev. Mater. 2020, 5, 61–81. [Google Scholar] [CrossRef]
- Cohen-Karni, T.; Jeong, K.J.; Tsui, J.H.; Reznor, G.; Mustata, M.; Wanunu, M.; Graham, A.; Marks, C.; Bell, D.C.; Langer, R.; et al. Nanocomposite Gold-Silk Nanofibers. Nano Lett. 2012, 12, 5403–5406. [Google Scholar] [CrossRef] [PubMed]
- Sridhar, S.; Venugopal, J.R.; Sridhar, R.; Ramakrishna, S. Cardiogenic differentiation of mesenchymal stem cells with gold nanoparticle loaded functionalized nanofibers. Colloids Surf. B Biointerfaces 2015, 134, 346–354. [Google Scholar] [CrossRef] [PubMed]
- Schneider, A.; Wang, X.Y.; Kaplan, D.L.; Garlick, J.A.; Egles, C. Biofunctionalized electrospun silk mats as a topical bioactive dressing for accelerated wound healing. Acta Biomater. 2009, 5, 2570–2578. [Google Scholar] [CrossRef]
- Pritchard, E.M.; Hu, X.; Finley, V.; Kuo, C.K.; Kaplan, D.L. Effect of Silk Protein Processing on Drug Delivery from Silk Films. Macromol. Biosci. 2013, 13, 311–320. [Google Scholar] [CrossRef]
- Balfourier, A.; Luciani, N.; Wang, G.; Lelong, G.; Ersen, O.; Khelfa, A.; Alloyeau, D.; Gazeau, F.; Carn, F. Unexpected intracellular biodegradation and recrystallization of gold nanoparticles. Proc. Natl. Acad. Sci. USA 2020, 117, 103–113. [Google Scholar] [CrossRef]
- Benyettou, F.; Prakasam, T.; Nair, A.R.; Witzel, I.-I.; Alhashimi, M.; Skorjanc, T.; Olsen, J.-C.; Sadler, K.C.; Trabolsi, A. Potent and selective in vitro and in vivo antiproliferative effects of metal–organic trefoil knots. Chem. Sci. 2019, 10, 5884–5892. [Google Scholar] [CrossRef]
- Qian, K.-Y.; Song, Y.; Yan, X.; Dong, L.; Xue, J.; Xu, Y.; Wang, B.; Cao, B.; Hou, Q.; Peng, W.; et al. Injectable ferrimagnetic silk fibroin hydrogel for magnetic hyperthermia ablation of deep tumor. Biomaterials 2020, 259, 120299. [Google Scholar] [CrossRef]
- Santos, L.J.; Reis, R.L.; Gomes, M.E. Harnessing magnetic-mechano actuation in regenerative medicine and tissue engineering. Trends Biotechnol. 2015, 33, 471–479. [Google Scholar] [CrossRef]
- Aufaure, R.; Buendia, R.; Motte, L.; Hardouin, J.; Lalatonne, Y.; Guénin, E. Versatile “click” synthesis of 1-hydroxy-1,1-methylenebisphosphonic acids with thioalkoxy substituents for the preparation of stable gold nanoparticles. New J. Chem. 2017, 41, 12153–12158. [Google Scholar] [CrossRef]
- Belkahla, H.; Antunes, J.C.; Lalatonne, Y.; Catherine, O.S.; Illoul, C.; Journé, C.; Jandrot-Perrus, M.; Coradin, T.; Gigoux, V.; Guenin, E.; et al. USPIO–PEG nanoparticles functionalized with a highly specific collagen-binding peptide: A step towards MRI diagnosis of fibrosis. J. Mater. Chem. B 2020, 8, 5515–5528. [Google Scholar] [CrossRef] [PubMed]
- Pang, Z.; Chong, J.; Zhou, G.; de Lima Morais, D.A.; Chang, L.; Barrette, M.; Gauthier, C.; Jacques, P.-É.; Li, S.; Xia, J. MetaboAnalyst 5.0: Narrowing the gap between raw spectra and functional insights. Nucleic Acids Res. 2021, 49, W388–W396. [Google Scholar] [CrossRef] [PubMed]
- The European Parliament; Council of the European Union. Directive 2010/63/EU of the European Parliament and of the Council; The European Parliament; Council of the European Union: Strasbourg, France, 2010. [Google Scholar]
- Percie du Sert, N.; Hurst, V.; Ahluwalia, A.; Alam, S.; Avey, M.T.; Baker, M.; Browne, W.J.; Clark, A.; Cuthill, I.C.; Dirnagl, U.; et al. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. PLoS Biol. 2020, 18, e3000410. [Google Scholar] [CrossRef]
- ISO 10993-6:2016; Biological Evaluation of Medical Devices—Part 6: Tests for Local Effects After Implantation. International Organization for Standardization: Geneva, Switzerland, 2016.
Silk | Silk-Fe | Silk-Ag | Silk-Au | ||
---|---|---|---|---|---|
Step #1 | Strain range (%) | 0–5 | 0–15 | 0–5 | 0–17 |
Slope (kPa) first 3% | 60 | 20 | 36 | 60 | |
Step #2 | Strain range (%) | 5–20 | 15–25 | 5–20 | 17–30 |
Slope (kPa) | 260 | 320 | 140 | 225 | |
Step #3 | Strain range (%) | 20–60 | 25–70 | 20–75 | 30–75 |
Slope (kPa) | 230 | 150 | 76 | 110 | |
Step #4 | Strain range (%) | 60–70 | 70–80 | 75–85 | 75–85 |
Slope (MPa) last 5% | 1.28 | 1.43 | 1.56 | 1.40 |
Silk | Silk-Fe | Silk-Ag | Silk-Au | |
---|---|---|---|---|
(%) | 15 ± 1 | 20 ± 1 | 15 ± 2 | 25 ± 4 |
(kPa) | 28 ± 3 | 22 ± 10 | 15 ± 1 | 23 ± 1 |
(J m−3) | 272 ± 50 | 194 ± 50 | 110 ± 20 | 324 ± 60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Lartigue, C.; Belda Marín, C.; Fitzpatrick, V.; Esposito, A.; Casale, S.; Landoulsi, J.; Guénin, E.; Egles, C. Silk Foams with Metallic Nanoparticles as Scaffolds for Soft Tissue Regeneration. Int. J. Mol. Sci. 2024, 25, 12377. https://doi.org/10.3390/ijms252212377
de Lartigue C, Belda Marín C, Fitzpatrick V, Esposito A, Casale S, Landoulsi J, Guénin E, Egles C. Silk Foams with Metallic Nanoparticles as Scaffolds for Soft Tissue Regeneration. International Journal of Molecular Sciences. 2024; 25(22):12377. https://doi.org/10.3390/ijms252212377
Chicago/Turabian Stylede Lartigue, Claire, Cristina Belda Marín, Vincent Fitzpatrick, Antonella Esposito, Sandra Casale, Jessem Landoulsi, Erwan Guénin, and Christophe Egles. 2024. "Silk Foams with Metallic Nanoparticles as Scaffolds for Soft Tissue Regeneration" International Journal of Molecular Sciences 25, no. 22: 12377. https://doi.org/10.3390/ijms252212377