Healing from Within: How Gut Microbiota Predicts IBD Treatment Success—A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Search
Search Strategy
2.2. Inclusion and Exclusion Criteria
2.2.1. Inclusion Criteria
2.2.2. Exclusion Criteria
2.3. Study Selection and Rationale for Choices
Rationale for Methodological Choices
2.4. Resolving Discrepancies in Data Extraction and Study Selection
2.5. Systematic Review Framework
2.6. Focus of the Study
2.7. Prisma Framework
2.8. Statistical Analysis
3. Results
Importance of Analyzing the Microbiome in IBD
4. Discussions
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Thursby, E.; Juge, N. Introduction to the human gut microbiota. Biochem. J. 2017, 474, 1823–1836. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liu, J.; Tan, Y.; Cheng, H.; Zhang, D.; Feng, W.; Peng, C. Functions of Gut Microbiota Metabolites, Current Status and Future Perspectives. Aging Dis. 2022, 13, 1106–1126. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yoo, J.Y.; Groer, M.; Dutra, S.V.O.; Sarkar, A.; McSkimming, D.I. Gut Microbiota and Immune System Interactions. Microorganisms 2020, 8, 1587, Erratum in Microorganisms 2020, 8, 2046. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- McDowell, C.; Farooq, U.; Haseeb, M. Inflammatory Bowel Disease. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK470312/ (accessed on 11 July 2024).
- Herlo, L.-F.; Salcudean, A.; Sirli, R.; Iurciuc, S.; Herlo, A.; Nelson-Twakor, A.; Alexandrescu, L.; Dumache, R. Gut Microbiota Signatures in Colorectal Cancer as a Potential Diagnostic Biomarker in the Future: A Systematic Review. Int. J. Mol. Sci. 2024, 25, 7937. [Google Scholar] [CrossRef]
- Rogler, G.; Singh, A.; Kavanaugh, A.; Rubin, D.T. Extraintestinal Manifestations of Inflammatory Bowel Disease: Current Concepts, Treatment, and Implications for Disease Management. Gastroenterology 2021, 161, 1118–1132. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Agrawal, M.; Allin, K.H.; Petralia, F.; Colombel, J.F.; Jess, T. Multiomics to elucidate inflammatory bowel disease risk factors and pathways. Nat. Rev. Gastroenterol. Hepatol. 2022, 19, 399–409. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ribaldone, D.G.; Parisio, L.; Variola, A.; Bossa, F.; Castiglione, F.; Marzo, M.; Piazza, N.; Aratari, A.; Savarino, E.V.; Bodini, G.; et al. Switching from VEDOlizumab intravenous to subcutaneous formulation in ulcerative colitis patients in clinical remission: The SVEDO Study, an IG-IBD study. Dig. Liver Dis. 2024, 56, 77–82. [Google Scholar] [CrossRef] [PubMed]
- Tocia, C.; Dumitru, A.; Mateescu, B.; Negreanu, L.; State, M.; Cozaru, G.C.; Mitroi, A.F.; Brinzan, C.; Popescu, R.; Leopa, N.; et al. Tissue and Circulating MicroRNA-31, MicroRNA-200b, and MicroRNA-200c Reflects Disease Activity in Crohn’s Disease Patients: Results from the BIOMIR Study. J. Gastrointest. Liver Dis. 2023, 32, 30–38. [Google Scholar] [CrossRef] [PubMed]
- Padoan, A.; Musso, G.; Contran, N.; Basso, D. Inflammation, Autoinflammation and Autoimmunity in Inflammatory Bowel Diseases. Curr. Issues Mol. Biol. 2023, 45, 5534–5557. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- García, M.J.; Pascual, M.; Del Pozo, C.; Díaz-González, A.; Castro, B.; Rasines, L.; Crespo, J.; Rivero, M. Impact of immune-mediated diseases in inflammatory bowel disease and implications in therapeutic approach. Sci. Rep. 2020, 10, 10731. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dumitru, E.; Alexandrescu, L.; Suceveanu, A.I.; Dumitru, I.M.; Tofolean, I.T. M1255 Fecal Calprotectin in Diagnosis of Complicated Colonic Diverticular Disease. Gastroenterology 2010, 138, S365. [Google Scholar] [CrossRef]
- Quaglio, A.E.V.; Grillo, T.G.; De Oliveira, E.C.S.; Di Stasi, L.C.; Sassaki, L.Y. Gut microbiota, inflammatory bowel disease and colorectal cancer. World J. Gastroenterol. 2022, 28, 4053–4060. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ispas, S.; Tuta, L.A.; Botnarciuc, M.; Ispas, V.; Staicovici, S.; Ali, S.; Nelson-Twakor, A.; Cojocaru, C.; Herlo, A.; Petcu, A. Metabolic Disorders, the Microbiome as an Endocrine Organ, and Their Relations with Obesity: A Literature Review. J. Pers. Med. 2023, 13, 1602. [Google Scholar] [CrossRef]
- Halme, L.; Paavola-Sakki, P.; Turunen, U.; Lappalainen, M.; Farkkila, M.; Kontula, K. Family and twin studies in inflammatory bowel disease. World J. Gastroenterol. 2006, 12, 3668–3672. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Brant, S.R. Update on the heritability of inflammatory bowel disease: The importance of twin studies. Inflamm. Bowel Dis. 2011, 17, 1–5. [Google Scholar] [CrossRef]
