In Vitro and In Vivo Human Metabolism of Ostarine, a Selective Androgen Receptor Modulator and Doping Agent
Abstract
:1. Introduction
2. Results
2.1. In Silico Prediction
2.2. Ostarine Fragmentation Pattern
2.3. Metabolite Identification in Human Hepatocyte Incubations
2.3.1. O-Glucuronidation
2.3.2. Ether Cleavage
2.3.3. Sulfation
2.3.4. Hydroxylation
2.4. Metabolite Identification in Positive Urines
3. Discussion
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. In Silico Metabolite Prediction
4.3. Hepatocyte Incubation
4.4. Sample Preparation: Hepatocytes
4.5. Sample Preparation: Urine
4.6. Instrumental Conditions
4.6.1. Liquid Chromatography Conditions
4.6.2. Mass Spectrometry Conditions
4.7. Metabolite Identification
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kersey, R.D.; Elliot, D.L.; Goldberg, L.; Kanayama, G.; Leone, J.E.; Pavlovich, M.; Pope, H.G. National Athletic Trainers’ Association Position Statement: Anabolic-Androgenic Steroids. J. Athl. Train. 2012, 47, 567–588. [Google Scholar] [CrossRef]
- Christou, M.A.; Christou, P.A.; Markozannes, G.; Tsatsoulis, A.; Mastorakos, G.; Tigas, S. Effects of Anabolic Androgenic Steroids on the Reproductive System of Athletes and Recreational Users: A Systematic Review and Meta-Analysis. Sports Med. 2017, 47, 1869–1883. [Google Scholar] [CrossRef]
- Todd, T. Anabolic Steroids: The Gremlins of Sport. J. Sport 1987, 14, 87–107. [Google Scholar]
- Maravelias, C.; Dona, A.; Stefanidou, M.; Spiliopoulou, C. Adverse Effects of Anabolic Steroids in Athletes: A Constant Threat. Toxicol. Lett. 2005, 158, 167–175. [Google Scholar] [CrossRef]
- Pope, H.G.; Wood, R.I.; Rogol, A.; Nyberg, F.; Bowers, L.; Bhasin, S. Adverse Health Consequences of Performance-Enhancing Drugs: An Endocrine Society Scientific Statement. Endocr. Rev. 2014, 35, 341–375. [Google Scholar] [CrossRef]
- Nieschlag, E.; Vorona, E. Mechanisms in Endocrinology: Medical Consequences of Doping with Anabolic Androgenic Steroids: Effects on Reproductive Functions. Eur. J. Endocrinol. 2015, 173, 47–58. [Google Scholar] [CrossRef]
- Nieschlag, E.; Vorona, E. Doping with Anabolic Androgenic Steroids (AAS): Adverse Effects on Non-Reproductive Organs and Functions. Rev. Endocr. Metab. Disord. 2015, 16, 199–211. [Google Scholar] [CrossRef]
- Dalton, J.T.; Mukherjee, A.; Zhu, Z.; Kirkovsky, L.; Miller, D.D. Discovery of Nonsteroidal Androgens. Biochem. Biophys. Res. Commun. 1998, 244, 1–4. [Google Scholar] [CrossRef]
- Edwards, J.P.; West, S.J.; Pooley, C.L.F.; Marschke, K.B.; Farmer, L.J.; Jones, T.K. New Nonsteroidal Androgen Receptor Modulators Based on 4-(Trifluoromethyl)-2(1H)-Pyrrolidino[3,2-g] Quinolinone. Bioorg. Med. Chem. Lett. 1998, 8, 745–750. [Google Scholar] [CrossRef]
- World Anti-Doping Code International Standard Prohibited List 2024. 2024. Available online: https://www.wada-ama.org/sites/default/files/2023-09/2024list_en_final_22_september_2023.pdf (accessed on 16 May 2024).
- Efimenko, I.V.; Chertman, W.; Masterson, T.A.; Dubin, J.M.; Ramasamy, R. Analysis of the growing public interest in selective androgen receptor modulators. Andrologia 2021, 53, e14238. [Google Scholar] [CrossRef]
- Hahamyan, H.A.; Vasireddi, N.; Voos, J.E.; Calcei, J.G. Social Media’s Impact on Widespread SARMs Abuse. Physician Sportsmed. 2023, 51, 291–293. [Google Scholar] [CrossRef]
- SARMS. Unsafe. Illegal. Banned in Sport. Drug Free Sport New Zealand. 2022. Available online: https://drugfreesport.org.nz/news/the-truth-about-sarms/ (accessed on 3 May 2024).
