Nutraceuticals in Pregnancy: A Special Focus on Probiotics
Abstract
:1. Introduction
2. Placental Development
3. Nutraceuticals
4. Nutraceuticals in Pregnancy
Nutraceutical | Key Findings | Reference |
---|---|---|
Folic Acid | The timely initiation of folic acid (FA) supplementation during gestation was associated with a decreased risk of congenital malformations, which was mainly attributed to its protective effect against heart defects. It is recommended that FA supplementation should be initiated 1.5 months prior to conception and continued for a period of four months in order to optimize the prevention of congenital malformations. | Dong, Jing et al., 2023 [105] |
Omega-3 Fatty Acids | It is recommended that pregnant women consume an additional intake of at least 100-200 mg/d of docosahexaenoic acid (DHA), as advised by the European Food Safety Authority (EFSA). Observational studies have demonstrated that a reduction in omega-3 DHA and eicosapentaenoic acid (EPA) intake and a decline in blood levels of these fatty acids are associated with a markedly elevated risk of premature birth (PTB) and early PTB. | Cetin, Irene et al., 2024 [106] |
Vitamin D | Vitamin D supplementation alone has produced uncertain evidence on PE, gestational diabetes, preterm birth or nephritic syndrome. It may reduce the risk of severe postpartum hemorrhage and the risk of low birth weight. | Palacios, Cristina et al., 2024 [108] |
Calcium | Calcium supplementation has been demonstrated to lower blood pressure by reducing parathyroid hormone release and intracellular calcium, which results in reduced vascular smooth muscle contractility. Consequently, it can reduce uterine smooth muscle contractility and prevent preterm labor. Prior to conception and in the early stages of pregnancy, it may have more beneficial effects on PE. | Dwarkanath, Pratibha et al., 2024 [107] |
5. Folic Acid (FA)
6. Omega-3 Polyunsaturated Fatty Acids (PUFAs)
7. Vitamin D and Calcium
8. Probiotics
9. Placental Microbiome
10. Discussion
11. Conclusions
- Consulting with health professionals;
- Evaluating scientific evidence;
- Considering the specific needs of the individual.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cindrova-Davies, T.; Sferruzzi-Perri, A.N. Human placental development and function. Semin. Cell Dev. Biol. 2022, 131, 66–77. [Google Scholar] [CrossRef] [PubMed]
- Macnab, W.R. Functions of the placenta. Anaesth. Intensive Care Med. 2022, 23, 344–346. [Google Scholar] [CrossRef]
- Virdis, P.; Migheli, R.; Galleri, G.; Fancello, S.; Cadoni, M.P.L.; Pintore, G.; Petretto, G.L.; Marchesi, I.; Fiorentino, F.P.; di Francesco, A.; et al. Antiproliferative and proapoptotic effects of Inula viscosa extract on Burkitt lymphoma cell line. Tumour Biol. 2020, 42, 1010428319901061. [Google Scholar] [CrossRef]
- Verma, U.; Verma, N. An overview of development, function, and diseases of the placenta. In The Placenta: Development, Function and Diseases; Nova Science Publishers: Hauppauge, NY, USA, 2013; pp. 1–30. [Google Scholar]
- Panja, S.; Paria, B.C. Development of the Mouse Placenta. In Advances in Anatomy Embryology and Cell Biology; Springer: Cham, Switzerland, 2021; Volume 234, pp. 205–221. [Google Scholar]
- Marchesi, I.; Sanna, L.; Fais, M.; Fiorentino, F.P.; Giordano, A.; Bagella, L. 12-O-tetradecanoylphorbol-13-acetate and EZH2 inhibition: A novel approach for promoting myogenic differentiation in embryonal rhabdomyosarcoma cells. J. Cell. Physiol. 2018, 233, 2360–2365. [Google Scholar] [CrossRef] [PubMed]
- Xiang, M.; Chen, S.; Zhang, X.; Ma, Y. Placental diseases associated with assisted reproductive technology. Reprod. Biol. 2021, 21, 100505. [Google Scholar] [CrossRef]
- James, J.L.; Boss, A.L.; Sun, C.; Allerkamp, H.H.; Clark, A.R. From stem cells to spiral arteries: A journey through early placental development. Placenta 2022, 125, 68–77. [Google Scholar] [CrossRef] [PubMed]
- Lucariello, A.; Perna, A.; Sellitto, C.; Baldi, A.; Iannaccone, A.; Cobellis, L.; De Luca, A.; De Falco, M. Modulation of wolframin expression in human placenta during pregnancy: Comparison among physiological and pathological states. Biomed. Res. Int. 2014, 2014, 985478. [Google Scholar] [CrossRef] [PubMed]
- Lucariello, A.; Trabucco, E.; Boccia, O.; Perna, A.; Sellitto, C.; Castaldi, M.A.; De Falco, M.; De Luca, A.; Cobellis, L. Small leucine rich proteoglycans are differently distributed in normal and pathological endometrium. In Vivo 2015, 29, 217–222. [Google Scholar]
- Okeyo, K.O.; Kurosawa, O.; Li, Z. Induction of trophoblast differentiation in human-induced pluripotent stem cells by cell adhesion restriction. In Recent Advances in iPSC-Derived Cell Types: Volume 4 in Advances in Stem Cell Biology; Academic Press: Cambridge, MA, USA, 2021; pp. 167–189. [Google Scholar]
- Hay, E.; Lucariello, A.; Contieri, M.; Trucillo, M.; Pavese, L.; Guerra, G.; De Falco, M.; De Luca, A.; Perna, A. Differential expression of several factors involved in placental development in normal and abnormal condition. Placenta 2020, 95, 1–8. [Google Scholar] [CrossRef]
- Sferruzzi-Perri, A.N.; Lopez-Tello, J.; Salazar-Petres, E. Placental adaptations supporting fetal growth during normal and adverse gestational environments. Exp. Physiol. 2023, 108, 371–397. [Google Scholar] [CrossRef]
- Taniguchi, K.; Kawai, T.; Hata, K. Placental development and nutritional environment. In Advances in Experimental Medicine and Biology; Springer: Singapore, 2018; Volume 1012, pp. 63–73. [Google Scholar]
- Hay, E.; Lucariello, A.; Contieri, M.; Esposito, T.; De Luca, A.; Guerra, G.; Perna, A. Therapeutic effects of turmeric in several diseases: An overview. Chem. Biol. Interact. 2019, 310, 108729. [Google Scholar] [CrossRef]
- Rasool, A.; Alvarado-Flores, F.; O’Tierney-Ginn, P. Placental Impact of Dietary Supplements: More Than Micronutrients. Clin. Ther. 2021, 43, 226–245. [Google Scholar] [CrossRef] [PubMed]
- Kubler, J.M.; Edwards, C.; Cavanagh, E.; Mielke, G.I.; Gardiner, P.A.; Trost, S.G.; Fontanarosa, D.; Borg, D.J.; Kumar, S.; Clifton, V.L.; et al. Maternal physical activity and sitting time and its association with placental morphology and blood flow during gestation: Findings from the Queensland Family Cohort study. J. Sci. Med. Sport. 2024, 27, 480–485. [Google Scholar] [CrossRef]
- Chavatte-Palmer, P.; Tarrade, A. Placentation in different mammalian species. Ann. d’Endocrinologie 2016, 77, 67–74. [Google Scholar] [CrossRef]
- Wheeler, M.L.; Oyen, M.L. Bioengineering Approaches for Placental Research. Ann. Biomed. Eng. 2021, 49, 1805–1818. [Google Scholar] [CrossRef]
- Perna, A.; Hay, E.; Lucariello, A.; Scala, B.; De Blasiis, P.; Komici, K.; Sgambati, E.; Guerra, G.; Baldi, A.; De Luca, A. GATA3 and TGF-β in normal placenta and pre-eclampsia. Tissue Cell 2024, 88, 102402. [Google Scholar] [CrossRef]
- Lucariello, A.; Trabucco, E.; Sellitto, C.; Perna, A.; Costanzo, C.; Manzo, F.; Laforgia, V.; Cobellis, L.; De Luca, A.; De Falco, M. Localization and modulation of NEDD8 protein in the human placenta. In Vivo 2013, 27, 501–506. [Google Scholar] [PubMed]
- Benagiano, G.; Mancuso, S.; Guo, S.W.; Di Renzo, G.C. Events Leading to the Establishment of Pregnancy and Placental Formation: The Need to Fine-Tune the Nomenclature on Pregnancy and Gestation. Int. J. Mol. Sci. 2023, 24, 15420. [Google Scholar] [CrossRef]
- Federico, M.; Symonds, C.E.; Bagella, L.; Rizzolio, F.; Fanale, D.; Russo, A.; Giordano, A. R-Roscovitine (Seliciclib) prevents DNA damage-induced cyclin A1 upregulation and hinders non-homologous end-joining (NHEJ) DNA repair. Mol. Cancer 2010, 9, 208. [Google Scholar] [CrossRef] [PubMed]
- Renaud, S.J. Strategies for investigating hemochorial placentation. In Reproductive and Developmental Toxicology; Academic Press: Cambridge, MA, USA, 2017; pp. 1259–1273. [Google Scholar]
- Unek, G.; Ozmen, A.; Isenlik, B.S.; Korgun, E.T. The proliferation mechanism of normal and pathological human placentas. Histol. Histopathol. 2017, 32, 339–349. [Google Scholar]
- Murthi, P.; Kalionis, B.; Cocquebert, M.; Rajaraman, G.; Chui, A.; Keogh, R.J.; Evain-Brion, D.; Fournier, T. Homeobox genes and down-stream transcription factor PPARγ in normal and pathological human placental development. Placenta 2013, 34, 299–309. [Google Scholar] [CrossRef]
- Khong, Y.; Brosens, I. Defective deep placentation. Best. Pr. Res. Clin. Obs. Gynaecol. 2011, 25, 301–311. [Google Scholar] [CrossRef] [PubMed]
- Myatt, L.; Cui, X. Oxidative stress in the placenta. Histochem. Cell Biol. 2004, 122, 369–382. [Google Scholar] [CrossRef] [PubMed]
- Perna, A.; Tani, A.; Sellitto, C.; Marini, M.; La Verde, M.; De Luca, A.; Guerra, G.; Lucariello, A.; Manetti, M.; Sgambati, E. Sialylation status in placentas from pregnancies with SARS-CoV-2 infection. Tissue Cell 2023, 82, 102074. [Google Scholar] [CrossRef]