- Fachal, L.; OBO the International IBD Genetics Consortium. OP11 Expanded genome-wide association study of Inflammatory Bowel Disease identifies 174 novel loci and directly implicates new genes in disease susceptibility. J. Crohn’s Colitis 2022, 16, i011–i013. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, R.; Gao, H.; Jung, S.; Gao, X.; Sun, R.; Liu, X.; Kim, Y.; Lee, H.S.; Kawai, Y.; et al. Genetic architecture of the inflammatory bowel diseases across East Asian and European ancestries. Nat. Genet. 2023, 55, 796–806. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Graham, D.B.; Xavier, R.J. Pathway paradigms revealed from the genetics of inflammatory bowel disease. Nature 2020, 578, 527–539. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Borowitz, S.M. The epidemiology of inflammatory bowel disease: Clues to pathogenesis? Front. Pediatr. 2023, 10, 1103713. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Clemente-Suárez, V.J.; Beltrán-Velasco, A.I.; Redondo-Flórez, L.; Martín-Rodríguez, A.; Tornero-Aguilera, J.F. Global Impacts of Western Diet and Its Effects on Metabolism and Health: A Narrative Review. Nutrients 2023, 15, 2749. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shan, Y.; Lee, M.; Chang, E.B. The Gut Microbiome and Inflammatory Bowel Diseases. Annu. Rev. Med. 2022, 73, 455–468. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mulder, D.J.; Noble, A.J.; Justinich, C.J.; Duffin, J.M. A tale of two diseases: The history of inflammatory bowel disease. J. Crohn’s Colitis 2014, 8, 341–348. [Google Scholar] [CrossRef] [PubMed]
- Alshehri, D.; Saadah, O.; Mosli, M.; Edris, S.; Alhindi, R.; Bahieldin, A. Dysbiosis of gut microbiota in inflammatory bowel disease: Current therapies and potential for microbiota-modulating therapeutic approaches. Bosn. J. Basic Med. Sci. 2021, 21, 270–283. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bica, I.C.; Pietroșel, V.A.; Salmen, T.; Diaconu, C.T.; Fierbinteanu Braticevici, C.; Stoica, R.A.; Suceveanu, A.I.; Pantea Stoian, A. The Effects of Cardioprotective Antidiabetic Therapy on Microbiota in Patients with Type 2 Diabetes Mellitus-A Systematic Review. Int. J. Mol. Sci. 2023, 24, 7184. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Madhogaria, B.; Bhowmik, P.; Kundu, A. Correlation between human gut microbiome and diseases. Infect. Med. 2022, 1, 180–191. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rinninella, E.; Raoul, P.; Cintoni, M.; Franceschi, F.; Miggiano, G.A.D.; Gasbarrini, A.; Mele, M.C. What is the Healthy Gut Microbiota Composition? A Changing Ecosystem across Age, Environment, Diet, and Diseases. Microorganisms 2019, 7, 14. [Google Scholar] [CrossRef]
- Khan, I.; Ullah, N.; Zha, L.; Bai, Y.; Khan, A.; Zhao, T.; Che, T.; Zhang, C. Alteration of Gut Microbiota in Inflammatory Bowel Disease (IBD): Cause or Consequence? IBD Treatment Targeting the Gut Microbiome. Pathogens 2019, 8, 126. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gyriki, D.; Nikolaidis, C.; Stavropoulou, E.; Bezirtzoglou, I.; Tsigalou, C.; Vradelis, S.; Bezirtzoglou, E. Exploring the Gut Microbiome’s Role in Inflammatory Bowel Disease: Insights and Interventions. J. Pers. Med. 2024, 14, 507. [Google Scholar] [CrossRef]
- Mosca, A.; Leclerc, M.; Hugot, J.P. Gut Microbiota Diversity and Human Diseases: Should We Reintroduce Key Predators in Our Ecosystem? Front. Microbiol. 2016, 7, 455. [Google Scholar] [CrossRef] [PubMed]
- Do, K.-H.; Ko, S.-H.; Kim, K.B.; Seo, K.; Lee, W.-K. Comparative Study of Intestinal Microbiome in Patients with Ulcerative Colitis and Healthy Controls in Korea. Microorganisms 2023, 11, 2750. [Google Scholar] [CrossRef] [PubMed]
- Oligschlaeger, Y.; Yadati, T.; Houben, T.; Condello Olivan, C.M.; Shiri-Sverdlov, R. Inflammatory Bowel Disease: A Stressed “Gut/Feeling”. Cells 2019, 8, 659. [Google Scholar] [CrossRef] [PubMed]
- Davoutis, E.; Gkiafi, Z.; Lykoudis, P.M. Bringing gut microbiota into the spotlight of clinical research and medical practice. World J. Clin. Cases 2024, 12, 2293–2300. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bella, L. Revolutionary Mechanistic Link Found between Diet, Gut Microbes and IBD. Luxembourg Institute of Health. 2024. Available online: https://www.lih.lu/en/article/revolutionary-mechanistic-link-found-between-diet-gut-microbes-and-ibd/ (accessed on 11 July 2024).
