Computational Insights into Reproductive Toxicity: Clustering, Mechanism Analysis, and Predictive Models
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemical Properties
2.2. Target Prediction
2.3. Machine Learning and Deep Learning
3. Materials and Methods
3.1. Data Source
3.2. Chemical Space Distribution of Small Molecules
3.3. Clustering Analysis of Small-Molecule Data
3.4. Machine Learning Models
3.5. Deep Learning Model Architecture and Feature Transmission
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- He, J.-H.; Gao, J.-M.; Huang, C.-J.; Li, C.-Q. Zebrafish models for assessing developmental and reproductive toxicity. Neurotoxicol. Teratol. 2014, 42, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Foote, R.H.; Carney, E.W. The rabbit as a model for reproductive and developmental toxicity studies. Reprod. Toxicol. 2000, 14, 477–493. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Deng, T.; Duan, J.; Xie, J.; Yuan, J.; Chen, M. Exposure to polystyrene microplastics causes reproductive toxicity through oxidative stress and activation of the p38 MAPK signaling pathway. Ecotoxicol. Environ. Saf. 2020, 190, 110133. [Google Scholar] [CrossRef] [PubMed]
- Kong, L.; Hu, W.; Lu, C.; Cheng, K.; Tang, M. Mechanisms underlying nickel nanoparticle induced reproductive toxicity and chemo-protective effects of vitamin C in male rats. Chemosphere 2019, 218, 259–265. [Google Scholar] [CrossRef]
- DeSesso, J.M.; Scialli, A.R.; White, T.E.; Breckenridge, C.B. Multigeneration reproduction and male developmental toxicity studies on atrazine in rats. Birth Defects Res. Part B Dev. Reprod. Toxicol. 2014, 101, 237–253. [Google Scholar] [CrossRef] [PubMed]
- Curi, T.Z.; Passoni, M.T.; Lima Tolouei, S.E.; de Araújo Ramos, A.T.; França de Almeira, S.C.; Scinskas, A.B.A.F.; Romano, R.M.; de Oliveira, J.M.; Spercoski, K.M.; Carvalho dos Santos, A. Reproductive toxicity following in utero and lactational exposure to a human-relevant phthalate mixture in rats. Toxicol. Sci. 2024, 197, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Cui, H.; Liu, K.; Yang, X.; Xing, S.; Li, W. Unveiling Anti-Diabetic Potential of Baicalin and Baicalein from Baikal Skullcap: LC–MS, In Silico, and In Vitro Studies. Int. J. Mol. Sci. 2024, 25, 3654. [Google Scholar] [CrossRef] [PubMed]
- Bai, X.; Zhao, X.; Liu, K.; Yang, X.; He, Q.; Gao, Y.; Li, W.; Han, W. Mulberry Leaf Compounds and Gut Microbiota in Alzheimer’s Disease and Diabetes: A Study Using Network Pharmacology, Molecular Dynamics Simulation, and Cellular Assays. Int. J. Mol. Sci. 2024, 25, 4062. [Google Scholar] [CrossRef]
- He, Y.; Liu, K.; Han, L.; Han, W. Clustering analysis, structure fingerprint analysis, and quantum chemical calculations of compounds from essential oils of sunflower (Helianthus annuus L.) receptacles. Int. J. Mol. Sci. 2022, 23, 10169. [Google Scholar] [CrossRef]
- Wang, K.; Cui, H.; Liu, K.; He, Q.; Fu, X.; Li, W.; Han, W. Exploring the anti-gout potential of sunflower receptacles alkaloids: A computational and pharmacological analysis. Comput. Biol. Med. 2024, 172, 108252. [Google Scholar] [CrossRef]
- He, Y.; Liu, K.; Cao, F.; Song, R.; Liu, J.; Zhang, Y.; Li, W.; Han, W. Using deep learning and molecular dynamics simulations to unravel the regulation mechanism of peptides as noncompetitive inhibitor of xanthine oxidase. Sci. Rep. 2024, 14, 174. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Guo, F.; Ma, Y.; Yu, X.; Fu, X.; Li, W.; Han, W. Functionalized Fullerene Potentially Inhibits SARS-CoV-2 Infection by Modulating Spike Protein Conformational Changes. Int. J. Mol. Sci. 2023, 24, 14471. [Google Scholar] [CrossRef] [PubMed]
- Song, R.; Liu, K.; He, Q.; He, F.; Han, W. Exploring Bitter and Sweet: The Application of Large Language Models in Molecular Taste Prediction. J. Chem. Inf. Model. 2024, 64, 4102–4111. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Liu, K.; Liu, Y.; Han, W. Prediction of bitterness based on modular designed graph neural network. Bioinform. Adv. 2024, 4, vbae041. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Liu, K.; Yu, X.; Yang, H.; Han, W. Building a Kokumi Database and Machine Learning-Based Prediction: A Systematic Computational Study on Kokumi Analysis. J. Chem. Inf. Model. 2024, 64, 2670–2680. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.; Yuille, A. Genetic cnn. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 1379–1388. [Google Scholar]
