Ultrasonic-Assisted Conversion of Micrometer-Sized BiI3 into BiOI Nanoflakes for Photocatalytic Applications
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of Synthesized Bismuth Triiodied (BiI3) Microplates and Ultrasonically Converted Bismuth Oxyiodide (BiOI) Nanoflakes
2.2. Mechanism behind Conversion of BiI3 Microplates into BiOI Nanoflakes
2.3. Photocatalysis
Photocatalytic Degradation of Methylene Blue (MB)
2.4. Photocatalytic Degradation Mechanism of Methylene Blue (MB)
3. Experimental Section
3.1. Materials
3.2. Synthesis of Bismuth Triiodied (BiI3) Microplates
3.3. Conversion of Bismuth Triiodied (BiI3) Microplates into Bismuth Oxyiodide (BiOI) Nanoflakes through Ultrasonication
3.4. Characterization Techniques
3.5. Photocatalytic Activity Test
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wagner, B.; Huttner, A.; Bischof, D.; Engel, A.; Witte, G.; Heine, J. Chemical surface reactivity and morphological changes of bismuth triiodide (BiI3) under different environmental conditions. Langmuir 2020, 36, 6458–6464. [Google Scholar] [CrossRef] [PubMed]
- Zavabeti, A.; Jannat, A.; Zhong, L.; Haidry, A.A.; Yao, Z.; Ou, J.Z. Two-Dimensional Materials in Large-Areas: Synthesis, Properties and Applications. Nano-Micro Lett. 2020, 12, 66. [Google Scholar] [CrossRef] [PubMed]
- Abdelhamid, H.N. Nanocellulose-Based Materials for Water Pollutant Removal: A Review. Int. J. Mol. Sci. 2024, 25, 8529. [Google Scholar] [CrossRef]
- Wang, L.; Hu, P.; Long, Y.; Liu, Z.; He, X. Recent advances in ternary two-dimensional materials: Synthesis, properties and applications. J. Mater. Chem. A 2017, 5, 22855–22876. [Google Scholar] [CrossRef]
- Hong, J.; Chu, Z.; Li, C.; Yang, W.; Kawi, S.; Ye, Q. Innovative Bi5O7I/MIL-101 (Cr) Compounds: A Leap Forward in Photocatalytic Tetracycline Removal. Int. J. Mol. Sci. 2024, 25, 6759. [Google Scholar] [CrossRef]
- Ganose, A.M.; Cuff, M.; Butler, K.T.; Walsh, A.; Scanlon, D.O. Interplay of orbital and relativistic effects in bismuth oxyhalides: BiOF, BiOCl, BiOBr, and BiOI. Chem. Mater. 2016, 28, 1980–1984. [Google Scholar] [CrossRef]
- Arumugam, M.; Choi, M.Y. Recent progress on bismuth oxyiodide (BiOI) photocatalyst for environmental remediation. J. Ind. Eng. Chem. 2019, 81, 237–268. [Google Scholar] [CrossRef]
- Meng, L.; Jian, J.; Yang, D.; Dan, Y.; Sun, W.; Ai, Q.; Zhang, Y.; Zhou, H. Hydrophilicity and Pore Structure Enhancement in Polyurethane/Silk Protein–Bismuth Halide Oxide Composite Films for Photocatalytic Degradation of Dye. Int. J. Mol. Sci. 2024, 25, 6653. [Google Scholar] [CrossRef]
- Ye, L.; Tian, L.; Peng, T.; Zan, L. Synthesis of highly symmetrical BiOI single-crystal nanosheets and their {001} facet-dependent photoactivity. J. Mater. Chem. 2011, 21, 12479–12484. [Google Scholar] [CrossRef]
- Matiur, R.M.; Noman, M.; Kato, S.; Soga, T. A novel modest synthesis of device applicable flakes based stable BiOI film by the oxidation of BiI3 film. J. Alloys Compd. 2021, 873, 159715. [Google Scholar] [CrossRef]
- Huang, H.; Liu, K.; Zhang, Y.; Chen, K.; Zhang, Y.; Tian, N. Tunable 3D hierarchical graphene–BiOI nanoarchitectures: Their in situ preparation, and highly improved photocatalytic performance and photoelectrochemical properties under visible light irradiation. RSC Adv. 2014, 4, 49386–49394. [Google Scholar] [CrossRef]
- Zhang, K.-L.; Liu, C.-M.; Huang, F.-Q.; Zheng, C.; Wang, W.-D. Study of the electronic structure and photocatalytic activity of the BiOCl photocatalyst. Appl. Catal. B Environ. 2006, 68, 125–129. [Google Scholar] [CrossRef]