- Weinblatt, D.; Roy, S. Drug-Induced Liver Injury Secondary to Enobosarm: A Selective Androgen Receptor Modulator. J. Med. Cases 2022, 13, 244–248. [Google Scholar] [CrossRef]
- Bedi, H.; Hammond, C.; Sanders, D.; Yang, H.-M.; Yoshida, E.M. Drug-Induced Liver Injury From Enobosarm (Ostarine), a Selective Androgen Receptor Modulator. ACG Case Rep. J. 2021, 8, e00518. [Google Scholar] [CrossRef]
- Koller, T.; Vrbova, P.; Meciarova, I.; Molcan, P.; Smitka, M.; Selcanova, S.A.; Skladany, L. Liver Injury Associated with the Use of Selective Androgen Receptor Modulators and Post-Cycle Therapy: Two Case Reports and Literature Review. World J. Clin. Cases 2021, 9, 4062–4071. [Google Scholar] [CrossRef]
- Kintz, P.; Gheddar, L.; Paradis, C.; Chinellato, M.; Ameline, A.; Raul, J.S.; Oliva-Labadie, M. Peroxisome proliferator-activated receptor delta agonist (PPAR- δ) and selective androgen receptor modulator (SARM) abuse: Clinical, analytical and biological data in a case involving a poisonous combination of GW1516 (cardarine) and MK2866 (ostarine). Toxics 2021, 9, 251. [Google Scholar] [CrossRef]
- World Anti-Doping Agency. Anti-Doping Testing Figures Report. Available online: https://www.wada-ama.org/en/resources/anti-doping-stats/anti-doping-testing-figures-report#resource-download (accessed on 16 May 2024).
- Kintz, P.; Gheddar, L.; Ameline, A.; Raul, J.S. Identification of S22 (ostarine) in human nails and hair using LC-HRMS. Application to two authentic cases. Drug Test. Anal. 2020, 12, 1508–1513. [Google Scholar] [CrossRef]
- Kintz, P. The forensic response after an adverse analytical finding (doping) involving a selective androgen receptor modulator (SARM) in human athlete. J. Pharm. Biomed. Anal. 2022, 207, 1508–1513. [Google Scholar] [CrossRef]
- Kintz, P.; Gheddar, L. Is the undetectability in hair of a single ostarine dose due to the lack of its excretion in sweat? Toxicol. Anal. Clin. 2024, 36, 38–42. [Google Scholar]
- Hansson, A.; Knych, H.; Stanley, S.; Thevis, M.; Bondesson, U.; Hedeland, M. Investigation of the Selective Androgen Receptor Modulators S1, S4 and S22 and Their Metabolites in Equine Plasma Using High-Resolution Mass Spectrometry. Rapid Commun. Mass. Spectrom. 2016, 30, 833–842. [Google Scholar] [CrossRef]
- Garg, N.; Hansson, A.; Knych, H.K.; Stanley, S.D.; Thevis, M.; Bondesson, U.; Hedeland, M.; Globisch, D. Structural Elucidation of Major Selective Androgen Receptor Modulator (SARM) Metabolites for Doping Control. Org. Biomol. Chem. 2018, 16, 698–702. [Google Scholar] [CrossRef]
- De Rijke, E.; Essers, M.L.; Rijk, J.C.W.; Thevis, M.; Bovee, T.F.H.; van Ginkel, L.A.; Sterk, S.S. Selective Androgen Receptor Modulators: In Vitro and in Vivo Metabolism and Analysis. Food Addit. Contam. Part A 2013, 30, 1517–1526. [Google Scholar] [CrossRef]
- Thevis, M.; Gerace, E.; Thomas, A.; Beuck, S.; Geyer, H.; Schlörer, N.; Kearbey, J.D.; Dalton, J.T.; Schänzer, W. Characterization of in Vitro Generated Metabolites of the Selective Androgen Receptor Modulators S-22 and S-23 and in Vivo Comparison to Post-Administration Canine Urine Specimens. Drug Test. Anal. 2010, 2, 589–598. [Google Scholar] [CrossRef]