- Velickovic, P.; Cucurull, G.; Casanova, A.; Romero, A.; Lio, P.; Bengio, Y. Graph attention networks. Stat 2017, 1050, 10-48550. [Google Scholar]
- Kusner, M.J.; Paige, B.; Hernández-Lobato, J.M. Grammar variational autoencoder. In Proceedings of the International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017; pp. 1945–1954. [Google Scholar]
- Abdi, H.; Williams, L.J. Principal component analysis. Wiley Interdiscip. Rev. Comput. Stat. 2010, 2, 433–459. [Google Scholar] [CrossRef]
- Xie, L.; Xu, L.; Kong, R.; Chang, S.; Xu, X. Improvement of prediction performance with conjoint molecular fingerprint in deep learning. Front. Pharmacol. 2020, 11, 606668. [Google Scholar] [CrossRef]
- Kenny, P.W. Hydrogen-bond donors in drug design. J. Med. Chem. 2022, 65, 14261–14275. [Google Scholar] [CrossRef]
- Brammer, L.; Bruton, E.A.; Sherwood, P. Understanding the behavior of halogens as hydrogen bond acceptors. Cryst. Growth Des. 2001, 1, 277–290. [Google Scholar] [CrossRef]
- Prasanna, S.; Doerksen, R. Topological polar surface area: A useful descriptor in 2D-QSAR. Curr. Med. Chem. 2009, 16, 21–41. [Google Scholar] [CrossRef] [PubMed]
- Veber, D.F.; Johnson, S.R.; Cheng, H.-Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem. 2002, 45, 2615–2623. [Google Scholar] [CrossRef] [PubMed]
- Kleiner, I. From numbers to rings: The early history of ring theory. Elem. Der Math. 1998, 53, 18–35. [Google Scholar] [CrossRef]
- Ritchie, T.J.; Macdonald, S.J.; Young, R.J.; Pickett, S.D. The impact of aromatic ring count on compound developability: Further insights by examining carbo-and hetero-aromatic and-aliphatic ring types. Drug Discov. Today 2011, 16, 164–171. [Google Scholar] [CrossRef] [PubMed]
- Daina, A.; Michielin, O.; Zoete, V. SwissTargetPrediction: Updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res. 2019, 47, W357–W364. [Google Scholar] [CrossRef] [PubMed]
- Kanehisa, M.; Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef] [PubMed]
- Du, Z.; Zhou, X.; Ling, Y.; Zhang, Z.; Su, Z. agriGO: A GO analysis toolkit for the agricultural community. Nucleic Acids Res. 2010, 38, W64–W70. [Google Scholar] [CrossRef] [PubMed]
- Watford, S.; Pham, L.L.; Wignall, J.; Shin, R.; Martin, M.T.; Friedman, K.P. ToxRefDB version 2.0: Improved utility for predictive and retrospective toxicology analyses. Reprod. Toxicol. 2019, 89, 145–158. [Google Scholar] [CrossRef]
- Jiang, C.; Yang, H.; Di, P.; Li, W.; Tang, Y.; Liu, G. In silico prediction of chemical reproductive toxicity using machine learning. J. Appl. Toxicol. 2019, 39, 844–854. [Google Scholar] [CrossRef]
- Alexeeff, G.V.; Broadwin, R.; Liaw, J.; Dawson, S.V. Characterization of the LOAEL-to-NOAEL uncertainty factor for mild adverse effects from acute inhalation exposures. Regul. Toxicol. Pharmacol. 2002, 36, 96–105. [Google Scholar] [CrossRef]
- Hong, H.; Xie, Q.; Ge, W.; Qian, F.; Fang, H.; Shi, L.; Su, Z.; Perkins, R.; Tong, W. Mold2, molecular descriptors from 2D structures for chemoinformatics and toxicoinformatics. J. Chem. Inf. Model. 2008, 48, 1337–1344. [Google Scholar] [CrossRef] [PubMed]
- Lin, J. Divergence measures based on the Shannon entropy. IEEE Trans. Inf. Theory 1991, 37, 145–151. [Google Scholar] [CrossRef]
- Landrum, G. RDKit: A software suite for cheminformatics, computational chemistry, and predictive modeling. Greg Landrum 2013, 8, 5281. [Google Scholar]
- Pattanaik, L.; Coley, C.W. Molecular representation: Going long on fingerprints. Chem 2020, 6, 1204–1207. [Google Scholar] [CrossRef]
- Van der Maaten, L.; Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605. [Google Scholar]
