NMR-Based Metabolomics of Blood Serum in Predicting Response to Induction Chemotherapy in Head and Neck Cancer—A Preliminary Approach
Abstract
:1. Introduction
2. Results
2.1. Primary Tumor Regression Based on the Volumetric Measurements
2.2. Complete Clinical Response (CCR) of the Primary Tumor and Complete Nodal Response (CNR)
2.3. Metabolic Pathway Analysis
3. Discussion
Limitations of the Study
4. Materials and Methods
4.1. Characteristics of the Patient Group
- (a)
- Three cycles of TPF administered every 21 days (docetaxel, 75 mg/m2 followed by cisplatin 100 mg/m2 on day 1, and 5-fluorouracil 1000 mg/m2 per day, administered as a continuous 24-h infusion for 4 days) followed by chemoradiotherapy delivered as a sequential therapy—20 patients.
- (b)
- Four cycles of TPF administered every 21 days (docetaxel 75 mg/m2 of body-surface area, followed by cisplatin 75 mg/m2 on day 1, and 5-fluorouracil 750 mg/m2 per day, administered as a continuous 24-h infusion for 4 days) followed by radiotherapy as a sequential therapy—1 patient.
- (c)
- Three cycles of cisplatin plus 5-fluorouracil (PF) administered every 21 days (cisplatin 100 mg/m2 on day 1, 5-fluorouracil 1000 mg/m2 as a continuous 24-h infusion for 4 days) followed by chemoradiotherapy with cisplatin delivered as a sequential therapy—23 patients.
- (d)
- Three cycles of paclitaxel and carboplatin (PC) administered every 21 days (175 mg/m2) and carboplatin at a dose calculated using the Calvert formula area under the curve of 5 followed by chemoradiotherapy with carboplatin delivered as a sequential therapy—2 patients.
4.2. Assessment of Treatment Response to Induction Chemotherapy
4.3. Blood Serum Samples Collection and Preparation for NMR Spectroscopy
4.4. NMR Measurement Protocol
4.5. NMR Spectra Post-Processing and Metabolite Quantification
4.6. Metabolite Identification and Quantification
4.7. Data Analysis
4.8. Validation of the Multivariate Models and Receiver Operating Characteristics
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fayette, J.; Fontaine-Delaruelle, C.; Ambrun, A.; Daveau, C.; Poupart, M.; Ramade, A.; Zrounba, P.; Neidhart, E.M.; Péron, J.; Diallo, A.; et al. Neoadjuvant modified TPF (docetaxel, cisplatin, fluorouracil) for patients unfit to standard TPF in locally advanced head and neck squamous cell carcinoma: A study of 48 patients. Oncotarget 2016, 7, 37297–37304. [Google Scholar] [CrossRef] [PubMed]
- Haddad, R.I.; Posner, M.; Hitt, R.; Cohen, E.E.W.; Schulten, J.; Lefebvre, J.L.; Vermorken, J.B. Induction chemotherapy in locally advanced squamous cell carcinoma of the head and neck: Role, controversy, and future directions. Ann. Oncol. 2018, 29, 1130–1140. [Google Scholar] [CrossRef] [PubMed]
- Cohen, E.E.; Karrison, T.G.; Kocherginsky, M.; Mueller, J.; Egan, R.; Huang, C.H.; Brockstein, B.E.; Agulnik, M.B.; Mittal, B.B.; Yunus, F.; et al. Phase III randomized trial of induction chemotherapy in patients with N2 or N3 locally advanced head and neck cancer. J. Clin. Oncol. 2014, 32, 2735–2743. [Google Scholar] [CrossRef] [PubMed]
- Albers, A.E.; Grabow, R.; Qian, X.; Jumah, M.D.; Hofmann, V.M.; Krannich, A.; Pecher, G. Efficacy and toxicity of docetaxel combination chemotherapy for advanced squamous cell cancer of the head and neck. Mol. Clin. Oncol. 2017, 7, 151–157. [Google Scholar] [CrossRef] [PubMed]
- Rapidis, A.; Sarlis, N.; Lefebvre, J.L.; Kies, M. Docetaxel in the treatment of squamous cell carcinoma of the head and neck. Ther. Clin. Risk Manag. 2008, 4, 865–886. [Google Scholar] [CrossRef] [PubMed]