- Thevis, M.; Thomas, A.; Möller, I.; Geyer, H.; Dalton, J.T.; Schänzer, W. Mass Spectrometric Characterization of Urinary Metabolites of the Selective Androgen Receptor Modulator S-22 to Identify Potential Targets for Routine Doping Controls. Rapid Commun. Mass Spectrom. 2011, 25, 2187–2195. [Google Scholar] [CrossRef]
- Coss, C.C.; Jones, A.; Dalton, J.T. Pharmacokinetic Drug Interactions of the Selective Androgen Receptor Modulator GTx-024(Enobosarm) with Itraconazole, Rifampin, Probenecid, Celecoxib and Rosuvastatin. Investig. New Drugs 2016, 34, 458–467. [Google Scholar] [CrossRef]
- Walpurgis, K.; Rubio, A.; Wagener, F.; Krug, O.; Knoop, A.; Görgens, C.; Guddat, S.; Thevis, M. Elimination Profiles of Microdosed Ostarine Mimicking Contaminated Products Ingestion. Drug Test. Anal. 2020, 12, 1570–1580. [Google Scholar] [CrossRef]
- Lovecka, P.; Thimova, M.; Grznarova, P.; Lipov, J.; Knejzlik, Z.; Stiborova, H.; Nindhia, T.G.T.; Demnerova, K.; Ruml, T. Study of Cytotoxic Effects of Benzonitrile Pesticides. Biomed. Res. Int. 2015, 2015, 381264. [Google Scholar] [CrossRef]
- Stork, C.; Embruch, G.; Šícho, M.; De Bruyn Kops, C.; Chen, Y.; Svozil, D.; Kirchmair, J. NERDD: A Web Portal Providing Access to in Silico Tools for Drug Discovery. Bioinformatics 2020, 36, 1291–1292. [Google Scholar] [CrossRef]
- De Bruyn Kops, C.; Šícho, M.; Mazzolari, A.; Kirchmair, J. GLORYx: Prediction of the Metabolites Resulting from Phase 1 and Phase 2 Biotransformations of Xenobiotics. Chem. Res. Toxicol. 2021, 34, 286–299. [Google Scholar] [CrossRef]
- Carlier, J.; Berardinelli, D.; Montanari, E.; Sirignano, A.; Di Trana, A.; Busardò, F.P. 3F-α-Pyrrolydinovalerophenone (3F-α-PVP) in Vitro Human Metabolism: Multiple in Silico Predictions to Assist in LC-HRMS/MS Analysis and Targeted/Untargeted Data Mining. J. Chromatogr. B 2022, 1193, 123162. [Google Scholar] [CrossRef]
- Busardò, F.P.; Lo Faro, A.F.; Sirignano, A.; Giorgetti, R.; Carlier, J. In Silico, in Vitro, and in Vivo Human Metabolism of Acetazolamide, a Carbonic Anhydrase Inhibitor and Common “Diuretic and Masking Agent” in Doping. Arch. Toxicol. 2022, 96, 1989–2001. [Google Scholar] [CrossRef]
- Gameli, P.S.; Taoussi, O.; Basile, G.; Carlier, J.; Busardò, F.P. Metabolism Study of Anamorelin, a GHSR1a Receptor Agonist Potentially Misused in Sport, with Human Hepatocytes and LC-HRMS/MS. Metabolites 2023, 13, 949. [Google Scholar] [CrossRef]
- Taoussi, O.; Gameli, P.S.; Berardinelli, D.; Busardò, F.P.; Tini, A.; Carlier, J. In Silico and in Vitro Human Metabolism of IOX2, a Performance-Enhancing Doping Agent. J. Pharm. Biomed. Anal. 2024, 238, 115759. [Google Scholar] [CrossRef] [PubMed]
- Di Trana, A.; Brunetti, P.; Giorgetti, R.; Marinelli, E.; Zaami, S.; Busardò, F.P.; Carlier, J. In Silico Prediction, LC-HRMS/MS Analysis, and Targeted/Untargeted Data-Mining Workflow for the Profiling of Phenylfentanyl in Vitro Metabolites. Talanta 2021, 235, 122740. [Google Scholar] [CrossRef]
ID | Biotransformation | Elemental Composition | RT (min) | m/z [M-H]− (Δppm) | Hepatocytes | Urine #1 Top: wo H Bottom: H | Urine #2 Top: wo H Bottom: H | Urine #3 Top: wo H Bottom: H | Urine #4 Top: wo H Bottom: H | Urine #5 Top: wo H Bottom: H | Urine #6 Top: wo H Bottom: H |