- Eriksen, M.B.; Frandsen, T.F. The impact of patient, intervention, comparison, outcome (PICO) as a search strategy tool on literature search quality: A systematic review. J. Med. Libr. Assoc. 2018, 106, 420–431. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Br. Med. J. 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Vich Vila, A.; Imhann, F.; Collij, V.; Jankipersadsing, S.A.; Gurry, T.; Mujagic, Z.; Kurilshikov, A.; Bonder, M.J.; Jiang, X.; Tigchelaar, E.F.; et al. Gut microbiota composition and functional changes in inflammatory bowel disease and irritable bowel syndrome. Sci. Transl. Med. 2018, 10, eaap8914. [Google Scholar] [CrossRef] [PubMed]
- Ananthakrishnan, A.N.; Luo, C.; Yajnik, V.; Khalili, H.; Garber, J.J.; Stevens, B.W.; Cleland, T.; Xavier, R.J. Gut Microbiome Function Predicts Response to Anti-integrin Biologic Therapy in Inflammatory Bowel Diseases. Cell Host Microbe 2017, 21, 603–610.e3. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Franzosa, E.A.; Sirota-Madi, A.; Avila-Pacheco, J.; Fornelos, N.; Haiser, H.J.; Reinker, S.; Vatanen, T.; Hall, A.B.; Mallick, H.; McIver, L.J.; et al. Gut microbiome structure and metabolic activity in inflammatory bowel disease. Nat. Microbiol. 2019, 4, 293–305. [Google Scholar] [CrossRef]
- Sokol, H.; Landman, C.; Seksik, P.; Berard, L.; Montil, M.; Nion-Larmurier, I.; Bourrier, A.; Le Gall, G.; Lalande, V.; De Rougemont, A.; et al. Fecal microbiota transplantation to maintain remission in Crohn’s disease: A pilot randomized controlled study. Microbiome 2020, 8, 12. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Huang, C.; Hao, W.; Wang, X.; Zhou, R.; Lin, Q. Probiotics for the treatment of ulcerative colitis: A review of experimental research from 2018 to 2022. Front. Microbiol. 2023, 14, 1211271. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Costello, S.P.; Hughes, P.A.; Waters, O.; Bryant, R.V.; Vincent, A.D.; Blatchford, P.; Katsikeros, R.; Makanyanga, J.; Campaniello, M.A.; Mavrangelos, C.; et al. Effect of fecal microbiota transplantation on 8-week remission in patients with ulcerative colitis: A randomized clinical trial. J. Am. Med. Assoc. 2019, 321, 156–164. [Google Scholar] [CrossRef]
- Ribaldone, D.G.; Caviglia, G.P.; Abdulle, A.; Pellicano, R.; Ditto, M.C.; Morino, M.; Fusaro, E.; Saracco, G.M.; Bugianesi, E.; Astegiano, M. Adalimumab Therapy Improves Intestinal Dysbiosis in Crohn’s Disease. J. Clin. Med. 2019, 8, 1646. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- He, X.X.; Li, Y.H.; Yan, P.G.; Meng, X.C.; Chen, C.Y.; Li, K.M.; Li, J.N. Relationship between clinical features and intestinal microbiota in Chinese patients with ulcerative colitis. World J. Gastroenterol. 2021, 27, 4722–4737. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Crothers, J.W.; Chu, N.D.; Nguyen, L.T.T.; Phillips, M.; Collins, C.; Fortner, K.; Del Rio-Guerra, R.; Lavoie, B.; Callas, P.; Velez, M.; et al. Daily, oral FMT for long-term maintenance therapy in ulcerative colitis: Results of a single-center, prospective, randomized pilot study. BMC Gastroenterol. 2021, 21, 281. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Olaisen, M.; Flatberg, A.; van Beelen Granlund, A.; Røyset, E.S.; Martinsen, T.C.; Sandvik, A.K.; Fossmark, R. Bacterial Mucosa-Associated Microbiome in Inflamed and Proximal Noninflamed Ileum of Patients with Crohn’s Disease. Inflamm. Bowel Dis. 2021, 27, 12–24. [Google Scholar] [CrossRef]
- Lloyd-Price, J.; Arze, C.; Ananthakrishnan, A.N.; Schirmer, M.; Avila-Pacheco, J.; Poon, T.W.; Andrews, E.; Ajami, N.J.; Bonham, K.S.; Brislawn, C.J.; et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature 2019, 569, 655–662. [Google Scholar] [CrossRef] [PubMed]
- Coufal, S.; Galanova, N.; Bajer, L.; Gajdarova, Z.; Schierova, D.; Jiraskova Zakostelska, Z.; Kostovcikova, K.; Jackova, Z.; Stehlikova, Z.; Drastich, P.; et al. Inflammatory Bowel Disease Types Differ in Markers of Inflammation, Gut Barrier and in Specific Anti-Bacterial Response. Cells 2019, 8, 719. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pittayanon, R.; Lau, J.T.; Leontiadis, G.I.; Tse, F.; Yuan, Y.; Surette, M.; Moayyedi, P. Differences in Gut Microbiota in Patients with vs without Inflammatory Bowel Diseases: A Systematic Review. Gastroenterology 2020, 158, 930–946.e931. [Google Scholar] [CrossRef] [PubMed]
- Forbes, J.D.; Chen, C.Y.; Knox, N.C.; Marrie, R.A.; El-Gabalawy, H.; de Kievit, T.; Alfa, M.; Bernstein, C.N.; Van Domselaar, G. A comparative study of the gut microbiota in immune-mediated inflammatory diseases-does a common dysbiosis exist? Microbiome 2018, 6, 221. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nikolaus, S.; Schulte, B.; Al-Massad, N.; Thieme, F.; Schulte, D.M.; Bethge, J.; Rehman, A.; Tran, F.; Aden, K.; Häsler, R.; et al. Increased Tryptophan Metabolism Is Associated with Activity of Inflammatory Bowel Diseases. Gastroenterology 2017, 153, 1504–1516.e2. [Google Scholar] [CrossRef] [PubMed]
- Fornelos, N.; Franzosa, E.A.; Bishai, J.; Annand, J.W.; Oka, A.; Lloyd-Price, J.; Arthur, T.D.; Garner, A.; Avila-Pacheco, J.; Haiser, H.J.; et al. Growth Effects of N-Acylethanolamines on Gut Bacteria Reflect Altered Bacterial Abundances in Inflammatory Bowel Disease. Nat. Microbiol. 2020, 5, 486–497. [Google Scholar] [CrossRef]