- Bordoni, V.; Sanna, L.; Lyu, W.; Avitabile, E.; Zoroddu, S.; Medici, S.; Kelvin, D.J.; Bagella, L. Silver nanoparticles derived by artemisia arborescens reveal anticancer and apoptosis-inducing effects. Int. J. Mol. Sci. 2021, 22, 8621. [Google Scholar] [CrossRef] [PubMed]
- Redman, C.W.; Sargent, I.L.; Staff, A.C. IFPA Senior Award Lecture: Making sense of pre-eclampsia—Two placental causes of preeclampsia? Placenta 2014, 35, S20–S25. [Google Scholar] [CrossRef] [PubMed]
- Perna, A.; Hay, E.; De Blasiis, P.; La Verde, M.; Caprio, F.; Torella, M.; Morlando, M.; Sellitto, C.; Guerra, G.; Lucariello, A.; et al. SARS-CoV-2 Infection: A Clinical and Histopathological Study in Pregnancy. Biology 2023, 12, 174. [Google Scholar] [CrossRef]
- Riu, F.; Sanna, L.; Ibba, R.; Piras, S.; Bordoni, V.; Scorciapino, M.A.; Lai, M.; Sestito, S.; Bagella, L.; Carta, A. A comprehensive assessment of a new series of 5′,6′-difluorobenzotriazole-acrylonitrile derivatives as microtubule targeting agents (MTAs). Eur. J. Med. Chem. 2021, 222, 113590. [Google Scholar] [CrossRef]
- Kovo, M.; Schreiber, L.; Bar, J. Placental vascular pathology as a mechanism of disease in pregnancy complications. Thromb. Res. 2013, 131 (Suppl. S1), S18–S21. [Google Scholar] [CrossRef]
- Mizushima, N. Autophagy: Process and function. Genes. Dev. 2007, 21, 2861–2873. [Google Scholar] [CrossRef]
- Chifenti, B.; Locci, M.T.; Lazzeri, G.; Guagnozzi, M.; Dinucci, D.; Chiellini, F.; Filice, M.E.; Salerno, M.G.; Battini, L. Autophagy-related protein LC3 and Beclin-1 in the first trimester of pregnancy. Clin. Exp. Reprod. Med. 2013, 40, 33–37. [Google Scholar] [CrossRef]
- Napolitano, F.; Terracciano, C.; Bruno, G.; De Blasiis, P.; Lombardi, L.; Gialluisi, A.; Gianfrancesco, F.; De Giovanni, D.; Tummolo, A.; Di Iorio, G.; et al. Novel autophagic vacuolar myopathies: Phenotype and genotype features. Neuropathol. Appl. Neurobiol. 2021, 47, 664–678. [Google Scholar] [CrossRef]
- Oh, S.-Y.; Choi, S.-J.; Kim, K.H.; Cho, E.Y.; Kim, J.-H.; Roh, C.-R. Autophagy-Related Proteins, LC3 and Beclin-1, in Placentas From Pregnancies Complicated by Preeclampsia. Reprod. Sci. 2008, 15, 912–920. [Google Scholar] [CrossRef] [PubMed]
- Kalkat, M.; Garcia, J.; Ebrahimi, J.; Melland-Smith, M.; Todros, T.; Post, M.; Caniggia, I. Placental autophagy regulation by the BOK-MCL1 rheostat. Autophagy 2013, 9, 2140–2153. [Google Scholar] [CrossRef]
- Napolitano, F.; Bruno, G.; Terracciano, C.; Franzese, G.; Palomba, N.P.; Scotto di Carlo, F.; Signoriello, E.; De Blasiis, P.; Navarro, S.; Gialluisi, A.; et al. Rare Variants in Autophagy and Non-Autophagy Genes in Late-Onset Pompe Disease: Suggestions of Their Disease-Modifying Role in Two Italian Families. Int. J. Mol. Sci. 2021, 22, 3625. [Google Scholar] [CrossRef]
- Kanzawa, T.; Germano, I.M.; Komata, T.; Ito, H.; Kondo, Y.; Kondo, S. Role of autophagy in temozolomide-induced cytotoxicity for malignant glioma cells. Cell Death Differ. 2004, 11, 448–457. [Google Scholar] [CrossRef]
- Mizushima, N. Methods for monitoring autophagy. Int. J. Biochem. Cell Biol. 2004, 36, 2491–2502. [Google Scholar] [CrossRef]
- Zoroddu, S.; Corona, P.; Sanna, L.; Borghi, F.; Bordoni, V.; Asproni, B.; Pinna, G.A.; Bagella, L.; Murineddu, G. Novel 1,3,4-oxadiazole chalcogen analogues: Synthesis and cytotoxic activity. Eur. J. Med. Chem. 2022, 238, 114440. [Google Scholar] [CrossRef]
- Goldman-Wohl, D.; Cesla, T.; Smith, Y.; Greenfield, C.; Dechend, R.; Staff, A.C.; Sugulle, M.; Weedon-Fekjær, M.S.; Johnsen, G.M.; Yagel, S.; et al. Expression profiling of autophagy associated genes in placentas of preeclampsia. Placenta 2013, 34, 959–962. [Google Scholar] [CrossRef] [PubMed]
- Hung, T.-H.; Chen, S.-F.; Lo, L.-M.; Li, M.-J.; Yeh, Y.-L.; Hsieh, T.S.T.A. Increased Autophagy in Placentas of Intrauterine Growth-Restricted Pregnancies. PLoS ONE 2012, 7, e40957. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.; Li, Z.; Tye, K.D.; Chen, Y.; Lu, T.; He, Z.; Zhou, J.; Xiao, X. Effects of an orally supplemented probiotic on the autophagy protein LC3 and Beclin1 in placentas undergoing spontaneous delivery during normal pregnancy. BMC Pregnancy Childbirth 2020, 20, 216. [Google Scholar] [CrossRef] [PubMed]
- Bhowmik, D.; Gopinath, H.; Kumar, B.P.; Duraivel, S.; Kumar, K.S. Nutraceutical—A Bright Scope And Opportunity Of Indian Healthcare Market. Pharma Innov. J. 2013, 1, 29–41. [Google Scholar]
- Brown, A.W. Nutraceuticals. In Encyclopedia of Meat Sciences; Academic Press: Cambridge, MA, USA, 2014; pp. 130–134. [Google Scholar]
- Esposito, T.; Lucariello, A.; Hay, E.; Contieri, M.; Tammaro, P.; Varriale, B.; Guerra, G.; De Luca, A.; Perna, A. Effects of curcumin and its adjuvant on TPC1 thyroid cell line. Chem. Biol. Interact. 2019, 305, 112–118. [Google Scholar] [CrossRef]
- Singh, S.; Rawat, P.S. Nutraceuticals: An approach towards safe and effective medications. In Treating Endocrine and Metabolic Disorders With Herbal Medicines; IGI Global: Pennsylvania, PA, USA, 2020; pp. 278–297. [Google Scholar]
- Chen, O.; Mah, E. Nutraceuticals: Health effects and clinical applications. In Encyclopedia of Human, 4th ed.; Academic Press: Cambridge, MA, USA, 2023; Volume 1–4, pp. 501–512. [Google Scholar]
- Perna, A.; De Luca, A.; Adelfi, L.; Pasquale, T.; Varriale, B.; Esposito, T. Effects of different extracts of curcumin on TPC1 papillary thyroid cancer cell line. BMC Complement. Altern. Med. 2018, 18, 63. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, L. Nutraceuticals definition, kinds and applications. In Systems and Synthetic Biotechnology for Production of Nutraceuticals; Springer: Singapore, 2020; pp. 1–7. [Google Scholar]
- Mishra, A.P.; Srivastav, N.; Singh, A.; Nigam, M.; Pezzani, R.; Egbuna, C.; Uche, C.Z.; Khan, J. The Role of Nutraceuticals as Food and Medicine, Types and Sources. In Food and Agricultural Byproducts as Important Source of Valuable Nutraceuticals; Springer International Publishing: Cham, Switzerland, 2022; pp. 1–18. [Google Scholar]
- Vergalito, F.; Pietrangelo, L.; Petronio Petronio, G.; Colitto, F.; Alfio Cutuli, M.; Magnifico, I.; Venditti, N.; Guerra, G.; Di Marco, R. Vitamin E for Prevention of Biofilm-caused Healthcare-associated Infections. Open Med. 2018, 15, 14–21. [Google Scholar] [CrossRef] [PubMed]
- Petronio Petronio, G.; Cutuli, M.A.; Magnifico, I.; Venditti, N.; Pietrangelo, L.; Vergalito, F.; Pane, A.; Scapagnini, G.; Di Marco, R. In Vitro and In Vivo Biological Activity of Berberine Chloride against Uropathogenic E. coli Strains Using Galleria mellonella as a Host Model. Molecules 2020, 25, 5010. [Google Scholar] [CrossRef] [PubMed]
- Alali, M.; Alqubaisy, M.; Aljaafari, M.N.; Alali, A.O.; Baqais, L.; Molouki, A.; Abushelaibi, A.; Lai, K.S.; Lim, S.H.E. Nutraceuticals: Transformation of conventional foods into health promoters/disease preventers and safety considerations. Molecules 2021, 26, 2540. [Google Scholar] [CrossRef]
- Bansal, R.; Dhiman, A. Nutraceuticals: A comparative analysis of regulatory framework in different countries of the world. Endocr. Metab. Immune Disord.—Drug Targets 2020, 20, 1654–1663. [Google Scholar] [CrossRef]
- Gulati, K.; Thokchom, S.K.; Joshi, J.C.; Ray, A. Regulatory guidelines for nutraceuticals in India: An overview. In Nutraceuticals: Efficacy, Safety and Toxicity; Academic Press: Cambridge, MA, USA, 2021; pp. 1273–1280. [Google Scholar]
- Shinde, N.; Bangar, B.; Deshmukh, S.; Kumbhar, P. Nutraceuticals: A review on current status. Res. J. Pharm. Technol. 2014, 7, 110–113. [Google Scholar]
- Jain, N.; Radhakrishnan, A.; Kuppusamy, G. Review on nutraceuticals: Phase transition from preventive to protective care. J. Complement. Integr. Med. 2022, 19, 553–570. [Google Scholar] [CrossRef]
- Rane, B.R.; Patil, R.R.; Jain, A.S.; Keservani, R.K.; Kesharwani, R.K. Nutraceuticals as Disease Preventive Food and Immunity Boosters. In Nutraceuticals and Functional Foods in Immunomodulators; Springer Nature: Singapore, 2023; pp. 155–192. [Google Scholar]
- Saran, D.; Bansal, A.; Agrawal, A.; Sharma, L.; Jain, S.; Jakhar, P. Prevalence of Nutraceutical Use in Younger Population of North India and the Association Between Gender and Community in Its Usage—Cross-Sectional Study. Scr. Medica 2023, 54, 169–173. [Google Scholar] [CrossRef]
- Aguilar-Navarro, M.; Baltazar-Martins, G.; Brito de Souza, D.; Muñoz-Guerra, J.; Del Mar Plata, M.; Del Coso, J. Gender Differences in Prevalence and Patterns of Dietary Supplement Use in Elite Athletes. Res. Q. Exerc. Sport. 2021, 92, 659–668. [Google Scholar] [CrossRef]
- Islam, M.A.; Al-Karasneh, A.F.; Rizvi, M.; Nisa, Z.U.; Albakheet, A.M.; Alshagawi, M.A.; Iqbal, M.S.; Almuzel, A.I.; Al Afif, H.S.; Mahmoud, M.A.; et al. Prevalence, reasons, and determinants of dietary supplements use among undergraduate female students of health and non-health colleges in a Saudi public university. PLoS ONE 2021, 16, e0247295. [Google Scholar] [CrossRef] [PubMed]
- Medicine Io: Nutrition During Pregnancy and Lactation: An Implementation Guide; The National Academies Press: Washington, DC, USA, 1992.