---|---|---|---|---|---|---|---|---|---|---|---|
M1 | Ether Cleavage (2) + Sulfation | C7H5O4NS | 4.96 | 197.9872 (2.77) | 7.8 × 105 | 3.5 × 107 3.5 × 107 | 2.3 × 108 2.2 × 108 | 8.3 × 108 1.2 × 109 | 3.8 × 108 2.8 × 108 | 3.8 × 108 2.4 × 108 | 1.5 × 108 1.5 × 108 |
M1a | Ether Cleavage (1) + O-Glucuronidation | C18H19O9N2F3 | 8.38 | 463.0969 (−0.20) | - | - - | - - | - - | - - | 6.0 × 106 - | 6.1 × 106 - |
M2 | Ether Cleavage (1) | C12H11O3N2F3 | 9.19 | 287.0649 (0.00) | 8.0 × 106 | - - | - 5.2 × 106 | - 1.2 × 106 | - 6.9 × 106 | 1.8 × 106 2.4 × 107 | 3.2 × 106 6.0 × 107 |
M3 | Ether Cleavage (1) + Dealkylation | C11H9O2N2F3 | 9.86 | 257.0544 (0.25) | 3.4 × 106 | - - | - 4.1 × 107 | - 3.2 × 106 | - 1.1 × 107 | - 5.2 × 107 | - 3.0 × 107 |
M4 | Hydroxylation (benzonitrile) + O-Glucuronidation | C25H22O10N3F3 | 10.33 | 580.1192 (1.29) | 5.0 × 105 | - - | 1.5 × 108 - | 7.4 × 106 - | 3.3 × 107 - | 4.8 × 108 - | 1.8 × 108 - |
M5 | Hydroxylation (benzonitrile) + Sulfation | C19H14O7N3F3S | 11.26 | 484.0432 (0.04) | 1.6 × 106 | - - | - - | - - | - - | - - | 8.5 × 105 7.3 × 105 |
M6 | O-Glucuronidation | C25H22O9N3F3 | 11.58 | 564.1249 (2.40) | 1.8 × 107 | 6.4 × 105 - | 2.1 × 109 7.9 × 107 | 3.5 × 108 4.8 × 106 | 8.5 × 108 8.6 × 107 | 7.2 × 109 3.6 × 106 | 3.7 × 109 - |
M7 | Sulfation | C19H14O6N3F3S | 12.10 | 468.0484 (0.29) | 4.9 × 106 | - - | - - | - - | - - | - - | - - |
M8 | Hydroxylation (3-propyl) | C19H14O4N3F3 | 12.15 | 404.0866 (0.58) | 1.1 × 106 | - - | - 7.2 × 105 | - 4.5 × 105 | - 2.4 × 106 | 2.1 × 106 1.4 × 107 | 9.5 × 105 2.2 × 107 |
M9 | Hydroxylation (benzonitrile) | C19H14O4N3F3 | 12.73 | 404.0864 (0.09) | 2.6 × 105 | - - | 1.2 × 106 4.8 × 108 | - 3.9 × 107 | 2.4 × 105 1.8 × 108 | 2.7 × 106 7.1 × 108 | 1.9 × 106 6.1 × 108 |
Ostarine | C19H14O3N3F3 | 13.36 | 388.0916 (0.40) | 1.0 × 109 | - 9.5 × 106 | 6.7 × 106 4.7 × 109 | 9.1 × 105 1.8 × 109 | 5.7 × 106 3.5 × 109 | 3.5 × 107 8.7 × 109 | 1.6 × 107 8.3 × 109 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taoussi, O.; Bambagiotti, G.; Gameli, P.S.; Daziani, G.; Tavoletta, F.; Tini, A.; Basile, G.; Lo Faro, A.F.; Carlier, J. In Vitro and In Vivo Human Metabolism of Ostarine, a Selective Androgen Receptor Modulator and Doping Agent. Int. J. Mol. Sci. 2024, 25, 7807. https://doi.org/10.3390/ijms25147807
Taoussi O, Bambagiotti G, Gameli PS, Daziani G, Tavoletta F, Tini A, Basile G, Lo Faro AF, Carlier J. In Vitro and In Vivo Human Metabolism of Ostarine, a Selective Androgen Receptor Modulator and Doping Agent. International Journal of Molecular Sciences. 2024; 25(14):7807. https://doi.org/10.3390/ijms25147807
Chicago/Turabian StyleTaoussi, Omayema, Giulia Bambagiotti, Prince Sellase Gameli, Gloria Daziani, Francesco Tavoletta, Anastasio Tini, Giuseppe Basile, Alfredo Fabrizio Lo Faro, and Jeremy Carlier. 2024. "In Vitro and In Vivo Human Metabolism of Ostarine, a Selective Androgen Receptor Modulator and Doping Agent" International Journal of Molecular Sciences 25, no. 14: 7807. https://doi.org/10.3390/ijms25147807