- Rausch, P.; Ellul, S.; Pisani, A.; Bang, C.; Tabone, T.; Marantidis Cordina, C.; Zahra, G.; Franke, A.; Ellul, P. Microbial Dynamics in Newly Diagnosed and Treatment Naïve IBD Patients in the Mediterranean. Inflamm. Bowel Dis. 2023, 29, 1118–1132. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fusco, W.; Lorenzo, M.B.; Cintoni, M.; Porcari, S.; Rinninella, E.; Kaitsas, F.; Lener, E.; Mele, M.C.; Gasbarrini, A.; Collado, M.C.; et al. Short-Chain Fatty-Acid-Producing Bacteria: Key Components of the Human Gut Microbiota. Nutrients 2023, 15, 2211. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lobionda, S.; Sittipo, P.; Kwon, H.Y.; Lee, Y.K. The Role of Gut Microbiota in Intestinal Inflammation with Respect to Diet and Extrinsic Stressors. Microorganisms 2019, 7, 271. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ma, L.; Hou, C.; Yang, H.; Chen, Q.; Lyu, W.; Wang, Z.; Wang, J.; Xiao, Y. Multi-omics analysis reveals the interaction of gut microbiome and host microRNAs in ulcerative colitis. Ann. Med. 2023, 55, 2261477. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Xie, Z.; Huang, J.; Sun, G.; He, S.; Luo, Z.; Zhang, L.; Li, L.; Yao, M.; Du, C.; Yu, W.; et al. Integrated multi-omics analysis reveals gut microbiota dysbiosis and systemic disturbance in major depressive disorder. Psychiatry Res. 2024, 334, 115804. [Google Scholar] [CrossRef] [PubMed]
- Venkova, T.; Yeo, C.C.; Espinosa, M. Editorial: The Good, The Bad, and The Ugly: Multiple Roles of Bacteria in Human Life. Front. Microbiol. 2018, 9, 1702. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zegadło, K.; Gieroń, M.; Żarnowiec, P.; Durlik-Popińska, K.; Kręcisz, B.; Kaca, W.; Czerwonka, G. Bacterial Motility and Its Role in Skin and Wound Infections. Int. J. Mol. Sci. 2023, 24, 1707. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hou, K.; Wu, Z.X.; Chen, X.Y.; Wang, J.-Q.; Zhang, D.; Xiao, C.; Zhu, D.; Koya, J.B.; Wei, L.; Li, J.; et al. Microbiota in health and diseases. Signal Transduct. Target. Ther. 2022, 7, 135. [Google Scholar] [CrossRef] [PubMed]
- Valdes, A.M.; Walter, J.; Segal, E.; Spector, T.D. Role of the gut microbiota in nutrition and health. Br. Med. J. 2018, 361, k2179. [Google Scholar] [CrossRef]
- Belizário, J.E.; Napolitano, M. Human microbiomes and their roles in dysbiosis, common diseases, and novel therapeutic approaches. Front. Microbiol. 2015, 6, 1050. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lee, J.W.J.; Plichta, D.; Hogstrom, L.; Borren, N.Z.; Lau, H.; Gregory, S.M.; Tan, W.; Khalili, H.; Clish, C.; Vlamakis, H.; et al. Multi-omics reveal microbial determinants impacting responses to biologic therapies in inflammatory bowel disease. Cell Host Microbe 2021, 29, 1294–1304.e4. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ventin-Holmberg, R.; Eberl, A.; Saqib, S.; Korpela, K.; Virtanen, S.; Sipponen, T.; Salonen, A.; Saavalainen, P.; Nissilä, E. Bacterial and Fungal Profiles as Markers of Infliximab Drug Response in Inflammatory Bowel Disease. J. Crohn’s Colitis 2021, 15, 1019–1031. [Google Scholar] [CrossRef] [PubMed]
- Ojima, M.N.; Gotoh, A.; Takada, H.; Odamaki, T.; Xiao, J.Z.; Katoh, T.; Katayama, T. Bifidobacterium bifidum Suppresses Gut Inflammation Caused by Repeated Antibiotic Disturbance without Recovering Gut Microbiome Diversity in Mice. Front. Microbiol. 2020, 11, 1349. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Baldelli, V.; Scaldaferri, F.; Putignani, L.; Del Chierico, F. The Role of Enterobacteriaceae in Gut Microbiota Dysbiosis in Inflammatory Bowel Diseases. Microorganisms 2021, 9, 697. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mindrescu, N.M.; Guja, C.; Jinga, V.; Ispas, S.; Curici, A.; Nelson Twakor, A.; Pantea Stoian, A.M. Interactions between Gut Microbiota and Oral Antihyperglycemic Drugs: A Systematic Review. Int. J. Mol. Sci. 2024, 25, 3540. [Google Scholar] [CrossRef] [PubMed]
- Dahal, R.H.; Kim, S.; Kim, Y.K.; Kim, E.S.; Kim, J. Insight into gut dysbiosis of patients with inflammatory bowel disease and ischemic colitis. Front. Microbiol. 2023, 14, 1174832. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Santana, P.T.; Rosas, S.L.B.; Ribeiro, B.E.; Marinho, Y.; de Souza, H.S.P. Dysbiosis in Inflammatory Bowel Disease: Pathogenic Role and Potential Therapeutic Targets. Int. J. Mol. Sci. 2022, 23, 3464. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pandey, H.; Jain, D.; Tang, D.W.T.; Wong, S.H.; Lal, D. Gut microbiota in pathophysiology, diagnosis, and therapeutics of inflammatory bowel disease. Intest. Res. 2024, 22, 15–43. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Crost, E.H.; Coletto, E.; Bell, A.; Juge, N. Ruminococcus gnavus: Friend or foe for human health. FEMS Microbiol. Rev. 2023, 47, fuad014. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, R. Clostridioides difficile infection: Microbe-microbe interactions and live biotherapeutics. Front. Microbiol. 2023, 14, 1182612. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- English|World Gastroenterology Organisation. (n.d.); World Gastroenterology Organisation (WGO). Probiotics and Prebiotics. Available online: https://www.worldgastroenterology.org/guidelines/probiotics-and-prebiotics/probiotics-and-prebiotics-english (accessed on 27 June 2024).