- Mine, Y.; Young, D. Regulation of Natural Health Products in Canada. Food Sci. Technol. Res. 2009, 15, 459–468. [Google Scholar] [CrossRef]
- Gómez, M.F.; Field, C.J.; Olstad, D.L.; Loehr, S.; Ramage, S.; McCargar, L.J. Use of micronutrient supplements among pregnant women in Alberta: Results from the Alberta Pregnancy Outcomes and Nutrition (APrON) cohort. Matern. Child. Nutr. 2015, 11, 497–510. [Google Scholar] [CrossRef]
- Iqbal, M.Z.; Qadir, M.I.; Hussain, T.; Janbaz, K.H.; Khan, Y.H.; Ahmad, B. Review: Probiotics and their beneficial effects against various diseases. Pak. J. Pharm. Sci. 2014, 27, 405–415. [Google Scholar]
- Macfarlane, S.; Furrie, E.; Cummings, J.H.; Macfarlane, G.T. Chemotaxonomic analysis of bacterial populations colonizing the rectal mucosa in patients with ulcerative colitis. Clin. Infect. Dis. 2004, 38, 1690–1699. [Google Scholar] [CrossRef]
- Holzapfel, W.H.; Schillinger, U. Introduction to pre- and probiotics. Food Res. Int. 2002, 35, 109–116. [Google Scholar] [CrossRef]
- Sanders, M.E. Probiotics: Definition, sources, selection, and uses. Clin. Infect. Dis. 2008, 46 (Suppl. S2), S58–S61; discussion S144–S151. [Google Scholar] [CrossRef]
- Wassenaar, T.M.; Klein, G. Safety aspects and implications of regulation of probiotic bacteria in food and food supplements. J. Food Prot. 2008, 71, 1734–1741. [Google Scholar] [CrossRef]
- Degnan, F.H. The U.S. Food and Drug Administration and probiotics: Regulatory categorization. Clin. Infect. Dis. 2008, 46 (Suppl. S2), S133–S136; discussion S144–S151. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, F.A.; Heimbach, J.T.; Sanders, M.E.; Hibberd, P.L. Executive Summary: Scientific and Regulatory Challenges of Development of Probiotics as Foods and Drugs. Clin. Infect. Dis. 2008, 46 (Suppl. S2), S53–S57. [Google Scholar] [CrossRef] [PubMed]
- Wright, A. Regulating the Safety of Probiotics—The European Approach. Curr. Pharm. Des. 2005, 11, 17–23. [Google Scholar] [CrossRef]
- Manente, L.; Perna, A.; Buommino, E.; Altucci, L.; Lucariello, A.; Citro, G.; Baldi, A.; Iaquinto, G.; Tufano, M.A.; De Luca, A. The Helicobacter pylori’s protein VacA has direct effects on the regulation of cell cycle and apoptosis in gastric epithelial cells. J. Cell Physiol. 2008, 214, 582–587. [Google Scholar] [CrossRef]
- Sharma, H.; Bajwa, J.; Manhas, S.; Sarwan, J. Probiotics: A short review. Ann. Trop. Med. Public Health 2020, 23, 15. [Google Scholar] [CrossRef]
- Zoroddu, S.; Marchesi, I.; Bagella, L. PRC2: An epigenetic multiprotein complex with a key role in the development of rhabdomyosarcoma carcinogenesis. Clin. Epigenetics 2021, 13, 156. [Google Scholar] [CrossRef]
- Savitri; Lata, P. Probiotics for Human Health. In Microorganisms for Sustainability; Springer: Singapore, 2021; Volume 21, pp. 181–212. [Google Scholar]
- Katkowska, M.; Garbacz, K.; Kusiak, A. Probiotics: Should all patients take them? Microorganisms 2021, 9, 2620. [Google Scholar] [CrossRef]
- Magnifico, I.; Perna, A.; Cutuli, M.A.; Medoro, A.; Pietrangelo, L.; Guarnieri, A.; Foderà, E.; Passarella, D.; Venditti, N.; Vergalito, F.; et al. A Wall Fragment of Cutibacterium acnes Preserves Junctional Integrity Altered by Staphylococcus aureus in an Ex Vivo Porcine Skin Model. Pharmaceutics 2023, 15, 1224. [Google Scholar] [CrossRef] [PubMed]
- Iancu, M.A.; Profir, M.; Roşu, O.A.; Ionescu, R.F.; Cretoiu, S.M.; Gaspar, B.S. Revisiting the Intestinal Microbiome and Its Role in Diarrhea and Constipation. Microorganisms 2023, 11, 2177. [Google Scholar] [CrossRef]
- Venditti, N.; Vergalito, F.; Magnifico, I.; Cutuli, M.A.; Pietrangelo, L.; Cozzolino, A.; Angiolillo, A.; Succi, M.; Petronio, G.P.; Di Marco, R. The Lepidoptera Galleria mellonella “in vivo” model: A preliminary pilot study on oral administration of Lactobacillus plantarum (now Lactiplantibacillus plantarum). New Microbiol. 2021, 44, 42–50. [Google Scholar]
- Zielińska, D.; Sionek, B.; Kołożyn-Krajewska, D. Safety of probiotics. In Diet, Microbiome and Health; Academic Press: Cambridge, MA, USA, 2018; pp. 131–161. [Google Scholar]
- Tokunaga, M.; Takahashi, T.; Singh, R.B.; De Meester, F.; Wilson, D.W. Nutrition and Epigenetics. Med. Epigenetics 2013, 1, 70–77. [Google Scholar] [CrossRef]
- Wolffe, A.P.; Matzke, M.A. Epigenetics: Regulation through repression. Science 1999, 286, 481–486. [Google Scholar] [CrossRef]
- Loscalzo, J.; Handy, D.E. Epigenetic modifications: Basic mechanisms and role in cardiovascular disease (2013 Grover Conference series). Pulm. Circ. 2014, 4, 169–174. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, S.; Fledderjohann, J.; Vellakkal, S.; Stuckler, D. Adequately Diversified Dietary Intake and Iron and Folic Acid Supplementation during Pregnancy Is Associated with Reduced Occurrence of Symptoms Suggestive of Pre-Eclampsia or Eclampsia in Indian Women. PLoS ONE 2015, 10, e0119120. [Google Scholar] [CrossRef]
- Al-Dughaishi, T.; Nikolic, D.; Zadjali, F.; Al-Hashmi, K.; Al-Waili, K.; Rizzo, M.; Al-Rasadi, K. Nutraceuticals as Lipid-Lowering Treatment in Pregnancy and Their Effects on the Metabolic Syndrome. Curr. Pharm. Biotechnol. 2016, 17, 614–623. [Google Scholar] [CrossRef] [PubMed]
- De-Regil, L.M.; Palacios, C.; Lombardo, L.K.; Peña-Rosas, J.P. Vitamin D supplementation for women during pregnancy. Cochrane Database Syst. Rev. 2016, Cd008873. [Google Scholar]
- Omotayo, M.O.; Dickin, K.L.; O’Brien, K.O.; Neufeld, L.M.; De Regil, L.M.; Stoltzfus, R.J. Calcium Supplementation to Prevent Preeclampsia: Translating Guidelines into Practice in Low-Income Countries. Adv. Nutr. 2016, 7, 275–278. [Google Scholar] [CrossRef] [PubMed]
- Huppertz, B.; Weiss, G.; Moser, G. Trophoblast invasion and oxygenation of the placenta: Measurements versus presumptions. J. Reprod. Immunol. 2014, 101, 74–79. [Google Scholar] [CrossRef]
- Zhong, Y.; Tuuli, M.; Odibo, A.O. First-trimester assessment of placenta function and the prediction of preeclampsia and intrauterine growth restriction. Prenat. Diagn. 2010, 30, 293–308. [Google Scholar] [CrossRef]
- Hall, H.G.; Griffiths, D.L.; McKenna, L.G. The use of complementary and alternative medicine by pregnant women: A literature review. Midwifery 2011, 27, 817–824. [Google Scholar] [CrossRef]
- Dante, G.; Bellei, G.; Neri, I.; Facchinetti, F. Herbal therapies in pregnancy: What works? Curr. Opin. Obs. Gynecol. 2014, 26, 83–91. [Google Scholar] [CrossRef] [PubMed]
- Trabace, L.; Tucci, P.; Ciuffreda, L.; Matteo, M.; Fortunato, F.; Campolongo, P.; Trezza, V.; Cuomo, V. “Natural” relief of pregnancy-related symptoms and neonatal outcomes: Above all do no harm. J. Ethnopharmacol. 2015, 174, 396–402. [Google Scholar] [CrossRef] [PubMed]
- Zhang, A.L.; Story, D.F.; Lin, V.; Vitetta, L.; Xue, C.C. A population survey on the use of 24 common medicinal herbs in Australia. Pharmacoepidemiol. Drug Saf. 2008, 17, 1006–1013. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.Y.; Cheung, L.M.; Leung, K.; Qi, C.; Deng, B.; Deng, P.X.; Xu, M. The effects of Scutellaria baicalensis extract on embryonic development in mice. Birth Defects Res. Part. B Dev. Reprod. Toxicol. 2009, 86, 79–84. [Google Scholar] [CrossRef]
- Tian, X.Y.; Xu, M.; Deng, B.; Leung, K.S.; Cheng, K.F.; Zhao, Z.Z.; Zhang, S.P.; Yang, Z.J.; Deng, P.X.; Xu, D.Y.; et al. The effects of Boehmeria nivea (L.) Gaud. on embryonic development: In vivo and in vitro studies. J. Ethnopharmacol. 2011, 134, 393–398. [Google Scholar] [CrossRef] [PubMed]
- Lewicki, S.; Skopińska-Różewska, E.; Bałan, B.J.; Kalicki, B.; Patera, J.; Wilczak, J.; Wasiutyński, A.; Zdanowski, R. Morphofunctional Renal Alterations in Progeny of Mice Fed Rhodiola kirilowii Extracts or Epigallocatechin During Pregnancy and Lactation. J. Med. Food 2017, 20, 86–92. [Google Scholar] [CrossRef]
- Ingelman-Sundberg, M. Pharmacogenetics of cytochrome P450 and its applications in drug therapy: The past, present and future. Trends Pharmacol. Sci. 2004, 25, 193–200. [Google Scholar] [CrossRef]
- Langhammer, A.J.; Nilsen, O.G. In vitro Inhibition of Human CYP1A2, CYP2D6, and CYP3A4 by Six Herbs Commonly Used in Pregnancy. Phytother. Res. 2014, 28, 603–610. [Google Scholar] [CrossRef]
- Elias, J.; Bozzo, P.; Einarson, A. Are probiotics safe for use during pregnancy and lactation? Can. Fam. Physician 2011, 57, 299–301. [Google Scholar]
- Dong, J.; Yin, L.L.; Deng, X.D.; Ji, C.Y.; Pan, Q.; Yang, Z.; Peng, T.; Wu, J.N. Initiation and duration of folic acid supplementation in preventing congenital malformations. BMC Med. 2023, 21, 292. [Google Scholar] [CrossRef]
- Cetin, I.; Carlson, S.E.; Burden, C.; da Fonseca, E.B.; di Renzo, G.C.; Hadjipanayis, A.; Harris, W.S.; Kumar, K.R.; Olsen, S.F.; Mader, S.; et al. Omega-3 fatty acid supply in pregnancy for risk reduction of preterm and early preterm birth. Am. J. Obs. Gynecol. MFM 2024, 6, 101251. [Google Scholar] [CrossRef] [PubMed]
- Dwarkanath, P.; Muhihi, A.; Sudfeld, C.R.; Wylie, B.J.; Wang, M.; Perumal, N.; Thomas, T.; Kinyogoli, S.M.; Bakari, M.; Fernandez, R.; et al. Two Randomized Trials of Low-Dose Calcium Supplementation in Pregnancy. N. Engl. J. Med. 2024, 390, 143–153. [Google Scholar] [CrossRef]
- Palacios, C.; Kostiuk, L.L.; Cuthbert, A.; Weeks, J. Vitamin D supplementation for women during pregnancy. Cochrane Database Syst. Rev. 2024, 7, Cd008873. [Google Scholar] [CrossRef] [PubMed]