- Di, J.; Xia, J.; Li, H.; Guo, S.; Dai, S. Bismuth oxyhalide layered materials for energy and environmental applications. Nano Energy 2017, 41, 172–192. [Google Scholar] [CrossRef]
- Sun, Z.; Amrillah, T. Potential application of bismuth oxyiodide (BiOI) when it meets light. Nanoscale 2024, 16, 5079–5106. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Wang, W.; Zhang, L. Ultrasonic-assisted synthesis of visible-light-induced Bi2MO6 (M = W, Mo) photocatalysts. J. Mol. Catal. A Chem. 2007, 268, 195–200. [Google Scholar] [CrossRef]
- An, C.; Wang, T.; Wang, S.; Chen, X.; Han, X.; Wu, S.; Deng, Q.; Zhao, L.; Hu, N. Ultrasonic-assisted preparation of two-dimensional materials for electrocatalysts. Ultrason. Sonochem. 2023, 98, 106503. [Google Scholar] [CrossRef]
- Gedanken, A. Using sonochemistry for the fabrication of nanomaterials. Ultrason. Sonochem. 2004, 11, 47–55. [Google Scholar] [CrossRef]
- Li, Z.; Dong, J.; Zhang, H.; Zhang, Y.; Wang, H.; Cui, X.; Wang, Z. Sonochemical catalysis as a unique strategy for the fabrication of nano-/micro-structured inorganics. Nanoscale Adv. 2021, 3, 41–72. [Google Scholar] [CrossRef]
- Foroughi, F.; Lamb, J.J.; Burheim, O.S.; Pollet, B.G. Sonochemical and Sonoelectrochemical Production of Energy Materials. Catalysts 2021, 11, 284. [Google Scholar] [CrossRef]
- Gaudino, E.C.; Cravotto, G.; Manzoli, M.; Tabasso, S. Sono- and mechanochemical technologies in the catalytic conversion of biomass. Chem. Soc. Rev. 2020, 50, 1785–1812. [Google Scholar] [CrossRef]
- Song, G.; Ma, S.; Tang, G.; Wang, X. Ultrasonic-assisted synthesis of hydrophobic magnesium hydroxide nanoparticles. Colloids Surf. A Physicochem. Eng. Asp. 2010, 364, 99–104. [Google Scholar] [CrossRef]
- Xu, H.; Zeiger, B.W.; Suslick, K.S. Sonochemical synthesis of nanomaterials. Chem. Soc. Rev. 2013, 42, 2555–2567. [Google Scholar] [CrossRef] [PubMed]
- Frecentese, F.; Sodano, F.; Corvino, A.; Schiano, M.E.; Magli, E.; Albrizio, S.; Sparaco, R.; Andreozzi, G.; Nieddu, M.; Rimoli, M.G. The Application of Microwaves, Ultrasounds, and Their Combination in the Synthesis of Nitrogen-Containing Bicyclic Heterocycles. Int. J. Mol. Sci. 2023, 24, 10722. [Google Scholar] [CrossRef] [PubMed]
- Crovetto, A.; Hajijafarassar, A.; Hansen, O.; Seger, B.; Chorkendorff, I.; Vesborg, P.C. Parallel evaluation of the BiI3, BiOI, and Ag3BiI6 layered photoabsorbers. Chem. Mater. 2020, 32, 3385–3395. [Google Scholar] [CrossRef]
- Matiur, R.M.; Abuelwafa, A.A.; Putri, A.A.; Kato, S.; Kishi, N.; Soga, T. Annealing effects on structural and photovoltaic properties of the dip-SILAR-prepared bismuth oxyhalides (BiOI, Bi7O9I3, Bi5O7I) films. SN Appl. Sci. 2021, 3, 138. [Google Scholar] [CrossRef]
- Sun, H.; Yang, D.; Liu, Y.; Zhu, X. Highly Flexible X-ray Detectors Based on Pure Inorganic Metal Iodide Polycrystalline Thin Films as Photon-to-Charge Conversion Layers. ACS Appl. Electron. Mater. 2019, 1, 2637–2645. [Google Scholar] [CrossRef]
- Hojamberdiev, M.; Vargas, R.; Madriz, L.; Yubuta, K.; Kadirova, Z.C.; Shaislamov, U.; Sannegowda, L.K.; Jędruchniewicz, K.; Typek, R.; Teshima, K.; et al. Unveiling the origin of the efficient photocatalytic degradation of nitazoxanide over bismuth (oxy)iodide crystalline phases. Environ. Sci. Nano 2023, 11, 336–350. [Google Scholar] [CrossRef]
- Prasad, M.D.; Sangani, L.D.V.; Batabyal, S.K.; Krishna, M.G. Single and twinned plates of 2D layered BiI3 for use as nanoscale pressure sensors. CrystEngComm 2018, 20, 4857–4866. [Google Scholar] [CrossRef]