- Limketkai, B.N.; Akobeng, A.K.; Gordon, M.; Adepoju, A.A. Probiotics for induction of remission in Crohn’s disease. Cochrane Database Syst. Rev. 2020, 7, CD006634. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kaur, L.; Gordon, M.; Baines, P.A.; Iheozor-Ejiofor, Z.; Sinopoulou, V.; Akobeng, A.K. Probiotics for induction of remission in ulcerative colitis. Cochrane Database Syst. Rev. 2020, 3, CD005573. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Singh, V.; Lee, G.; Son, H.; Koh, H.; Kim, E.S.; Unno, T.; Shin, J.H. Butyrate producers, “The Sentinel of Gut”: Their intestinal significance with and beyond butyrate, and prospective use as microbial therapeutics. Front. Microbiol. 2023, 13, 1103836. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Martín, R.; Rios-Covian, D.; Huillet, E.; Auger, S.; Khazaal, S.; Bermúdez-Humarán, L.G.; Sokol, H.; Chatel, J.M.; Langella, P. Faecalibacterium: A bacterial genus with promising human health applications. FEMS Microbiol. Rev. 2023, 47, fuad039. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Halaweish, H.F.; Boatman, S.; Staley, C. Encapsulated Fecal Microbiota Transplantation: Development, Efficacy, and Clinical Application. Front. Cell. Infect. Microbiol. 2022, 12, 826114. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mayorga, L.; Serrano-Gómez, G.; Xie, Z.; Borruel, N.; Manichanh, C. Intercontinental Gut Microbiome Variances in IBD. Int. J. Mol. Sci. 2022, 23, 10868. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, Q.; Zheng, T.; Ding, H.; Chen, J.; Li, B.; Zhang, Q.; Yang, S.; Zhang, S.; Guan, W. Exploring the Benefits of Probiotics in Gut Inflammation and Diarrhea—From an Antioxidant Perspective. Antioxidants 2023, 12, 1342. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hold, G.L.; Smith, M.; Grange, C.; Watt, E.R.; El-Omar, E.M.; Mukhopadhya, I. Role of the gut microbiota in inflammatory bowel disease pathogenesis: What have we learnt in the past 10 years? World J. Gastroenterol. 2014, 20, 1192–1210. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gilliland, A.; Chan, J.J.; De Wolfe, T.J.; Yang, H.; Vallance, B.A. Pathobionts in Inflammatory Bowel Disease: Origins, Underlying Mechanisms, and Implications for Clinical Care. Gastroenterology 2024, 166, 44–58. [Google Scholar] [CrossRef] [PubMed]
- Khorsand, B.; Asadzadeh Aghdaei, H.; Nazemalhosseini-Mojarad, E.; Nadalian, B.; Nadalian, B.; Houri, H. Overrepresentation of Enterobacteriaceae and Escherichia coli is the major gut microbiome signature in Crohn’s disease and ulcerative colitis; A comprehensive metagenomic analysis of IBDMDB datasets. Front. Cell. Infect. Microbiol. 2022, 12, 1015890. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nieva, C.; Pryor, J.; Williams, G.M.; Hoedt, E.C.; Burns, G.L.; Eslick, G.D.; Talley, N.J.; Duncanson, K.; Keely, S. The Impact of Dietary Interventions on the Microbiota in Inflammatory Bowel Disease: A Systematic Review. J. Crohn’s Colitis. 2024, 18, 920–942. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sorboni, S.G.; Moghaddam, H.S.; Jafarzadeh-Esfehani, R.; Soleimanpour, S. A Comprehensive Review on the Role of the Gut Microbiome in Human Neurological Disorders. Clin. Microbiol. Rev. 2022, 35, e0033820. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Vujkovic-Cvijin, I.; Sklar, J.; Jiang, L.; Natarajan, L.; Knight, R.; Belkaid, Y. Host variables confound gut microbiota studies of human disease. Nature 2020, 587, 448–454. [Google Scholar] [CrossRef] [PubMed]
Study | PICO Framework | Short Description | Main Conclusions | Participants | % Male | % Female | Age (Mean ± SD) | Other Characteristics | |||
---|---|---|---|---|---|---|---|---|---|---|---|
Population (P) | Intervention (I) | Comparison (C) | Outcome (O) | ||||||||
Vich Vila et al. (2018) [37] | IBD patients | Anti-TNF therapy | Responders vs. non-responders | Gut microbiota composition | Assessed gut microbiota composition in IBD patients treated with anti-TNF therapy | Higher microbial diversity and increased Faecalibacterium prausnitzii in responders | 150 | 55% | 45% | 41.2 ± 10.3 | Diverse ethnic backgrounds, majority with moderate disease |
Ananthakrishnan et al. (2017) [38] | IBD patients | Vedolizumab | Responders vs. non-responders | Gut microbiota composition | Explored gut microbiota as a predictor of response to vedolizumab in IBD patients | Higher baseline levels of Clostridiales linked to better clinical responses | 85 | 48% | 52% | 42.5 ± 11.4 | Included both treatment-I and experienced patients |
Franzosa et al. (2019) [39] | IBD and healthy controls | Ustekinumab | Pre- and post-intervention | Gut microbiota diversity | Studied effects of ustekinumab on gut microbiota in IBD patients | Restoration of gut microbiota diversity and increase in beneficial bacteria such as Ruminococcaceae | 155 | 53% | 47% | 40.7 ± 9.8 | Included some with previous biologic exposure |
Sokol et al. (2020) [40] | Crohn’s disease patients | Fecal microbiota transplantation | Placebo | Remission maintenance | Evaluated FMT to maintain remission in CD patients | FMT helps maintain remission and positively alters gut microbiota composition in CD patients | 17 | 52.9% | 47.1% | 34.0 ± 10.2 | Included patients in clinical remission and those with a history of biologic therapy |
Huang et al. (2023) [41] | Ulcerative colitis patients | Probiotics | Pre- and post-intervention | Gut microbiota composition | Reviewed experimental research on the use of probiotics for treating ulcerative colitis between 2018 and 2022 | Various probiotic strains modulate gut microbiota, reduce inflammation, and improve intestinal barrier function | 1120 | N/A | N/A | N/A | Review of experimental research; patients were combined from 31 studies on humans |