- Reza-López, S.A.; Aguirre-Chacón, E.O.; Sánchez-Ramírez, B.; Guerrero-Salgado, F.; Chávez-Corral, D.V.; Levario-Carrillo, M. Folate transporter expression in placenta from pregnancies complicated with birth defects. Birth Defects Res. 2018, 110, 1223–1227. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.B.; Ding, X.; Qin, C.Y.; Liu, Q.; Han, C.H.; Yin, C.H.; Fen, X. Research Progress on the Relationship between Folic Acid Transporter of Placenta and Pregnancy Complications. Chin. Pharm. J. 2020, 55, 1133–1137. [Google Scholar]
- Marchesi, I.; Fais, M.; Fiorentino, F.P.; Bordoni, V.; Sanna, L.; Zoroddu, S.; Bagella, L. Bromodomain Inhibitor JQ1 Provides Novel Insights and Perspectives in Rhabdomyosarcoma Treatment. Int. J. Mol. Sci. 2022, 23, 3581. [Google Scholar] [CrossRef]
- Dhobale, M.; Joshi, S. Altered maternal micronutrients (folic acid, vitamin B(12)) and omega 3 fatty acids through oxidative stress may reduce neurotrophic factors in preterm pregnancy. J. Matern. Fetal Neonatal Med. 2012, 25, 317–323. [Google Scholar] [CrossRef]
- Balogun, O.O.; da Silva Lopes, K.; Ota, E.; Takemoto, Y.; Rumbold, A.; Takegata, M.; Mori, R. Vitamin supplementation for preventing miscarriage. Cochrane Database Syst. Rev. 2016, 2016, Cd004073. [Google Scholar] [CrossRef]
- Zoroddu, S.; Sanna, L.; Bordoni, V.; Lyu, W.; Murineddu, G.; Pinna, G.A.; Forcales, S.V.; Sala, A.; Kelvin, D.J.; Bagella, L. RNAseq Analysis of Novel 1,3,4-Oxadiazole Chalcogen Analogues Reveals Anti-Tubulin Properties on Cancer Cell Lines. Int. J. Mol. Sci. 2023, 24, 11263. [Google Scholar] [CrossRef]
- Shahbazian, N.; Jafari, R.M.; Haghnia, S. The evaluation of serum homocysteine, folic acid, and vitamin B12 in patients complicated with preeclampsia. Electron. Physician 2016, 8, 3057–3061. [Google Scholar] [CrossRef]
- Goh, Y.I.; Koren, G. Folic acid in pregnancy and fetal outcomes. J. Obs. Gynaecol. 2008, 28, 3–13. [Google Scholar] [CrossRef]
- Lucock, M. Folic acid: Nutritional biochemistry, molecular biology, and role in disease processes. Mol. Genet. Metab. 2000, 71, 121–138. [Google Scholar] [CrossRef]
- Kalani, A.; Kamat, P.K.; Givvimani, S.; Brown, K.; Metreveli, N.; Tyagi, S.C.; Tyagi, N. Nutri-epigenetics ameliorates blood-brain barrier damage and neurodegeneration in hyperhomocysteinemia: Role of folic acid. J. Mol. Neurosci. 2014, 52, 202–215. [Google Scholar] [CrossRef]
- Baker, B.C.; Hayes, D.J.; Jones, R.L. Effects of micronutrients on placental function: Evidence from clinical studies to animal models. Reproduction 2018, 156, R69–R82. [Google Scholar] [CrossRef] [PubMed]
- Zhang, A.; Zhou, L.F.; Xiang, X.L.; Wang, K.; Zhou, Q.; Duan, T. Folic acid attenuates dexamethasone-induced placental growth restriction. Eur. Rev. Med. Pharmacol. Sci. 2015, 19, 1130–1140. [Google Scholar] [PubMed]
- Ren, Y.; Yang, M.; Ren, S.; Ge, Z.; Cao, Y.; Qin, X.; Sheng, J.; Wang, S. Placenta-Related Parameters at Delivery in Relation to Folic Acid Supplementation in Different Pregnancies. Nutrients 2024, 16, 1729. [Google Scholar] [CrossRef] [PubMed]
- Jones, M.L.; Mark, P.J.; Mori, T.A.; Keelan, J.A.; Waddell, B.J. Maternal dietary omega-3 fatty acid supplementation reduces placental oxidative stress and increases fetal and placental growth in the rat. Biol. Reprod. 2013, 88, 37. [Google Scholar] [CrossRef]
- Godhamgaonkar, A.A.; Wadhwani, N.S.; Joshi, S.R. Exploring the role of LC-PUFA metabolism in pregnancy complications. Prostaglandins Leukot. Essent. Fat. Acids 2020, 163, 102203. [Google Scholar] [CrossRef] [PubMed]
- Basak, S.; Duttaroy, A.K. Maternal PUFAs, Placental Epigenetics, and Their Relevance to Fetal Growth and Brain Development. Reprod. Sci. 2023, 30, 408–427. [Google Scholar] [CrossRef]
- Kulkarni, A.; Dangat, K.; Kale, A.; Sable, P.; Chavan-Gautam, P.; Joshi, S. Effects of altered maternal folic acid, vitamin B12 and docosahexaenoic acid on placental global DNA methylation patterns in Wistar rats. PLoS ONE 2011, 6, e17706. [Google Scholar] [CrossRef]
- Kemse, N.; Sundrani, D.; Kale, A.; Joshi, S. Maternal Micronutrients, Omega-3 Fatty Acids and Gene Expression of Angiogenic and Inflammatory Markers in Pregnancy Induced Hypertension Rats. Arch. Med. Res. 2017, 48, 414–422. [Google Scholar] [CrossRef] [PubMed]
- Scorletti, E.; Byrne, C.D. Omega-3 fatty acids, hepatic lipid metabolism, and nonalcoholic fatty liver disease. Annu. Rev. Nutr. 2013, 33, 231–248. [Google Scholar] [CrossRef]
- Poniedzialek-Czajkowska, E.; Mierzynski, R.; Kimber-Trojnar, Z.; Leszczynska-Gorzelak, B.; Oleszczuk, J. Polyunsaturated fatty acids in pregnancy and metabolic syndrome: A review. Curr. Pharm. Biotechnol. 2014, 15, 84–99. [Google Scholar] [CrossRef] [PubMed]
- Basak, S.; Das, M.K.; Duttaroy, A.K. Fatty acid-induced angiogenesis in first trimester placental trophoblast cells: Possible roles of cellular fatty acid-binding proteins. Life Sci. 2013, 93, 755–762. [Google Scholar] [CrossRef] [PubMed]
- Taysi, S.; Tascan, A.S.; Ugur, M.G.; Demir, M. Radicals, oxidative/nitrosative stress and preeclampsia. Mini-Rev. Med. Chem. 2019, 19, 178–193. [Google Scholar] [CrossRef]
- Liu, L.; Zhao, H.; Wang, Y.; Cui, Y.; Lu, H.; Xiong, Y.; Xiao, X.; Zhou, Q.; Yuan, Y.; Zhao, S.; et al. Docosahexaenoic acid insufficiency impairs placental angiogenesis by repressing the methylene-bridge fatty acylation of AKT in preeclampsia. Placenta 2024, 155, 100–112. [Google Scholar] [CrossRef]
- Lewis, S.; Lucas, R.M.; Halliday, J.; Ponsonby, A.L. Vitamin D deficiency and pregnancy: From preconception to birth. Mol. Nutr. Food Res. 2010, 54, 1092–1102. [Google Scholar] [CrossRef]
- Sawy, M.M.; Desouky, A.M.; Ramadan, Y. Placental Alterations of Gravidas with Vitamin D Deficiency: A Light and Electron Microscopic Study. Egypt. J. Histol. 2023, 46, 1590–1602. [Google Scholar] [CrossRef]
- Mouillet, J.F.; Ouyang, Y.; Coyne, C.B.; Sadovsky, Y. MicroRNAs in placental health and disease. Am. J. Obstet. Gynecol. 2015, 213 (Suppl. S4), S163–S172. [Google Scholar] [CrossRef]
- Hombach, S.; Kretz, M. Non-coding RNAs: Classification, Biology and Functioning. Adv. Exp. Med. Biol. 2016, 937, 3–17. [Google Scholar]
- Sibley, C.P. Understanding placental nutrient transfer–why bother? New biomarkers of fetal growth. J. Physiol. 2009, 587 Pt 14, 3431–3440. [Google Scholar] [CrossRef]
- O’Brien, J.; Hayder, H.; Zayed, Y.; Peng, C. Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Front. Endocrinol. 2018, 9, 402. [Google Scholar] [CrossRef] [PubMed]
- Qu, H.M.; Qu, L.P.; Pan, X.Z.; Mu, L.S. Upregulated miR-222 targets BCL2L11 and promotes apoptosis of mesenchymal stem cells in preeclampsia patients in response to severe hypoxia. Int. J. Clin. Exp. Pathol. 2018, 11, 110–119. [Google Scholar] [PubMed]
- Quack Lötscher, K. Impact of vitamin D during pregnancy on maternal health. Gynakologe 2015, 48, 369–371. [Google Scholar] [CrossRef]
- Christakos, S.; Dhawan, P.; Peng, X.; Obukhov, A.G.; Nowycky, M.C.; Benn, B.S.; Zhong, Y.; Liu, Y.; Shen, Q. New insights into the function and regulation of vitamin D target proteins. J. Steroid Biochem. Mol. Biol. 2007, 103, 405–410. [Google Scholar] [CrossRef]
- Goyal, R.; Zhang, L.; Blood, A.B.; Baylink, D.J.; Longo, L.D.; Oshiro, B.; Mata-Greenwood, E. Characterization of an animal model of pregnancy-induced vitamin D deficiency due to metabolic gene dysregulation. Am. J. Physiol. Endocrinol. Metab. 2014, 306, E256–E266. [Google Scholar] [CrossRef] [PubMed]
- Anderson, C.M.; Ralph, J.L.; Wright, M.L.; Linggi, B.; Ohm, J.E. DNA methylation as a biomarker for preeclampsia. Biol. Res. Nurs. 2014, 16, 409–420. [Google Scholar] [CrossRef]
- Novakovic, B.; Sibson, M.; Ng, H.K.; Manuelpillai, U.; Rakyan, V.; Down, T.; Beck, S.; Fournier, T.; Evain-Brion, D.; Dimitriadis, E.; et al. Placenta-specific methylation of the vitamin D 24-hydroxylase gene: Implications for feedback autoregulation of active vitamin D levels at the fetomaternal interface. J. Biol. Chem. 2009, 284, 14838–14848. [Google Scholar] [CrossRef]
- Mazurek, D.; Łoźna, K.; Bronkowska, M. The concentration of selected elements in the placenta according to selected sociodemographic factors and their effect on birth mass and birth length of newborns. J. Trace Elem. Med. Biol. 2020, 58, 126425. [Google Scholar] [CrossRef]
- Moreau, R.; Daoud, G.; Masse, A.; Simoneau, L.; Lafond, J. Expression and role of calcium-ATPase pump and sodium-calcium exchanger in differentiated trophoblasts from human term placenta. Mol. Reprod. Dev. 2003, 65, 283–288. [Google Scholar] [CrossRef]
- Belkacemi, L.; Bédard, I.; Simoneau, L.; Lafond, J. Calcium channels, transporters and exchangers in placenta: A review. Cell Calcium 2005, 37, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Terracciano, C.; Farina, O.; Esposito, T.; Lombardi, L.; Napolitano, F.; Blasiis, P.; Ciccone, G.; Todisco, V.; Tuccillo, F.; Bernardini, S.; et al. Successful long-term therapy with flecainide in a family with paramyotonia congenita. J. Neurol. Neurosurg. Psychiatry 2018, 89, 1232–1234. [Google Scholar] [CrossRef] [PubMed]
- Belkacemi, L.; Gariépy, G.; Mounier, C.; Simoneau, L.; Lafond, J. Expression of calbindin-D28k (CaBP28k) in trophoblasts from human term placenta. Biol. Reprod. 2003, 68, 1943–1950. [Google Scholar] [CrossRef] [PubMed]
- Capasso, G.; Di Gennaro, C.I.; Della Ragione, F.; Manna, C.; Ciarcia, R.; Florio, S.; Perna, A.; Pollastro, R.M.; Damiano, S.; Mazzoni, O.; et al. In vivo effect of the natural antioxidant hydroxytyrosol on cyclosporine nephrotoxicity in rats. Nephrol. Dial. Transpl. 2008, 23, 1186–1195. [Google Scholar] [CrossRef]
- Cemerikic, B.; Zamah, R.; Ahmed, M.S. Identification of L-type calcium channels associated with kappa opioid receptors in human placenta. J. Mol. Neurosci. 1998, 10, 261–272. [Google Scholar] [CrossRef]