- Jin, T.; Qin, W.F.; Jiang, F.; Jin, Q.F.; Wei, Q.C.; Jia, Y.S.; Sun, X.N.; Li, W.F.; Chen, X.Z. Cisplatin and Fluorouracil Induction Chemotherapy With or Without Docetaxel in Locoregionally Advanced Nasopharyngeal Carcinoma. Transl. Oncol. 2019, 12, 633–639. [Google Scholar] [CrossRef] [PubMed]
- Peng, H.; Chen, L.; Zhang, Y.; Li, W.F.; Mao, Y.P.; Liu, X.; Zhang, F.; Guo, R.; Liu, L.Z.; Tian, L.; et al. The Tumour Response to Induction Chemotherapy has Prognostic Value for Long-Term Survival Outcomes after Intensity-Modulated Radiation Therapy in Nasopharyngeal Carcinoma. Sci. Rep. 2016, 6, 24835. [Google Scholar] [CrossRef]
- Hsieh, C.Y.; Lein, M.Y.; Yang, S.N.; Wang, Y.C.; Lin, Y.J.; Lin, C.Y.; Hua, C.H.; Tsai, M.H.; Lin, C.C. Dose-dense TPF induction chemotherapy for locally advanced head and neck cancer: A phase II study. BMC Cancer 2020, 20, 832. [Google Scholar] [CrossRef] [PubMed]
- Driessen, C.M.; de Boer, J.P.; Gelderblom, H.; Rasch, C.R.; de Jong, M.A.; Verbist, B.M.; Melchers, W.J.G.; Tesselaar, M.E.T.; van der Graaf, W.T.A.; Kaanders, J.H.A.M.; et al. Induction chemotherapy with docetaxel/cisplatin/5-fluorouracil followed by randomization to two cisplatin-based concomitant chemoradiotherapy schedules in patients with locally advanced head and neck cancer (CONDOR study) (Dutch Head and Neck Society 08-01): A randomized phase II study. Eur. J. Cancer. 2016, 52, 77–84. [Google Scholar] [CrossRef]
- Boguszewicz, Ł. Predictive Biomarkers for Response and Toxicity of Induction Chemotherapy in Head and Neck Cancers. Front. Oncol. 2022, 12, 900903. [Google Scholar] [CrossRef]
- Melder, K.L.; Geltzeiler, M. Induction Chemotherapy for Locoregionally Advanced Sinonasal Squamous Cell Carcinoma and Sinonasal Undifferentiated Carcinoma: A Comprehensive Review. Cancers 2023, 15, 3798. [Google Scholar] [CrossRef] [PubMed]
- Boguszewicz, Ł.; Bieleń, A.; Jarczewski, J.D.; Ciszek, M.; Skorupa, A.; Składowski, K.; Sokół, M. Molecular response to induction chemotherapy and its correlation with treatment outcome in head and neck cancer patients by means of NMR-based metabolomics. BMC Cancer 2021, 21, 410. [Google Scholar] [CrossRef]
- Johnson, D.E.; Burtness, B.; Leemans, C.R.; Lui, V.W.Y.; Bauman, J.E.; Grandis, J.R. Head and neck squamous cell carcinoma. Nat. Rev. Dis. Primers. 2020, 6, 92, Erratum in: Nat. Rev. Dis. Primers. 2023, 9, 4.. [Google Scholar] [CrossRef] [PubMed]
- Eisenhauer, E.A.; Therasse, P.; Bogaerts, J.; Schwartz, L.H.; Sargent, D.; Ford, R.; Dancey, J.; Arbuck, S.; Gwyther, S.; Mooney, M.; et al. New Response Evaluation Criteria in Solid Tumours: Revised RECIST Guideline (Version 1.1). Eur. J. Cancer. 2009, 45, 228–247. [Google Scholar] [CrossRef]
- Zhou, J.C.; Guo, J.F.; Teng, R.Y.; Wang, Q.C.; Wang, J.; Wei, Q.; Li, Z.D.; Shen, J.G.; Wang, L.B. New utility of an old marker: Serum low-density lipoprotein predicts histopathological response of neoadjuvant chemotherapy in locally advanced gastric cancer. Onco. Targets Ther. 2016, 9, 5041–5047. [Google Scholar] [CrossRef] [PubMed]
- Alexopoulos, C.G.; Pournaras, S.; Vaslamatzis, M.; Avgerinos, A.; Raptis, S. Changes in serum lipids and lipoproteins in cancer patients during chemotherapy. Cancer Chemother. Pharmacol. 1992, 30, 412–416. [Google Scholar] [CrossRef] [PubMed]
- Stathopoulos, G.P.; Stergiou, G.S.; Perrea-Kostarelis, D.N.; Dontas, I.A.; Karamanos, B.G.; Karayiannacos, P.E. Influence of 5-fluorouracil on serum lipids. Acta Oncol. 1995, 34, 253–256. [Google Scholar] [CrossRef] [PubMed]
- Bhatnagar, R.; Dixit, N.M.; Yang, E.H.; Sallam, T. Cancer therapy’s impact on lipid metabolism: Mechanisms and future avenues. Front. Cardiovasc. Med. 2022, 9, 925816. [Google Scholar] [CrossRef] [PubMed]