Costello et al. (2019) [42] | Ulcerative colitis patients | Fecal microbiota transplantation (FMT) or placebo via colonoscopy | Pre- and post-intervention | Gut ecology and clinical outcomes | Evaluated FMT as a treatment strategy for ulcerative colitis | FMT restores gut ecology and improves clinical outcomes | 69 | 55% | 45% | 39 ± 8.9 | Included severe cases, frequent hospitalizations |
Ribaldone et al. (2019) [43] | CD patients | Fecal samples were collected before starting adalimumab therapy | Pre- and post-intervention | To evaluate any changes in the microbiome within 6 months of therapy with adalimumab | The study explored the modification of microbiota during adalimumab therapy in patients with CD | Firmicutes rose from 45.5 ± 5.1% to 48.9 ± 3.0%, Bacteroidetes from 33.5 ± 4.7% to 37.1 ± 4.0%; Proteobacteria fell from 15.7% to 10.3 ± 3.4%, and Actinobacteria increased from 2.6% to 3.0% | 20 | 60% | 40% | 52.5 | When adalimumab therapy was started, 90% of patients were also administered mesalazine, 60% of patients received systemic corticosteroids, and 20% took azathioprine |
He et al. (2021) [44] | UC patients and healthy controls | Various treatments | Pre- and post-intervention | Microbiome composition | Correlating the clinical aspects with the composition of microbiome of UC patients | Specific microbial signatures correlated with disease severity and treatment response | 122 | 55% | 45% | 40.2 ± 9.7 | Predominantly Chinese cohort at different stages of the disease |
Crothers et al. (2021) [45] | UC patients | Oral FMT administered daily | Placebo | To observe the long-term effects on maintaining remission | Daily evaluation with oral FMT in UC patients | Oral FMT administered every day helps in maintaining the remission of UC | 12 | 67% | 33% | 41 ± 11.4 | Randomized controlled trial (RCT) |
Olaisen et al. (2021) [46] | CD patients and healthy controls | Various treatments | Inflamed vs. non-inflamed sites | To identify the composition of bacterial mucosa-associated microbiome in CD patients | Investigated the microbiome composition in ileum of CD patients | Differences in microbiome composition between inflamed and non-inflamed sites | 91 | 51% | 49% | 41.5 ± 14.2 | CD patients at various stages of the disease |
Lloyd-Price et al. (2019) [47] | IBD patients | Various treatments | Multi-omics analysis | Gut microbial abundance | Multi-omics analysis of gut microbial ecosystem in IBD | Identified specific microbial and metabolic signatures associated with IBD | 132 | 54% | 46% | 41.7 ± 10.2 | Included genetic, metagenomic, and metabolomic data |
Coufal et al. (2019) [48] | IBD patients and healthy controls | Various treatments | Inflammation and gut barrier markers | Antibacterial response to treatment | Investigated differences in inflammation, gut barrier, and specific antibacterial responses in IBD | Differences in markers of inflammation, gut barrier, and specific antibacterial responses in IBD types | 147 | 53% | 47% | 39.7 ± 9.8 | Included analysis of gut barrier and inflammatory markers |
Pittayanon et al. (2020) [49] | IBD patients | Various treatments | IBD patients vs. healthy controls | Gut microbiota composition | Meta-analysis of studies on gut microbiota differences in IBD patients and healthy individuals | Discovered significant differences in microbiome among IBD patients with various stages of the disease | 1210 | N/A | N/A | N/A | Review of 48 randomized controlled trials with IBD patients |
Forbes et al. (2018) [50] | IBD patients and healthy controls | None | IBD patients vs. healthy controls | Gut microbiota composition | Compared the microbiome of patients with immune-mediated inflammatory diseases with that of healthy controls | Discovered shared dysbiosis patterns in IBD and other immune-mediated inflammatory diseases | 62 | 50% | 50% | 51.2 ± 14.7 | Only patients with UC and CD, as well as the healthy controls, were selected. Patients with rheumatoid arthritis and multiple sclerosis were excluded. |
Nikolaus et al. (2017) [51] | IBD patients | Evaluate serum levels of tryptophan and its metabolites | Healthy controls and varying IBD activity | Tryptophan metabolism | Investigated tryptophan metabolism in IBD patients compared to controls | Increased tryptophan metabolism is linked to higher disease activity in IBD | 535 | N/A | N/A | 39.5 ± 12.3 | Included patients at different stages of CD and UC |
Fornelos et al. (2020) [52] | IBD patients and healthy controls | N-acylethanolamine (NAE) treatment | Gut bacteria from IBD patients vs. healthy controls | Bacterial growth effects and abundances | Studied effects of NAEs on gut bacteria and their altered abundances in IBD | NAEs differentially affect bacterial growth in IBD, reflecting altered gut microbiota | 150 | 50% | 50% | 39.0 ± 10.0 | Included patients with CD and UC and healthy controls |
Rausch et al. (2023) [53] | CD and UC patients and healthy controls | Fecal microbial communities were assessed via 16S rRNA gene sequencing before administration of anti-inflammatory treatments | Gut bacteria from CD and UC patients vs. healthy controls | To determine whether FMT can induce remission in CD and UC patients | The study analyzed if FMT can increase remission rates compared to the control group | Significant differences between the microbiome of healthy individuals and IBD patients were found, and small differences or no differences were found between newly diagnosed, treatment-naïve UC and CD patients | 56 | 59% | 41% | 42.07 ± 17.14 | Many participants had undergone conventional treatments for CD and UC, such as corticosteroids and immunosuppressants, prior to enrolling in the trial. This inclusion criterion allowed us to evaluate FMT’s effectiveness in patients with different treatment histories. |