- Del Toro, R.; Levitsky, K.L.; López-Barneo, J.; Chiara, M.D. Induction of T-type Calcium Channel Gene Expression by Chronic Hypoxia. J. Biol. Chem. 2003, 278, 22316–22324. [Google Scholar] [CrossRef]
- Moreau, R.; Hamel, A.; Daoud, G.; Simoneau, L.; Lafond, J. Expression of calcium channels along the differentiation of cultured trophoblast cells from human term placenta. Biol. Reprod. 2002, 67, 1473–1479. [Google Scholar] [CrossRef]
- Perna, A.; Sellitto, C.; Komici, K.; Hay, E.; Rocca, A.; De Blasiis, P.; Lucariello, A.; Moccia, F.; Guerra, G. Transient Receptor Potential (TRP) Channels in Tumor Vascularization. Int. J. Mol. Sci. 2022, 23, 14253. [Google Scholar] [CrossRef]
- Baczyk, D.; Kingdom, J.C.P.; Uhlén, P. Calcium signaling in placenta. Cell Calcium 2011, 49, 350–356. [Google Scholar] [CrossRef]
- Mathialagan, N.; Jagannadha Rao, A. A role for calcium in gonadotrophin-releasing hormone (GnRH) stimulated secretion of chorionic gonadotrophin by first trimester human placental minces in vitro. Placenta 1989, 10, 61–70. [Google Scholar] [CrossRef]
- Meuris, S.; Polliotti, B.; Robyn, C.; Lebrun, P. Ca2+ entry through L-type voltage-sensitive Ca2+ channels stimulates the release of human chorionic gonadotrophin and placental lactogen by placental explants. Biochim. Biophys. Acta (BBA)—Mol. Cell Res. 1994, 1220, 101–106. [Google Scholar] [CrossRef]
- Myatt, L.; Brockman, D.E.; Langdon, G.; Pollock, J.S. Constitutive calcium-dependent isoform of nitric oxide synthase in the human placental villous vascular tree. Placenta 1993, 14, 373–383. [Google Scholar] [CrossRef] [PubMed]
- Karl, P.I.; Chang, B.; Fisher, S.E. Calcium-Sensitive Uptake of Amino Acids by Human Placental Slices. Pediatr. Res. 1988, 23, 9–13. [Google Scholar] [CrossRef] [PubMed]
- Golander, A.; Hurley, T.; Barrett, J.; Handwerger, S. Synthesis of prolactin by human decidua in vitro. J. Endocrinol. 1979, 82, 263–267. [Google Scholar] [CrossRef]
- Moreau, R.; Simoneau, L.; Lafond, J. Characteristics of Calcium Uptake by BeWo Cells, a Human Trophoblast Cell Line. Placenta 2001, 22, 768–775. [Google Scholar] [CrossRef]
- Moreau, R.; Daoud, G.; Bernatchez, R.; Simoneau, L.; Masse, A.; Lafond, J. Calcium uptake and calcium transporter expression by trophoblast cells from human term placenta. Biochim. Biophys. Acta (BBA)-Biomembr. 2002, 1564, 325–332. [Google Scholar] [CrossRef]
- Yu, P.C.; Gu, S.Y.; Bu, J.W.; Du, J.L. TRPC1 Is Essential for In Vivo Angiogenesis in Zebrafish. Circ. Res. 2010, 106, 1221–1232. [Google Scholar] [CrossRef]
- Llanos, P.; Henriquez, M.; Riquelme, G. A Low Conductance, Non-selective Cation Channel from Human Placenta. Placenta 2002, 23, 184–191. [Google Scholar] [CrossRef]
- Clarson, L.H.; Roberts, V.H.J.; Hamark, B.; Elliott, A.C.; Powell, T. Store-operated Ca2+ entry in first trimester and term human placenta. J. Physiol. 2003, 550, 515–528. [Google Scholar] [CrossRef]
- Bax, C.; Bax, B.; Bain, M.; Zaidi, M. Ca2+ channels in human term trophoblast cells in vitro. A study using the Ca2+-sensitive dye FURA 2. Placenta 1994, 15, 573–580. [Google Scholar] [CrossRef]
- Brushia, R.J.; Walsh, D.A. Phosphorylase kinase: The complexity of its regulation is reflected in the complexity of its structure. Front. Biosci. A J. Virtual Libr. 1999, 4, D618–D641. [Google Scholar] [CrossRef] [PubMed]
- Coan, P.M.; Ferguson-Smith, A.C.; Burton, G.J. Ultrastructural changes in the interhaemal membrane and junctional zone of the murine chorioallantoic placenta across gestation. J. Anat. 2005, 207, 783–796. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.S.; Choi, M.Y.; Longtine, M.S.; Nelson, D.M. Vitamin D effects on pregnancy and the placenta. Placenta 2010, 31, 1027–1034. [Google Scholar] [CrossRef]
- Du, H.; Daftary, G.S.; Lalwani, S.I.; Taylor, H.S. Direct regulation of HOXA10 by 1,25-(OH)2D3 in human myelomonocytic cells and human endometrial stromal cells. Mol. Endocrinol. 2005, 19, 2222–2233. [Google Scholar] [CrossRef]
- Barrera, D.; Avila, E.; Hernández, G.; Méndez, I.; González, L.; Halhali, A.; Larrea, F.; Morales, A.; Díaz, L. Calcitriol affects hCG gene transcription in cultured human syncytiotrophoblasts. Reprod. Biol. Endocrinol. 2008, 6, 3. [Google Scholar] [CrossRef]
- Rutten, N.; Van der Gugten, A.; Uiterwaal, C.; Vlieger, A.; Rijkers, G.; Van der Ent, K. Maternal use of probiotics during pregnancy and effects on their offspring’s health in an unselected population. Eur. J. Pediatr. 2016, 175, 229–235. [Google Scholar] [CrossRef] [PubMed]
- López-Moreno, A.; Aguilera, M. Probiotics Dietary Supplementation for Modulating Endocrine and Fertility Microbiota Dysbiosis. Nutrients 2020, 12, 757. [Google Scholar] [CrossRef]
- Gomez Arango, L.F.; Barrett, H.L.; Callaway, L.K.; Nitert, M.D. Probiotics and Pregnancy. Curr. Diabetes Rep. 2015, 15, 567. [Google Scholar] [CrossRef]
- Plotnikova, E.Y.; Zakharova, Y.V.; Sinkova, M.N.; Isakov, L.K. Effects of probiotics on the intrauterine programming of infant microbiota. Akusherstvo I Ginekol. (Russ. Fed.) 2019, 2019, 174–180. [Google Scholar] [CrossRef]
- Wang, X.; Huang, K.; Tao, F. Placental microbiota and pregnancy. Chin. J. Prev. Med. 2019, 53, 633–637. [Google Scholar]
- McDougall, A.; Nguyen, R.; Nguyen, P.Y.; Allen, C.; Cheang, S.; Makama, M.; Mills, K.; Hastie, R.; Ammerdorffer, A.; Gulmezoglu, A.M.; et al. The effects of probiotics administration during pregnancy on preeclampsia and associated maternal, fetal, and newborn outcomes: A systematic review and meta-analysis. Am. J. Obs. Gynecol. MFM 2024, 6, 101322. [Google Scholar] [CrossRef] [PubMed]
- Aaltonen, J.; Ojala, T.; Laitinen, K.; Piirainen, T.J.; Poussa, T.A.; Isolauri, E. Evidence of infant blood pressure programming by maternal nutrition during pregnancy: A prospective randomized controlled intervention study. J. Pediatr. 2008, 152, 79–84.e2. [Google Scholar] [CrossRef]
- Asgharian, H.; Homayouni-Rad, A.; Mirghafourvand, M.; Mohammad-Alizadeh-Charandabi, S. Effect of probiotic yoghurt on plasma glucose in overweight and obese pregnant women: A randomized controlled clinical trial. Eur. J. Nutr. 2019, 59, 205–215. [Google Scholar] [CrossRef] [PubMed]
- Axling, U.; Önning, G.; Niskanen, T.M.; Larsson, N.; Hansson, S.R.; Hulthén, L. The effect of Lactiplantibacillus plantarum 299v together with a low dose of iron on iron status in healthy pregnant women: A randomized clinical trial. Acta Obstet. Gynecol. Scand. 2021, 100, 1602–1610. [Google Scholar] [CrossRef]
- Callaway, L.K.; McIntyre, H.D.; Barrett, H.L.; Foxcroft, K.; Tremellen, A.; Lingwood, B.E.; Tobin, J.M.; Wilkinson, S.; Kothari, A.; Morrison, M.; et al. Probiotics for the prevention of gestational diabetes mellitus in overweight and obese women: Findings from the SPRING double-blind randomized controlled trial. Diabetes Care 2019, 42, 364–371. [Google Scholar] [CrossRef] [PubMed]
- Daskalakis, G.J.; Karambelas, A.K. Vaginal probiotic administration in the management of preterm premature rupture of mem-branes. Fetal Diagn. Ther. 2017, 42, 92–98. [Google Scholar] [CrossRef]
- Ebrahimzadeh, M.; Zagami, S.E.; Kordi, M.; Shakeri, M.T.; Emami, S.A.; Akhlaghi, F. Effect of probiotic capsules on preventing gestational diabetes among high-risk prediabetic pregnant women. Iran. J. Obstet. Gynecol. Infertil. 2020, 23, 57–66. [Google Scholar]
- Facchinetti, F.; Dante, G.; Pedretti, L.; Resasco, P.; Annessi, E.; Dodero, D. The role of oral probiotic for bacterial vaginosis in pregnant women. A pilot study. Minerva Ginecol. 2013, 65, 215–221. [Google Scholar]
- Farr, A.; Sustr, V.; Kiss, H.; Rosicky, I.; Graf, A.; Makristathis, A.; Foessleitner, P.; Petricevic, L. Oral probiotics to reduce vaginal group B streptococcal colonization in late pregnancy. Sci. Rep. 2020, 10, 19745. [Google Scholar] [CrossRef]
- Gille, C.; Böer, B.; Marschal, M.; Urschitz, M.S.; Heinecke, V.; Hund, V.; Speidel, S.; Tarnow, I.; Mylonas, I.; Franz, A.; et al. Effect of probiotics on vaginal health in pregnancy. EFFPRO, a randomized controlled trial. Am. J. Obstet. Gynecol. 2016, 215, 608.e1–608.e7. [Google Scholar] [CrossRef]
- Halkjær, S.I.; de Knegt, V.E.; Lo, B.; Nilas, L.; Cortes, D.; Pedersen, A.E.; Mirsepasi-Lauridsen, H.C.; Andersen, L.O.; Nielsen, H.V.; Stensvold, C.R.; et al. Multistrain Probiotic Increases the Gut Microbiota Diversity in Obese Pregnant Women: Results from a Randomized, Double-Blind Placebo-Controlled Study. Curr. Dev. Nutr. 2020, 4, nzaa095. [Google Scholar] [CrossRef] [PubMed]
- Hantoushzadeh, S.; Golshahi, F.; Javadian, P.; Khazardoost, S.; Aram, S.; Hashemi, S.; Mirarmandehi, B.; Borna, S. Comparative efficacy of probiotic yoghurt and clindamycin in treatment of bacterial vaginosis in pregnant women: A randomized clinical trial. J. Matern. Neonatal Med. 2011, 25, 1021–1024. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Huang, Y.; Cai, W.; Li, D.; Zheng, W.; Xiao, Y.; Liu, Y.; Zhao, H.; Pan, S. Effect of oral Lactobacillusrhamnosus GR-1 and Lactobacil-lusreuteri RC-14 on vaginal Group B Streptococcus colonization and vaginal microbiome in late pregnancy. J. South. Med. Univ. 2020, 40, 1753–1759. [Google Scholar]
- Husain, S.; Allotey, J.; Drymoussi, Z.; Wilks, M.; Fernandez-Felix, B.M.; Whiley, A.; Dodds, J.; Thangaratinam, S.; McCourt, C.; Prosdocimi, E.M.; et al. Effects of oral probiotic supplements on vaginal microbiota during pregnancy: A ran-domised, double-blind, placebo-controlled trial with microbiome analysis. BJOG 2020, 127, 275–284. [Google Scholar] [CrossRef] [PubMed]