- Wilczewska, P.; Bielicka-Giełdoń, A.; Szczodrowski, K.; Malankowska, A.; Ryl, J.; Tabaka, K.; Siedlecka, E.M. Morphology regulation mechanism and enhancement of photocatalytic performance of BiOX (X = Cl, Br, I) via mannitol-assisted synthesis. Catalysts 2021, 11, 312. [Google Scholar] [CrossRef]
- Patterson, A.L. The Scherrer Formula for X-ray Particle Size Determination. Phys. Rev. B 1939, 56, 978–982. [Google Scholar] [CrossRef]
- Nowak, M.; Kauch, B.; Szperlich, P. Determination of energy band gap of nanocrystalline SbSI using diffuse reflectance spectroscopy. Rev. Sci. Instrum. 2009, 80, 046107. [Google Scholar] [CrossRef] [PubMed]
- Hung, P.T.; Hien, V.X.; Hoat, P.D.; Lee, S.; Lee, J.-H.; Kim, J.-J.; Heo, Y.-W. Photo induced NO2 sensing properties of bismuth triiodide (BiI3) nanoplates at room temperature. Scr. Mater. 2019, 172, 17–22. [Google Scholar] [CrossRef]
- Madelung, O. Ternary Compounds, Organic Semiconductors. Landolt-Börnstein—Group III Condensed Matter. 2000, p. 1. Available online: https://materials.springer.com/bp/docs/978-3-540-31362-5 (accessed on 1 September 2024).
- Dheyab, M.A.; Aziz, A.A.; Jameel, M.S.; Khaniabadi, P.M.; Mehrdel, B. Mechanisms of effective gold shell on Fe3O4 core nanoparticles formation using sonochemistry method. Ultrason. Sonochemistry 2019, 64, 104865. [Google Scholar] [CrossRef] [PubMed]
- Altay, R.; Sadaghiani, A.K.; Sevgen, M.I.; Şişman, A.; Koşar, A. Numerical and Experimental Studies on the Effect of Surface Roughness and Ultrasonic Frequency on Bubble Dynamics in Acoustic Cavitation. Energies 2020, 13, 1126. [Google Scholar] [CrossRef]
- Ehsani, M.; Zhu, N.; Doan, H.; Lohi, A.; Abdelrasoul, A. In-situ synchrotron X-ray imaging of ultrasound (US)-generated bubbles: Influence of US frequency on microbubble cavitation for membrane fouling remediation. Ultrason. Sonochem. 2021, 77, 105697. [Google Scholar] [CrossRef]
- Alshehri, A.A.; Malik, M.A. Biogenic fabrication of ZnO nanoparticles using Trigonella foenum-graecum (Fenugreek) for proficient photocatalytic degradation of methylene blue under UV irradiation. J. Mater. Sci. Mater. Electron. 2019, 30, 16156–16173. [Google Scholar] [CrossRef]
- Mohamed, M.M.; Al-Esaimi, M.M. Characterization, adsorption and photocatalytic activity of vanadium-doped TiO2 and sulfated TiO2 (rutile) catalysts: Degradation of methylene blue dye. J. Mol. Catal. A Chem. 2006, 255, 53–61. [Google Scholar] [CrossRef]
- Nolan, N.T.; Synnott, D.W.; Seery, M.K.; Hinder, S.J.; Van Wassenhoven, A.; Pillai, S.C. Effect of N-doping on the photocatalytic activity of sol–gel TiO2. J. Hazard. Mater. 2011, 211–212, 88–94. [Google Scholar] [CrossRef] [PubMed]
- Mistewicz, K.; Kępińska, M.; Nowak, M.; Sasiela, A.; Zubko, M.; Stróż, D. Fast and Efficient Piezo/Photocatalytic Removal of Methyl Orange Using SbSI Nanowires. Materials 2020, 13, 4803. [Google Scholar] [CrossRef]
- Jabeen, S.; Iqbal, J.; Arshad, A.; Awan, M.; Warsi, M. (In1−xFex)2O3 nanostructures for photocatalytic degradation of various dyes. Mater. Chem. Phys. 2019, 243, 122516. [Google Scholar] [CrossRef]
- Jo, W.-K.; Selvam, N.C.S. Synthesis of GO supported Fe2O3–TiO2 nanocomposites for enhanced visible-light photocatalytic applications. Dalton Trans. 2015, 44, 16024–16035. [Google Scholar] [CrossRef] [PubMed]
- Sadeghzadeh-Attar, A. Efficient photocatalytic degradation of methylene blue dye by SnO2 nanotubes synthesized at different calcination temperatures. Sol. Energy Mater. Sol. Cells 2018, 183, 16–24. [Google Scholar] [CrossRef]