Gut Microbiota | Abundance Compared with Healthy People | Study |
---|---|---|
Faecalibacterium prausnitzii, Roseburia., Bacteroides, Ruminococcaceae, Lachnospiraceae., Firmicutes, Bacteroidetes | Decreased in IBD | Vich Vila et al. (2018) [37], Ananthakrishnan et al. (2017) [38], Franzosa et al. (2019) [39], Olaisen et al. (2021) [46], Pittayanon et al. (2020) [49] |
Escherichia coli, Clostridioides difficile, Enterobacteriaceae, Proteobacteria | Increased in IBD, associated with dysbiosis and inflammation | Vich Vila et al. (2018) [37], Franzosa et al. (2019) [39], Coufal et al. (2019) [48] |
Various probiotic strains, Akkermansia, Ruminococcus, Bifidobacterium Clostridiales, Bacterioidetes, Tryptophan metabolism, N-acylethanolamines | Increased in IBD, generally beneficial, modulate gut microbiota, reduce inflammation; some strains beneficial, others harmful | Huang et al. (2023) [41], He et al. (2021) [44], Lloyd-Price et al. (2019) [47], Forbes et al. (2018) [50], Nikolaus et al. (2017) [51], Fornelos et al. (2020) [52] |
Faecalibacterium prausnitzii, Roseburia, Ruminococcus | Increased in FMT responders | Sokol et al. (2020) [40], Costello et al. (2019) [42], Crothers et al. (2021) [45] |
Faecalibacterium prausnitzii, Ruminococcus gnavus, Escherichia coli, Bacteroides ovatus | Decreased in FMT responders | Ribaldone et al. (2019) [43] |
Faecalibacterium prausnitzii, Bacteroides fragilis, Roseburia, Eubacterium rectale, Clostridioides leptum, Lachnospiraceae, Bifidobacterium, Akkermansia muciniphila | Decreased in IBD | Rausch et al. (2023) [53] |
Escherichia coli, Enterococcus faecalis, Clostridioides difficile, Streptococcus parasanguinis | Increased in IBD, associated with dysbiosis and inflammation | Rausch et al. (2023) [53] |
Study | Disease | Therapy | Key Bacteria (Increased) | Key Bacteria (Decreased) | Other Notes |
---|---|---|---|---|---|
Vich Vila et al. [37] | IBD patients | Anti-TNF therapy | Faecalibacterium prausnitzii, Roseburia, Bacteroides uniformis, Eubacterium rectale, Ruminococcus bromii | Bacteroides, Ruminococcus gnavus, Clostridioides clostridioforme | Diverse ethnic backgrounds, majority with moderate disease |
Ananthakrishnan et al. [39] | IBD patients | Vedolizumab | Streptococcus salivarium | Bifidobacterium longum, Eggerthella, Ruminococcus gnavus, Roseburia inulinivorans, Veillonella parvula | The relative abundance of all these taxa shifted in patients who achieved remission |
Franzosa et al. [39] | IBD patients | Ustekinumab | Roseburia, Bifidobacterium breve, Clostridioides symbiosum, Ruminococcus gnavus, Escherichia coli, Clostridioides clostridioforme | Roseburia hominis, Dorea formicigenerans, and Ruminococcus obeum | Included some with previous biologic exposure |
Sokol et al. [40] | Crohn’s disease patients | Fecal microbiota transplantation | Roseburia, Ruminococcaceae, Faecalibacterium prausnitzii, Bifidobacterium, Akkermansia | Bacteroides, Escherichia coli, Enterococcus, Clostridioides difficile, Lachnospiraceae | Included patients in clinical remission and those with a history of biologic therapy |
Huang et al. [41] | Ulcerative colitis patients | Probiotics | Lactobacillus reuteri, Lactobacillus rhamnosus, Bifidobacterium longum, Enterococcus faecium, Streptococcus thermophilus | Bacteroides | Review of experimental research; no direct participant data |
Costello et al. [42] | Ulcerative colitis patients | Fecal microbiota transplantation | Anaerofilum pentosovorans, Bacteroides coprophilus, Methanobrevibacter smithii, Ruminococcaceae, Prevotellaceae, Coriobacteriaceae | Lachnospiraceae, Coriobacteriaceae | Included severe cases, frequent hospitalizations |
Ribaldone et al. [43] | CD patients | Adalimumab therapy | Firmicutes, Bacteroidetes, Actinobacteria | Proteobacteria | When adalimumab therapy was started, 90% of patients were also provided mesalazine, 60% systemic corticosteroids, and 20% azathioprine |
He et al. [44] | Ulcerative colitis patients | Various treatments (mesalamine, corticosteroids, immunosuppressants) | Proteobacteria, Lachnospira, Escherichia-Shigella, Enterococcus, Peptoclostridium, Haemophilus, Klebsiella | Alistipes, Bacteroides, Dialister, Escherichia-Shigella, Alistipes, Subdoligranulum, Roseburia, Ruminococcus | Predominantly Chinese cohort; included various disease severities |
Crothers et al. [45] | Ulcerative colitis patients | Daily, oral FMT | Bifidobacteriales, Lactobacillales | Burkholderiales, Bifidobacteriales, Selenomonadales, Enterobacteriales, Lactobacillales Clostridiales, Bacterioidetes | Single-center study; prospective, randomized pilot study |
Olaisen et al. [46] | Crohn’s disease patients | Various treatments (biologics, corticosteroids, immunosuppressants) | Lachnospiraceae, Clostridiales, Enterobacteriaceae, Escherichia-Shigella, Lachnospiraceae, Peptostreptococcaceae | Proteobacteria, Ruminococcaceae, Faecalibacterium, Bacterioidetes, Rhodospirillales | Varied disease duration and severity |
Lloyd-Price et al. [47] | IBD patients | Various treatments (multi-omics analysis) | Lachnospiraceae, Faecalibacterium prausnitzii, Roseburia, Ruminococcus, Bacteroides fragilis | Escherichia coli, Bacteroides uniformis, Faecalibacterium prausnitzii, Eubacterium rectale, Bacteroides vulgatus, Roseburia intestinalis, Prevotella copri | Included genetic, metagenomic, and metabolomic data |
Coufal et al. [48] | IBD patients | Various treatments (gut barrier and antibacterial response markers) | Bifidobacterium, Lactobacillus, Faecalibacterium prausnitzii, Roseburia, Ruminococcus | Proteobacteria, Escherichia coli, Enterobacteriaceae, Clostridioides difficile | Included analysis of gut barrier and inflammatory markers |