- Krauss-Silva, L.; Moreira, M.E.L.; Alves, M.B.; Braga, A.; Camacho, K.G.; Batista, M.R.R.; Almada-Horta, A.; Rebello, M.R.; Guerra, F. A randomised controlled trial of probiotics for the prevention of spontaneous preterm delivery associated with bacterial vaginosis: Preliminary results. Trials 2011, 12, 239. [Google Scholar] [CrossRef]
- Lindsay, K.L.; Kennelly, M.; Culliton, M.; Smith, T.; Maguire, O.C.; Shanahan, F.; Brennan, L.; McAuliffe, F.M. Probiotics in obese pregnancy do not reduce maternal fasting glucose: A double-blind, placebo-controlled, randomized trial (Probiotics in Pregnancy Study). Am. J. Clin. Nutr. 2014, 99, 1432–1439. [Google Scholar] [CrossRef]
- Mantaring, J.; Benyacoub, J.; Destura, R.; Pecquet, S.; Vidal, K.; Volger, S.; Guinto, V. Effect of maternal supplement beverage with and without probiotics during preg-nancy and lactation on maternal and infant health: A randomized controlled trial in the Philippines. BMC Pregnancy Child-Birth 2018, 18, 193. [Google Scholar]
- Neri, A.; Sabah, G.; Samra, Z. Bacterial vaginosis in pregnancy treated with yoghurt. Acta Obstet. Gynecol. Scand. 1993, 72, 17–19. [Google Scholar] [CrossRef]
- Hemphill, N.O.; Pezley, L.; Steffen, A.; Elam, G.; Kominiarek, M.A.; Odoms-Young, A.; Kessee, N.; Hamm, A.; Tussing-Humphreys, L.; Koenig, M.D. Feasibility Study of Lactobacillus Plantarum 299v Probiotic Supplementation in an Urban Academic Facility among Diverse Pregnant Individuals. Nutrients 2023, 15, 875. [Google Scholar] [CrossRef]
- Okesene Gafa, K.A.M.; Li, M.; Mc Kinlay, C.J.D.; Taylor, R.S.; Rush, E.C.; Wall, C.R.; Wilson, J.; Murphy, R.; Taylor, R.; Thompson, J.M.D.; et al. Effect of antenatal dietary interventions in maternal obesity on pregnancy weight-gain and birth weight: Healthy Mumsand Babies (HUMBA) randomized trial. Am. J. Obstet. Gynecol. 2019, 221, 152.e1–152.e13. [Google Scholar] [CrossRef]
- Pellonpera, O.; Mokkala, K.; Houttu, N.; Vahlberg, T.; Koivuniemi, E.; Tertti, K.; Rönnemaa, T.; Laitinen, K. Efficacy of fish oil and/or probiotic intervention on the incidence of gestational diabetes mellitus in an at-risk group of overweight and obese women: A randomized, placebo-controlled, double-blind clinical trial. Diabetes Care 2019, 42, 1009–1017. [Google Scholar] [CrossRef] [PubMed]
- Petricevic, L.; Rosicky, I.; Kiss, H.; Janjic, N.; Kaufmann, U.; Holzer, I.; Farr, A. Effect of vaginal probiotics containing Lactobacillus caseirhamnosus (Lcr regenerans) on vaginal dysbiotic microbiota and pregnancy outcome, prospective, randomized study. Sci. Rep. 2023, 13, 7129. [Google Scholar] [CrossRef]
- Sahhaf Ebrahimi, F.; Homayouni Rad, A.; Mosen, M.; Abbasalizadeh, F.; Tabrizi, A.; Khalili, L. Effect of L. acidophilus and B. lactis on blood glucose in women with gestational diabetes mellitus: A randomized placebo-controlled trial. Diabetol. Metab. Syndr. 2019, 11, 75. [Google Scholar] [CrossRef]
- Shahriari, A.; Karimi, E.; Shahriari, M.; Aslani, N.; Khooshideh, M.; Arab, A. The effect of probiotic supplementation on the risk of gestational diabetes mellitus among high-risk pregnant women: A parallel double-blind, randomized, placebo-controlled clinical trial. Biomed. Pharmacother. 2021, 141, 111915. [Google Scholar] [CrossRef] [PubMed]
- Si, L.; Lin, R.; Jia, Y.; Jian, W.; Yu, Q.; Wang, M.; Yang, S. Lactobacillus bulgaricus improves antioxidant capacity of black garlic in the prevention of gestational diabetes mellitus: A randomized control trial. Biosci. Rep. 2019, 39, BSR20182254. [Google Scholar] [CrossRef] [PubMed]
- Slykerman, R.F.; Kang, J.; Van Zyl, N.; Barthow, C.; Wickens, K.; Stanley, T.; Coomarasamy, C.; Purdie, G.; Murphy, R.; Crane, J.; et al. Effect of early probiotic supplementation on childhood cognition, behaviour and mood a randomised, placebo-controlled trial. Acta Paediatr. 2018, 107, 2172–2178. [Google Scholar] [CrossRef]
- Wickens, K.L.; Barthow, C.A.; Murphy, R.; Abels, P.R.; Maude, R.M.; Stone, P.R.; Mitchell, E.A.; Stanley, T.V.; Purdie, G.L.; Kang, J.M.; et al. Early pregnancy probiotic supplementation with Lactobacillus rhamnosus HN001 may reduce the prevalence of gestational diabetes mellitus: A randomised controlled trial. Br. J. Nutr. 2017, 117, 804–813. [Google Scholar] [CrossRef]
- Halkjaer, S.I.; Nilas, L.; Carlsen, E.M.; Cortes, D.; Halldórsson, T.I.; Olsen, S.F.; Pedersen, A.E.; Krogfelt, K.A.; Petersen, A.M. Effects of probiotics (Vivomixx®) in obese pregnant women and their newborn: Study protocol for a randomized controlled trial. Trials 2016, 17, 491. [Google Scholar] [CrossRef]
- Hashemi, A.; Villa, C.R.; Comelli, E.M. Probiotics in early life: A preventative and treatment approach. Food Funct. 2016, 7, 1752–1768. [Google Scholar] [CrossRef]
- Mukhopadhya, I.; Hansen, R.; El-Omar, E.M.; Hold, G.L. IBD—What role do Proteobacteria play? Nat. Rev. Gastroenterol. Hepatol. 2012, 9, 219–230. [Google Scholar] [CrossRef]
- Santacruz, A.; Collado, M.C.; García-Valdés, L.; Segura, M.T.; Marítn-Lagos, J.A.; Anjos, T.; Martí-Romero, M.; Lopez, R.M.; Florido, J.; Campoy, C.; et al. Gut microbiota composition is associated with body weight, weight gain and biochemical parameters in pregnant women. Br. J. Nutr. 2010, 104, 83–92. [Google Scholar] [CrossRef]
- Collado, M.C.; Isolauri, E.; Laitinen, K.; Salminen, S. Effect of mother’s weight on infant’s microbiota acquisition, composition, and activity during early infancy: A prospective follow-up study initiated in early pregnancy123. Am. J. Clin. Nutr. 2010, 92, 1023–1030. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Nomura, Y.; Bashir, A.; Fernandez-Hernandez, H.; Itzkowitz, S.; Pei, Z.; Stone, J.; Loudon, H.; Peter, I. Diversified Microbiota of Meconium Is Affected by Maternal Diabetes Status. PLoS ONE 2013, 8, e78257. [Google Scholar] [CrossRef]
- Carr, D.B.; Newton, K.M.; Utzschneider, K.M.; Faulenbach, M.V.; Kahn, S.E.; Easterling, T.R.; Heckbert, S.R. Gestational Diabetes or Lesser Degrees of Glucose Intolerance and Risk of Preeclampsia. Hypertens. Pregnancy 2011, 30, 153–163. [Google Scholar] [CrossRef] [PubMed]
- Ehrlich, S.F.; Rosas, L.G.; Ferrara, A.; King, J.C.; Abrams, B.; Harley, K.G.; Hedderson, M.M.; Eskenazi, B. Pregnancy Glycemia in Mexican-American Women Without Diabetes or Gestational Diabetes and Programming for Childhood Obesity. Am. J. Epidemiol. 2013, 177, 768–775. [Google Scholar] [CrossRef]
- Damm, P.; Houshmand-Oeregaard, A.; Kelstrup, L.; Lauenborg, J.; Mathiesen, E.R.; Clausen, T.D. Gestational diabetes mellitus and long-term consequences for mother and offspring: A view from Denmark. Diabetologia 2016, 59, 1396–1399. [Google Scholar] [CrossRef] [PubMed]
- Kalliomäki, M.; Carmen Collado, M.; Salminen, S.; Isolauri, E. Early differences in fecal microbiota composition in children may predict overweight2. Am. J. Clin. Nutr. 2008, 87, 534–538. [Google Scholar] [CrossRef]
- Pelzer, E.; Gomez-Arango, L.F.; Barrett, H.L.; Nitert, M.D. Review: Maternal health and the placental microbiome. Placenta 2017, 54, 30–37. [Google Scholar] [CrossRef]
- Sjögren, Y.M.; Jenmalm, M.C.; Böttcher, M.F.; Björkstén, B.; Sverremark-Ekström, E. Altered early infant gut microbiota in children developing allergy up to 5 years of age. Clin. Exp. Allergy 2009, 39, 518–526. [Google Scholar] [CrossRef]
- Karamali, M.; Dadkhah, F.; Sadrkhanlou, M.; Jamilian, M.; Ahmadi, S.; Tajabadi-Ebrahimi, M.; Jafari, P.; Asemi, Z. Effects of probiotic supplementation on glycaemic control and lipid profiles in gestational diabetes: A randomized, double-blind, placebo-controlled trial. Diabetes Metab. 2016, 42, 234–241. [Google Scholar] [CrossRef]
- Robles-Vera, I.; Toral, M.; Romero, M.; Jiménez, R.; Sánchez, M.; Pérez-Vizcaíno, F.; Duarte, J. Antihypertensive Effects of Probiotics. Curr. Hypertens. Rep. 2017, 19, 26. [Google Scholar] [CrossRef] [PubMed]
- Astolfi, M.L.; Protano, C.; Schiavi, E.; Marconi, E.; Capobianco, D.; Massimi, L.; Ristorini, M.; Baldassarre, M.E.; Laforgia, N.; Vitali, M.; et al. A prophylactic multi-strain probiotic treatment to reduce the absorption of toxic elements: In-vitro study and biomonitoring of breast milk and infant stools. Environ. Int. 2019, 130, 104818. [Google Scholar] [CrossRef]
- Naito, M. Macrophage differentiation and function in health and disease. Pathol. Int. 2008, 58, 143–155. [Google Scholar] [CrossRef]
- Pradhan, B.; Guha, D.; Ray, P.; Das, D.; Aich, P. Comparative Analysis of the Effects of Two Probiotic Bacterial Strains on Metabolism and Innate Immunity in the RAW 264.7 Murine Macrophage Cell Line. Probiotics Antimicrob. Proteins 2016, 8, 73–84. [Google Scholar] [CrossRef] [PubMed]
- Lin, R.; Jiang, Y.; Zhao, X.Y.; Guan, Y.; Qian, W.; Fu, X.C.; Ren, H.Y.; Hou, X.H. Four types of Bifidobacteria trigger autophagy response in intestinal epithelial cells. J. Dig. Dis. 2014, 15, 597–605. [Google Scholar] [CrossRef]
- Vähämiko, S.; Laiho, A.; Lund, R.; Isolauri, E.; Salminen, S.; Laitinen, K. The impact of probiotic supplementation during pregnancy on DNA methylation of obesity-related genes in mothers and their children. Eur. J. Nutr. 2019, 58, 367–377. [Google Scholar] [CrossRef] [PubMed]
- Briana, D.D.; Papaevangelou, V.; Malamitsi-Puchner, A. The jury is still out on the existence of a placental microbiome. Acta Paediatr. 2021, 110, 2958–2963. [Google Scholar] [CrossRef]
- Fricke, W.F.; Ravel, J. Microbiome or no microbiome: Are we looking at the prenatal environment through the right lens? Microbiome 2021, 9, 9. [Google Scholar] [CrossRef]