- Kumar, S.; Parlett, C.M.; Isaacs, M.A.; Jowett, D.V.; Douthwaite, R.E.; Cockett, M.C.; Lee, A.F. Facile synthesis of hierarchical Cu2O nanocubes as visible light photocatalysts. Appl. Catal. B Environ. 2016, 189, 226–232. [Google Scholar] [CrossRef]
- Lin, J.; Luo, Z.; Liu, J.; Li, P. Photocatalytic degradation of methylene blue in aqueous solution by using ZnO-SnO2 nanocomposites. Mater. Sci. Semicond. Proc. 2018, 87, 24–31. [Google Scholar] [CrossRef]
- Hu, L.-F.; Li, R.; He, J.; Da, L.-G.; Lv, W.; Hu, J.-S. Structure and photocatalytic performance of layered HNbWO6 nanosheet aggregation. J. Nanophotonics 2015, 9, 093041. [Google Scholar] [CrossRef]
- Jamal, R.; Osman, Y.; Rahman, A.; Ali, A.; Zhang, Y.; Abdiryim, T. Solid-State Synthesis and Photocatalytic Activity of Polyterthiophene Derivatives/TiO2 Nanocomposites. Materials 2014, 7, 3786–3801. [Google Scholar] [CrossRef]
- Khaksar, M.; Amini, M.; Boghaei, D.M.; Chae, K.H.; Gautam, S. Mn-doped ZrO2 nanoparticles as an efficient catalyst for green oxidative degradation of methylene blue. Catal. Commun. 2015, 72, 1–5. [Google Scholar] [CrossRef]
- Kulis-Kapuscinska, A.; Kwoka, M.; Borysiewicz, M.A.; Wojciechowski, T.; Licciardello, N.; Sgarzi, M.; Cuniberti, G. Photocatalytic degradation of methylene blue at nanostructured ZnO thin films. Nanotechnology 2023, 34, 155702. [Google Scholar] [CrossRef]
- Wang, X.-Q.; Han, S.-F.; Zhang, Q.-W.; Zhang, N.; Zhao, D.-D. Photocatalytic oxidation degradation mechanism study of methylene blue dye waste water with GR/iTO2. MATEC Web Conf. 2018, 238, 03006. [Google Scholar] [CrossRef]
- Huang, F.; Chen, L.; Wang, H.; Yan, Z. Analysis of the degradation mechanism of methylene blue by atmospheric pressure dielectric barrier discharge plasma. Chem. Eng. J. 2010, 162, 250–256. [Google Scholar] [CrossRef]
Name of the catalysts | Performance | Source of Light | References |
---|---|---|---|
1% Fe-doped In2O3 | 83% degradation in 360 min | UV-Irradiation | [41] |
Fe2O3–TiO2 composite | 70% degradation in 150 min | Xe lamp (500 W) | [42] |
SnO2 nanoparticles calcined at 300 °C | 51.3% degradation in 180 min | UV-Irradiation | [43] |
Hierarchical Cu2O nanocubes | 55% degradation in 120 min | 200 W Hg–Xe arc lamp | [44] |
ZnO | 67.78% degradation in 60 min | UV-Irradiation | [45] |
HNbWO6 nanosheets | 62.50% degradation in 360 min | UV-Irradiation | [46] |
Poly(TMPT)/TiO2 | 51.50% degradation in 420 min | UV-Irradiation | [47] |
ZrO2 | 33.0% degradation in 120 min | UV-Irradiation | [48] |
BiOI | 90% degradation in 480 min | UV-Irradiation | Our work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Das, T.K.; Jesionek, M.; Mistewicz, K.; Nowacki, B.; Kępińska, M.; Zubko, M.; Godzierz, M.; Gawron, A. Ultrasonic-Assisted Conversion of Micrometer-Sized BiI3 into BiOI Nanoflakes for Photocatalytic Applications. Int. J. Mol. Sci. 2024, 25, 10265. https://doi.org/10.3390/ijms251910265
Das TK, Jesionek M, Mistewicz K, Nowacki B, Kępińska M, Zubko M, Godzierz M, Gawron A. Ultrasonic-Assisted Conversion of Micrometer-Sized BiI3 into BiOI Nanoflakes for Photocatalytic Applications. International Journal of Molecular Sciences. 2024; 25(19):10265. https://doi.org/10.3390/ijms251910265
Chicago/Turabian StyleDas, Tushar Kanti, Marcin Jesionek, Krystian Mistewicz, Bartłomiej Nowacki, Mirosława Kępińska, Maciej Zubko, Marcin Godzierz, and Anna Gawron. 2024. "Ultrasonic-Assisted Conversion of Micrometer-Sized BiI3 into BiOI Nanoflakes for Photocatalytic Applications" International Journal of Molecular Sciences 25, no. 19: 10265. https://doi.org/10.3390/ijms251910265