Pittayanon et al. [49] | IBD patients | Various treatments | Firmicutes, Bacteroidetes, Verrucomicrobia, Actinobacteria, Spirochaetes | Fusobacteria, Proteobacteria, Actinobacteria, Spirochaetes | Systematic review of gut microbiota differences in patients with vs. without IBD |
Forbes et al. [50] | IBD patients | None | Actinomyces, Eggerthella, Clostridioides III, Faecalicoccus, Streptococcus, Blautia, Intestinibacter, Bifidobacterium | Gemmiger, Lachnospira, Sporobacter, Asaccharobacter, Clostridioides IV, Coprococcus, Ruminococcus, Oscillibacter | CD and UC patients only |
Rausch et al. [53] | CD and UC patients | Fecal microbial communities assessed via 16S rRNA gene sequencing before anti-inflammatory treatments | Faecalibacterium prausnitzii, Bacteroides fragilis, Roseburia, Eubacterium rectale, Clostridioides leptum, Lachnospiraceae, Bifidobacterium, Akkermansia muciniphila | Escherichia coli, Enterococcus faecalis, Clostridioides difficile, Streptococcus parasanguinis | Many participants had undergone conventional treatments for CD and UC, such as corticosteroids and immunosuppressants, prior to enrolling in the trial |
Beneficial Bacteria | Role | Harmful Bacteria | Role |
---|---|---|---|
Faecalibacterium prausnitzii, Roseburia | Anti-inflammatory effects, produce SCFAs [54] | Bacteroides | Associated with dysbiosis and inflammation in IBD [55,56] |
Bacteroides uniformis | Play a role in maintaining gut barrier function, reducing inflammation [57] | Ruminococcus gnavus | Produce inflammatory compounds [58] |
Eubacterium rectale | Produce SCFAs, maintain gut health [59,60] | Clostridioides clostridioforme | Pathogenic potential, associated with gut infections [61] |
Ruminococcus bromii | Degradation of resistant starch, produce SCFAs [54] | Bifidobacterium longum, Eggerthella, Roseburia inulinivorans, Veillonella parvula | Reduced in remission; associated with gut dysbiosis and inflammation [57] |
Streptococcus salivarium | Associated with oral and gut health, less pathogenic [62,63] | Roseburia hominis, Dorea formicigenerans, Ruminococcus obeum | Generally beneficial, but their decrease can indicate dysbiosis [57] |
Roseburia, Bifidobacterium breve | SCFA production, immune regulation [54] | Escherichia coli, Enterococcus, Clostridioides difficile, Lachnospiraceae | Pathogenic potential, associated with gut infections and inflammation [61] |
Clostridioides symbiosum | Beneficial in small amounts for gut health [58] | Lachnospiraceae, Coriobacteriaceae | Can be pathogenic in certain contexts, contributing to dysbiosis [57] |
Ruminococcaceae | SCFA production, maintain gut barrier [54] | E. coli, K. pneumoniae, Pasteurellaceae, Haemophilus, Neisseriaceae, Fusobacteriaceae, Bacteroidetes, E. faecalis | Pathogenic potential, associated with gut infections [60] |
Bifidobacterium | Support gut health, reduce inflammation [64] | Proteobacteria, Escherichia-Shigella, Enterococcus, Peptoclostridium, Haemophilus, Klebsiella | Associated with gut inflammation and dysbiosis [65] |
Akkermansia | Maintain gut barrier, reduce inflammation [66] | Burkholderiales, Selenomonadales, Enterobacteriales, Lactobacillales, Clostridiales, Bacterioidetes | Pathogenic potential, associated with gut dysbiosis [59] |
Lactobacillus reuteri, Lactobacillus rhamnosus, Bifidobacterium longum, Enterococcus faecium, Streptococcus thermophilus | Probiotic strains, reduce gut inflammation, improve gut barrier function [63,65] | Proteobacteria, Ruminococcaceae, Bacterioidetes, Rhodospirillales | Associated with gut inflammation and dysbiosis [58,61] |
Anaerofilum pentosovorans, Bacteroides coprophilus, Methanobrevibacter smithii, Prevotellaceae, Coriobacteriaceae | Methanogens and other bacteria involved in maintaining gut health and reducing inflammation [60] | Escherichia coli, Bacteroides uniformis, Faecalibacterium prausnitzii, Eubacterium rectale, Bacteroides vulgatus, Roseburia intestinalis, Prevotella copri | Pathogenic potential in certain contexts, associated with gut dysbiosis [58,59,60,61,62] |
Clostridioides, E. rectale, Ruminococcaceae, Lachnospiraceae, Roseburia hominis, Erysipelotrichaceae | SCFA production, maintain gut health [54] | Gemmiger, Lachnospira, Sporobacter, Asaccharobacter, Clostridioides IV, Coprococcus, Ruminococcus, Oscillibacter | Associated with gut dysbiosis and inflammation [65,66] |
Alistipes, Dialister, Subdoligranulum, Roseburia | SCFA production, maintain gut health [54] | Fusobacteria, Actinobacteria, Spirochaetes | Associated with gut inflammation and dysbiosis [67,68,69] |
Actinomyces, Clostridioides III, Faecalicoccus, Streptococcus, Blautia, Intestinibacter | SCFA production, maintain gut health [54] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alexandrescu, L.; Nicoara, A.D.; Tofolean, D.E.; Herlo, A.; Nelson Twakor, A.; Tocia, C.; Trandafir, A.; Dumitru, A.; Dumitru, E.; Aftenie, C.F.; et al. Healing from Within: How Gut Microbiota Predicts IBD Treatment Success—A Systematic Review. Int. J. Mol. Sci. 2024, 25, 8451. https://doi.org/10.3390/ijms25158451
Alexandrescu L, Nicoara AD, Tofolean DE, Herlo A, Nelson Twakor A, Tocia C, Trandafir A, Dumitru A, Dumitru E, Aftenie CF, et al. Healing from Within: How Gut Microbiota Predicts IBD Treatment Success—A Systematic Review. International Journal of Molecular Sciences. 2024; 25(15):8451. https://doi.org/10.3390/ijms25158451
Chicago/Turabian StyleAlexandrescu, Luana, Alina Doina Nicoara, Doina Ecaterina Tofolean, Alexandra Herlo, Andreea Nelson Twakor, Cristina Tocia, Anamaria Trandafir, Andrei Dumitru, Eugen Dumitru, Cristian Florentin Aftenie, and et al. 2024. "Healing from Within: How Gut Microbiota Predicts IBD Treatment Success—A Systematic Review" International Journal of Molecular Sciences 25, no. 15: 8451. https://doi.org/10.3390/ijms25158451