- Bajusz, D.; Rácz, A.; Héberger, K. Why is Tanimoto index an appropriate choice for fingerprint-based similarity calculations? J. Cheminform. 2015, 7, 20. [Google Scholar] [CrossRef] [PubMed]
- Sievert, C. Interactive Web-Based Data Visualization with R, Plotly, and Shiny; Chapman and Hall/CRC: Boca Raton, FL, USA, 2020. [Google Scholar]
- Kamel, H.; Abdulah, D.; Al-Tuwaijari, J.M. Cancer classification using gaussian naive bayes algorithm. In Proceedings of the 2019 International Engineering Conference (IEC), Erbil, Iraq, 23–25 June 2019; pp. 165–170. [Google Scholar]
- Peterson, L.E. K-nearest neighbor. Scholarpedia 2009, 4, 1883. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Jakkula, V. Tutorial on Support Vector Machine (svm); School of EECS, Washington State University: Pullman, WA, USA, 2006; Volume 37, p. 3. [Google Scholar]
- Abdi, H.; Valentin, D.; Edelman, B. Neural Networks; Sage: Thousand Oaks, CA, USA, 1999. [Google Scholar]
- Chua, L.O. CNN: A vision of complexity. Int. J. Bifurc. Chaos 1997, 7, 2219–2425. [Google Scholar] [CrossRef]
- Khan, S.; Naseer, M.; Hayat, M.; Zamir, S.W.; Khan, F.S.; Shah, M. Transformers in vision: A survey. ACM Comput. Surv. (CSUR) 2022, 54, 1–41. [Google Scholar] [CrossRef]
- Brody, S.; Alon, U.; Yahav, E. How attentive are graph attention networks? arXiv 2021, arXiv:2105.14491. [Google Scholar]
- Pinheiro Cinelli, L.; Araújo Marins, M.; Barros da Silva, E.A.; Lima Netto, S. Variational autoencoder. In Variational Methods for Machine Learning with Applications to Deep Networks; Springer: Berlin/Heidelberg, Germany, 2021; pp. 111–149. [Google Scholar]
- He, J.; Li, L.; Xu, J.; Zheng, C. ReLU deep neural networks and linear finite elements. arXiv 2018, arXiv:1807.03973. [Google Scholar]
- Gunduz, H. An efficient dimensionality reduction method using filter-based feature selection and variational autoencoders on Parkinson’s disease classification. Biomed. Signal Process. Control 2021, 66, 102452. [Google Scholar] [CrossRef]
Model | ACC | SE | SP | MCC | P | F1 | BA | AUC |
---|---|---|---|---|---|---|---|---|
DL_Model | 0.88 | 0.83 | 0.93 | 0.77 | 0.93 | 0.88 | 0.88 | 0.88 |
SVM_fingerprint | 0.85 | 0.87 | 0.83 | 0.71 | 0.84 | 0.85 | 0.85 | 0.85 |
Random Forest_fingerprint | 0.81 | 0.80 | 0.83 | 0.63 | 0.83 | 0.81 | 0.82 | 0.81 |
Naive Bayes_fingerprint | 0.75 | 0.73 | 0.77 | 0.50 | 0.76 | 0.75 | 0.75 | 0.75 |
KNN_fingerprint | 0.84 | 0.83 | 0.83 | 0.67 | 0.83 | 0.83 | 0.83 | 0.84 |
Neural Network_fingerprint | 0.82 | 0.80 | 0.83 | 0.63 | 0.83 | 0.81 | 0.82 | 0.82 |
SVM_descriptors | 0.82 | 0.83 | 0.80 | 0.63 | 0.81 | 0.82 | 0.82 | 0.82 |
Random Forest_descriptors | 0.82 | 0.80 | 0.83 | 0.63 | 0.83 | 0.81 | 0.82 | 0.82 |
Naive Bayes_descriptors | 0.81 | 0.77 | 0.83 | 0.59 | 0.82 | 0.79 | 0.80 | 0.81 |
KNN_descriptors | 0.73 | 0.70 | 0.77 | 0.47 | 0.75 | 0.72 | 0.73 | 0.73 |
Neural Network_descriptors | 0.81 | 0.80 | 0.80 | 0.60 | 0.80 | 0.80 | 0.80 | 0.81 |
Validate | ACC | SE | SP | MCC | P | F1 | BA | AUC |
---|---|---|---|---|---|---|---|---|
DL_Model | 0.83 | 0.77 | 0.88 | 0.65 | 0.87 | 0.81 | 0.82 | 0.91 |
SVM_fingerprint | 0.82 | 0.74 | 0.91 | 0.66 | 0.89 | 0.81 | 0.82 | 0.88 |
Ensemble-Top12 | 0.78 | 0.74 | 0.82 | 0.56 | 0.81 | 0.77 | 0.78 | 0.79 |
Rat reproductive toxicity | 0.76 | 0.74 | 0.78 | 0.52 | 0.77 | 0.75 | 0.76 | 0.87 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, H.; He, Q.; Li, W.; Duan, Y.; Han, W. Computational Insights into Reproductive Toxicity: Clustering, Mechanism Analysis, and Predictive Models. Int. J. Mol. Sci. 2024, 25, 7978. https://doi.org/10.3390/ijms25147978
Cui H, He Q, Li W, Duan Y, Han W. Computational Insights into Reproductive Toxicity: Clustering, Mechanism Analysis, and Predictive Models. International Journal of Molecular Sciences. 2024; 25(14):7978. https://doi.org/10.3390/ijms25147978
Chicago/Turabian StyleCui, Huizi, Qizheng He, Wannan Li, Yuying Duan, and Weiwei Han. 2024. "Computational Insights into Reproductive Toxicity: Clustering, Mechanism Analysis, and Predictive Models" International Journal of Molecular Sciences 25, no. 14: 7978. https://doi.org/10.3390/ijms25147978