- Menon, R.; Khanipov, K.; Radnaa, E.; Ganguly, E.; Bento, G.F.C.; Urrabaz-Garza, R.; Kammala, A.K.; Yaklic, J.; Pyles, R.; Golovko, G.; et al. Amplification of microbial DNA from bacterial extracellular vesicles from human placenta. Front. Microbiol. 2023, 14, 1213234. [Google Scholar] [CrossRef]
- Aagaard, K.; Ma, J.; Antony, K.M.; Ganu, R.; Petrosino, J.; Versalovic, J. The placenta harbors a unique microbiome. Sci. Transl. Med. 2014, 6, 237ra65. [Google Scholar] [CrossRef]
- Collado, M.C.; Rautava, S.; Aakko, J.; Isolauri, E.; Salminen, S. Human gut colonisation may be initiated in utero by distinct microbial communities in the placenta and amniotic fluid. Sci. Rep. 2016, 6, 23129. [Google Scholar] [CrossRef]
- Prince, A.L.; Ma, J.; Kannan, P.S.; Alvarez, M.; Gisslen, T.; Harris, R.A.; Sweeney, E.L.; Knox, C.L.; Lambers, D.S.; Jobe, A.H.; et al. The placental membrane microbiome is altered among subjects with spontaneous preterm birth with and without chorioamnionitis. Am. J. Obstet. Gynecol. 2016, 214, e621–e627.e616. [Google Scholar] [CrossRef]
- Onderdonk, A.B.; Hecht, J.L.; McElrath, T.F.; Delaney, M.L.; Allred, E.N.; Leviton, A. Colonization of second-trimester placenta parenchyma. Am. J. Obstet. Gynecol. 2008, 199, e51–e52.e10. [Google Scholar] [CrossRef] [PubMed]
- McClure, E.M.; Goldenberg, R.L. Infection and stillbirth. In Seminars in Fetal and Neonatal Medicine; Elsevier: Amsterdam, The Netherlands, 2009; pp. 182–189. [Google Scholar]
- Zheng, J.; Xiao, X.; Zhang, Q.; Mao, L.; Yu, M.; Xu, J. The Placental Microbiome Varies in Association with Low Birth Weight in Full-Term Neonates. Nutrients 2015, 7, 6924–6937. [Google Scholar] [CrossRef]
- Perez, P.F.; Doré, J.L.; Leclerc, M.; Levenez, F.; Benyacoub, J.; Serrant, P.; Segura-Roggero, I.; Schiffrin, E.J.; Donnet-Hughes, A. Bacterial Imprinting of the Neonatal Immune System: Lessons From Maternal Cells? Pediatrics 2007, 119, e724–e732. [Google Scholar] [CrossRef]
- Steel, J.H.; Malatos, S.; Kennea, N.; Edwards, A.D.; Miles, L.; Duggan, P.; Reynolds, P.R.; Feldman, R.G.; Sullivan, M.H. Bacteria and inflammatory cells in fetal membranes do not always cause preterm labor. Pediatr. Res. 2005, 57, 404–411. [Google Scholar] [CrossRef]
- Santander Ballestín, S.; Giménez Campos, M.I.; Ballestín Ballestín, J.; Luesma Bartolomé, M.J. Is Supplementation with Micronutrients Still Necessary during Pregnancy? A Review. Nutrients 2021, 13, 3134. [Google Scholar] [CrossRef] [PubMed]
- Sheyholislami, H.; Connor, K.L. Are Probiotics and Prebiotics Safe for Use during Pregnancy and Lactation? A Systematic Review and Meta-Analysis. Nutrients 2021, 13, 2382. [Google Scholar] [CrossRef]
Details | |
---|---|
Definition | Foods or parts of foods containing bioactive elements with physiological and medicinal effects that provide health benefits and prevent disease. |
Examples | Prebiotics, probiotics, fiber, fatty acids, antioxidants, spices, herbs, nutrients, and supplements. |
Difference from Pharmaceuticals | Considered more food-like and less drug-like. |
Clinical Evidence | Health benefits supported by clinical evidence from human studies, particularly positive effects reported in meta-analyses. |
Bioactive Elements | Polyphenolic compounds, isoprenoids, minerals, amino acid derivatives and fatty acids. |
Health Benefits | Positive effects on cardiovascular, immune and nervous systems; role in infections, cancer, and obesity; useful in preventing acute and chronic diseases. |
Current Regulations | US, UK, and Europe have streamlined regulations; India has a nascent but promising regulatory landscape; Canada allows free marketing of herbal remedies, homeopathic medicines, traditional medicines, probiotics, essential fatty acids, and amino acids. |
Popular Nutraceuticals | Fish oil, prebiotics, probiotics, cranberry, garcinia, ginkgo biloba, ginseng, green tea, omega-3 fatty acids, red yeast rice and turmeric. |
Demographic Factors | More women take dietary supplements than men, but male athletes take more supplements than female athletes. Older age, gender, education level, affordability and employment status influence supplement use. |
Bacteria | Description |
---|---|
Lactobacillus species | |
Lactobacillus acidophilus | Supports intestinal health; may reduce diarrhea risk. |
Lactobacillus rhamnosus | Supports immune function; may reduce respiratory infections. |
Lactobacillus casei | Helps maintain gut microbial balance. |
Lactobacillus plantarum | Benefits digestive health and immune system. |
Lactobacillus paracasei | Supports gastrointestinal health. |
Bifidobacterium species | |
Bifidobacterium bifidum | Improves intestinal health; may aid in IBS management. |
Bifidobacterium breve | Supports gut health and immune function. |
Bifidobacterium longum | Helps maintain gut barrier integrity; supports digestion. |
Saccharomyces species | |
Saccharomyces boulardii | Proven efficacy in treating antibiotic-associated diarrhea; supports immune function. |
Others | |
Streptococcus thermophilus | Used in yogurt fermentation; may aid lactose digestion. |
Enterococcus faecium | Contributes to gut health and microbiome balance. |
Bacillus coagulans | Produces lactic acid; supports digestive health. |
Regulatory Category | Description | FDA Requirements |
---|---|---|
Drug or Biological Product | Intended for use as drugs to treat, cure, prevent, mitigate, or diagnose disease. | Must undergo FDA approval as biological products, similar to other drugs. |
Dietary Supplements | Marketed as dietary supplements, not requiring pre-approval by the FDA. Manufacturers must notify the FDA of product claims and comply with “new dietary ingredient” regulations. | Subject to regulations ensuring safety and proper labeling post-market. |
Food or Food Ingredient | Intended for use as a food or food ingredient. FDA regulates through post-market controls related to adulteration. | Focuses on ensuring products are safe and properly labeled after market placement. |
Medical Food | Marketed as medical foods, specifically formulated for the dietary management of a specific medical condition. | No pre-market approval required; must meet FDA standards for medical foods. |
Probiotic Species | Properties/Function |
---|---|
Lactobacillus rhamnosus (E21 and L3) Lactobacillus helveticus (P7, P12, S7, U13) Lactobacillus salivarius (N30) |
|
Lactobacillus strain (SQ0048) |
|
Lactobacillus reuteri RC14 Lactobacillus rhamnosus GR1 |
|
Lactobacillus rhamnosus BPL005 |
|
Lactobacillus buchneri (DSM 32407) |
|
Lactobacillus reuteri ATCC PTA 6475 |
|
Lactobacillus rhamnosus CICC6141 Lactobacillus casei BL23v |
|
Lactobacillus rhamnosus CECT8361 Bifidobacterium longum CECT7347 |
|
Lactobacillus gasseri OLL2809 |
|
Bacillus amyloliquefaciens |
|
Bacillus subtilis (DSM10) Bacillus clausii (DSM 8716) Bacillus coagulans (DSM 1) Bacillus amyloliquefaciens (DSM 7) |
|
Bifidobacterium lactis V9 |
|
Saccharomyces cerevisiae |
|
First Author (Year) | Country of Study | Study Population | Sample Size | Intervention | Control | Route of Administration | Intervention Period | Treatment Regime | Review Outcomes Reported |
---|---|---|---|---|---|---|---|---|---|
Aaltonen et al., 2008 [177] | Finland | Pregnant women and their infants | 256 | Probiotic capsules containing Lactobacillus rhamnosus GG and Bifidobacterium lactis Bb12 at a dose of 1010 CFU plus dietary counselling | Placebo plus dietary counselling | Oral (capsule) | 20 wk (unspecified) | Not reported | PE, PTB (<37 wk), GDM |
Asgharian et al., 2020 [178] | Iran | Pregnant women with a pre- or early-pregnancy BMI ≥25, aged 18 y or older, fasting blood glucose <92 mg/dL, 20–22 weeks’ gestation | 130 | Streptococcus thermophilus, Lactobacillus delbrueckii subsp. bulgaricus 107 CFU/g, Lactobacillus acidophilus, and Bifidobacterium lactis Bb12 | Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus 107 CFU/g | Oral (yogurt) | From 24 wk gestation until delivery | 100 g yogurt/day | PE, PTB (<37 wk), GDM, NNM, stillbirth |
Axling et al., 2021 [179] | Sweden | Healthy nonanemic (hemoglobin ≥ 110 g/L) pregnant women, aged 18–42 y with a singleton gestation, BMI 18–30 kg/m2 | 326 | Freeze-dried Lactiplantibacillus plantarum 299v capsule 1010 CFU/g, + low level iron (4.2 mg), ascorbic acid (12 mg), and folic acid (30 µg) | Placebo | Oral (capsule) | From 10–12 weeks’ gestation until delivery | Twice daily | PTB (<37 wk), PE, PROM, maternal mortality, stillbirth, maternal sepsis, LBW (<2500 g), adverse effects of intervention, gestational age at birth |
Callaway et al., 2019 [180] | Australia | Pregnant women before 16 weeks’ gestation with singleton pregnancy, BMI >25.0 kg/m2, >18 y, <20 weeks’ gestation | 433 | Lactobacillus rhamnosus and Bifidobacterium animalis lactis at a dose of >1 × 109 CFU/g | Placebo | Oral (capsule) | From <20 weeks’ gestation until birth | Once daily | PE, PTB (<37 wk), PTB (<34 wk), GDM, PIH, stillbirth, SGA, LBW (<2500 g), maternal ICU, gestational age at birth |
Daskalakis and Karambelas, 2017 [181] | Greece | Women with PPROM between 24 and 34 wk of gestation | 115 | Lactobacillus rhamnosus and L. gasseri at 1 × 108 CFU (Ecovag Balance capsules) plus 3 daily doses of 1 g amoxicillin and 2 daily doses of 500 mg metronidazole intravenously for 2 d, then orally for another 8 d period. | Antibiotic treatment (amoxicillin, metronidazole) | Vaginal (capsule) | From recruitment (24–34 weeks’ gestation) for 10 d | Daily (capsule number not reported) | NNM, RDS, IVH, sepsis, NEC, gestational age at birth |
Ebrahimzadeh et al., 2020 [182] | Iran | High-risk diabetic pregnant women | 255 | 500 mg probiotic capsules containing Lactobacillus, Bifidium, and Streptococcus | Placebo | Oral (capsule) | From recruitment (14–16 weeks’ gestation) for 12 wk | Once daily | GDM |
Facchinetti et al., 2013 [183] | Italy | Pregnant women carrying a singleton pregnancy between 10–34 weeks’ gestation, diagnosed with BV, aged 18–40 y | 48 | Streptococcus thermophilius, 3 bifidobacterium strains (B. longum, B. breve, B. infantis), 4 lactobacilli (Acidophilus, Plantarum, Paracasei, Delbrueckii subsp. bulgaricus, at least 112 billion bacteria per capsule | Clindamycin (100 mg) | Oral (capsule) | From recruitment for 15 d | 2 tablets per d for 5 d, followed by 1 tablet a d for 10 d | BV |
Farr et al., 2020 [184] | Austria | Women with singleton pregnancies, who were GBS positive | 82 | 84 mg fructo-oligosaccharides; 0.2 billion Lactobacilli jensenii 100 B CFU/g. 1 billion Lactobacilli crispatus 100 B CFU/g, 1 billion Lactobacilli rhamnosus 100 B CFU/g, 0.3 billion Lactobacilli gasseri 100 B CFU/g | Placebo | Oral (capsule) | From recruitment (33–37 weeks’ gestation) for 2 wk | Twice daily | PTB (<37 wk), PPROM, sepsis, gestational age at birth |
Gille et al., 2016 [185] | Germany | Pregnant women > 18 y | 320 | Lactobacillus rhamnosus GR-1 and Lactobacillus reuteri RC-14 (1 × 109 CFU of each strain per capsule) | Placebo | Oral (capsule) | From first trimester for 8 wk | Once daily | PTB (<37 wk), BV, maternal adverse events |
Halkjær et al., 2023 [186] | Denmark | Pregnant women with obesity (BMI ≥ 30 and <35 kg/m2), aged > 18 y. | 50 | Streptococcus thermophilus, Bifidobacterium breve, Bifidobacterium longum, Bifidobacterium infantis, and Lactobacillus acidophilus, Lactobacillus plantarum, Lactobacillus paracasei, Lactobacillus delbrueckii subsp. bulgaricus in 450 billion CFU/d | Placebo | Oral (capsule) | From 14–20 weeks’ gestation until delivery | 2 capsules twice daily | PE, PTB (<37 wk), GDM, PIH, SGA, gestational age at birth |
Hantoushzadeh et al., 2012 [187] | Iran | Patients with symptomatic BV in the third trimester of pregnancy | 310 | Lactobacillus bulgaris, Streptococcus thermophilus, probiotic Lactobacillus, and Bifidobacterium lactis 107 colonies per milliliter | Orally administered clindamycin | Oral (yogurt) | From the third trimester for 1 wk | 100 g twice daily | PTB (<37 wk), PROM, BV |
Liu et al., 2020 [188] | China | Pregnant women positive for vaginal GBS | 155 | Lactobacillus rhamnosus GR-1 & Lactobacillus reuteri RC-14 3 × 1010 CFU in warm water below 30 °C | No treatment | Oral (liquid) | From 34 weeks’ gestation for 2 wk | 1 pack per day | PROM |
Husain et al., 2020 [189] | United Kingdom | Women between 9–14 weeks’ gestation, aged ≥ 16 y | 304 | 2.5 billion CFUs each of Lactobacillus rhamnosus GR-1 and Lactobacillus reuteri | Placebo | Oral (capsule) | From recruitment gestation until delivery | Once daily | BV, PTB (<37 wk) |
Krauss-Silva et al., 2011 [190] | Brazil | Pregnant women with asymptomatic BV or intermediate vaginal infection, after 8 and before 20 weeks’ gestation | 644 | Lactobacillus rhamnosus GR-1 and Lactobacillus reuteri RC-14, more than 1 million bacilli of each | Placebo | Oral (capsule) | From recruitment (8–20 weeks’ gestation) for 16 wk | Once daily | PTB (<37 wk), GDM |
Lindsay et al., 2014 [191] | Ireland | Pregnant women between 24–28 weeks’ gestation, fasting blood glucose ≤ 7 mmol/L, aged 18–45 y | 175 | Lacticaseibacillus rhamnosus GG (6.5 × 109 CFU per capsule) | Placebo | Oral (capsule) | From recruitment (24–28 weeks’ gestation) for 4 wk | Twice daily | GDM |
Mantaring et al., 2018 [192] | The Philippines | Pregnant women at 24 to 28 weeks of gestation, planning to exclusively breastfeed for at least 2 months | 233 | Nutritional supplement powder with probiotics (7 × 108 CFU of Bifidobacterium lactis and 7 × 108 CFU of Lactobacillus rhamnosus) | Nutritional supplement powder | Oral (liquid) | From 24−28 weeks gestation to 2 months after birth (minimum) | Twice daily | PE, PTB (<37 wk), PIH, SGA, maternal adverse events |
Neri et al., 1993 [193] | Israel | Pregnant women with BV, in the first trimester | 84 | Lactobacillus acidophilus | Acetic acid-soaked tampon | Vaginal (yogurt) | From first trimester | Two doses daily for 7 days, regimen repeated after 1 week | BV |
OijNjideka Hemphill et al., 2023 [194] | US | Women at risk for iron deficiency anemia, pregnant with singleton, <20 weeks’ gestation, 18−45 years | 20 | Lactobacillus plantarum 299v 1 × 1010 CFU plus prenatal vitamins containing 27 mg iron as ferrous fumarate | Placebo plus prenatal vitamins containing 27 mg iron | Oral (capsule) | From 15−20 weeks’ gestation until admission for delivery | Once daily | GDM, gestational age at birth |
Okesene-Gafa et al., 2019 [195] | New Zealand | Pregnant women with a singleton pregnancy at 12−17 weeks’ gestation, BMI ≥30 | 230 | Lactobacillus rhamnosus GG and Bifidobacterium lactis 6.5 × 109 CFU. Also received healthy nutritious foods, recipes, managing cravings, and physical activity education | Placebo | Oral (capsule) | From 12−17 weeks’ gestation until delivery | Once daily | PTB (<37 wk), GDM, PIH, composite maternal morbidity, stillbirth, SGA, maternal well-being |
Pellonperä et al., 2019 [196] | Finland | Women with a self-reported prepregnancy BMI ≥25 kg/m² | 439 | Lacticaseibacillus rhamnosus HN001 and Bifidobacterium animalis ssp. Lactis 420, 1010 CFU per capsule | Placebo | Oral (capsule) | From <18 weeks to 6 months postpartum | Once daily | PE, PTB (<37 wk), GDM, PIH, PPH, stillbirth, SGA, maternal adverse events, gestational age at birth |
Petricevic et al., 2023 [197] | Austria | Pregnant women between 10+0 − 16+0 weeks with intermediate vaginal microbiota (Nugent score 4) | 129 | Lactobacillus casei rhamnosus (Lcr regenerans) of >107 CFU/mL | No treatment | Vaginal (tablet), sustained release of 4 days | From 10−16 weeks’ gestation | One tablet on day 1 and 1 on day 5 (8 days total) | PTB (<37 wk) |
Sahhaf Ebrahimi et al., 2019 [198] | Iran | Pregnant women with GDM, in the second trimester | 84 | Lactobacillus acidophilus and Bifidobacterium lactis in yogurt | Normal yogurt | Oral (yogurt) | From recruitment for 8 weeks | 300 mg per day for 8 weeks | Gestational age at birth |
Shahriari et al., 2021 [199] | Iran | Women at high risk of GDM with gestational age <12 weeks, 18-40 years, BMI 18.5−39.9 | 542 | Lactobacillus acidophilus (>7.5 × 109 CFU), Bifidobacterium longum (>1.5 × 109 CFU), Bifidobacterium bifidum (>6 × 109 CFU) | Placebo | Oral (capsule) | From 14 weeks up to 24 weeks gestational age | Once daily | PE, GDM, gestational age at birth |
Si et al., 2019 [200] | China | Pregnant women with gestational diabetes, carrying a singleton pregnancy, before 12 weeks gestation | 226 | Naturally fermented fresh garlic soaked in distilled water, with L. bulgaricus (108 CFU/mL) | Naturally fermented fresh garlic | Oral (fermented garlic) | From <12 weeks gestation for 40 weeks total | 5 g daily | PE, PTB (<37 wk), NNM, stillbirth, RDS, LBW (<2500 g) |
Slykerman et al., 2018 [201] | New Zealand | Pregnant women with a history (or partner history) of treated asthma, eczema, or hayfever, at 35 weeks gestation | 512 | Either Lactobacillus rhamnosus strain HN001 (6 × 109 CFU/day) or Bifidobacterium animalis ssp. Lactis strain HN019 (9 × 109 CFU/day) | Placebo | Oral (capsule) | From enrollment to 6 months postnatally if still breastfeeding | Once daily | Long-term cognitive and developmental outcomes |
Wickens et al., 2017 [202] | New Zealand | Pregnant women aged 16–43 y | 423 | Lactobacillus rhamnosus HN001, daily dose of 6 × 109 CFU per capsule | Placebo | Oral (capsule) | From < 15 weeks’ gestation until delivery | Once daily | GDM |
Category | Benefits | Adverse Effects |
---|---|---|
Gut Health | Supports a balanced microbiome | Mild nausea |
Reduces risk of constipation and gastrointestinal discomfort | Vomiting | |
Pregnancy-Related Disorders | May prevent gestational diabetes | Diarrhea |
Reduces the risk of preterm birth | Abdominal cramping | |
Helps in the treatment and prevention of mastitis | Flatulence | |
Glucose Metabolism | Associated with better glucose control in pregnant women | Increased vaginal discharge (minimal risk) |
Inflammation | May lower inflammation, benefiting both mother and fetus | Changes in stool consistency (slight changes) |
Infant Health | Linked to a reduced likelihood of infantile atopic dermatitis | Taste disturbance |
Overall | Contributes to improved health status for pre-pregnant, pregnant, and postpartum individuals | No serious adverse effects or mortality observed |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perna, A.; Venditti, N.; Merolla, F.; Fusco, S.; Guerra, G.; Zoroddu, S.; De Luca, A.; Bagella, L. Nutraceuticals in Pregnancy: A Special Focus on Probiotics. Int. J. Mol. Sci. 2024, 25, 9688. https://doi.org/10.3390/ijms25179688
Perna A, Venditti N, Merolla F, Fusco S, Guerra G, Zoroddu S, De Luca A, Bagella L. Nutraceuticals in Pregnancy: A Special Focus on Probiotics. International Journal of Molecular Sciences. 2024; 25(17):9688. https://doi.org/10.3390/ijms25179688
Chicago/Turabian StylePerna, Angelica, Noemi Venditti, Francesco Merolla, Sabato Fusco, Germano Guerra, Stefano Zoroddu, Antonio De Luca, and Luigi Bagella. 2024. "Nutraceuticals in Pregnancy: A Special Focus on Probiotics" International Journal of Molecular Sciences 25, no. 17: 9688. https://doi.org/10.3390/ijms25179688