- Sarabhai, T.; Roden, M. Hungry for your alanine: When liver depends on muscle proteolysis. J. Clin. Invest. 2019, 129, 4563–4566. [Google Scholar] [CrossRef]
- Yoshizawa, F. New therapeutic strategy for amino acid medicine: Notable functions of branched chain amino acids as biological regulators. J. Pharmacol. Sci. 2012, 118, 149–155. [Google Scholar] [CrossRef]
- Srivastava, N.K.; Mukherjee, S.; Mishra, V.N. Metabolic Disturbance in Patients with Muscular Dystrophy and Reflection of Altered Enzyme Activity in Dystrophic Muscle: One Critical View. J. Biomed. Res. Environ. Sci. 2020, 1, 393–403. [Google Scholar] [CrossRef]
- Okun, J.G.; Rusu, P.M.; Chan, A.Y.; Wu, Y.; Yap, Y.W.; Sharkie, T.; Schumacher, J.; Schmidt, K.V.; Roberts-Thomson, K.M.; Russell, R.D.; et al. Liver alanine catabolism promotes skeletal muscle atrophy and hyperglycaemia in type 2 diabetes. Nat. Metab. 2021, 3, 394–409. [Google Scholar] [CrossRef] [PubMed]
- Gheller, B.; Blum, J.; Thalacker-Mercer, A. Serine and Glycine Are Essential for Human Muscle Progenitor Cell P Roliferation (P08-063-19). Curr. Dev. Nutr. 2019, 3 (Suppl. S1), nzz044.P08-063-19. [Google Scholar] [CrossRef]
- Wang, W.; Wu, Z.; Lin, G.; Hu, S.; Wang, B.; Dai, Z.; Wu, G. Glycine stimulates protein synthesis and inhibits oxidative stress in pig small intestinal epithelial cells. J. Nutr. 2014, 144, 1540–1548. [Google Scholar] [CrossRef] [PubMed]
- Zlotnik, A.; Sinelnikov, I.; Gruenbaum, B.F.; Gruenbaum, S.E.; Dubilet, M.; Dubilet, E.; Leibowitz, A.; Ohayon, S.; Regev, A.; Boyko, M.; et al. Effect of glutamate and blood glutamate scavengers oxaloacetate and pyruvate on neurological outcome and pathohistology of the hippocampus after traumatic brain injury in rats. Anesthesiology 2012, 116, 73–83. [Google Scholar] [CrossRef] [PubMed]
- Bai, W.; Zhou, Y.G. Homeostasis of the Intraparenchymal-Blood Glutamate Concentration Gradient: Maintenance, Imbalance, and Regulation. Front. Mol. Neurosci. 2017, 10, 400. [Google Scholar] [CrossRef] [PubMed]
- Klin, Y.; Zlotnik, A.; Boyko, M.; Ohayon, S.; Shapira, Y.; Teichberg, V.I. Distribution of radiolabeled l-glutamate and d-aspartate from blood into peripheral tissues in naive rats: Significance for brain neuroprotection. Biochem. Biophys. Res. Commun. 2010, 399, 694–698. [Google Scholar] [CrossRef]
- Cynober, L. Metabolism of Dietary Glutamate in Adults. Ann. Nutr. Metab. 2018, 73 (Suppl. S5), 5–14. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.C.; Mattar, S.G.; Greenway, F.L.; Lindquist, R.J. Measuring ketone bodies for the monitoring of pathologic and therapeutic ketosis. Obes. Sci. Pract. 2021, 7, 646–656. [Google Scholar] [CrossRef] [PubMed]
- Kubrak, C.; Martin, L.; Gramlich, L.; Scrimger, R.; Jha, N.; Debenham, B.; Chua, N.; Walker, J.; Baracos, V.E. Prevalence and prognostic significance of malnutrition in patients with cancers of the head and neck. Clin. Nutr. 2020, 39, 901–909. [Google Scholar] [CrossRef]
- Moffett, J.R.; Puthillathu, N.; Vengilote, R.; Jaworski, D.M.; Namboodiri, A.M. Acetate Revisited: A Key Biomolecule at the Nexus of Metabolism, Epigenetics and Oncogenesis-Part 1: Acetyl-CoA, Acetogenesis and Acyl-CoA Short-Chain Synthetases. Front. Physiol. 2020, 11, 580167. [Google Scholar] [CrossRef]
- Moffett, J.R.; Puthillathu, N.; Vengilote, R.; Jaworski, D.M.; Namboodiri, A.M. Acetate Revisited: A Key Biomolecule at the Nexus of Metabolism, Epigenetics, and Oncogenesis—Part 2: Acetate and ACSS2 in Health and Disease. Front. Physiol. 2020, 11, 580171. [Google Scholar] [CrossRef] [PubMed]
- Wu, G. Amino acids: Metabolism, functions, and nutrition. Amino Acids 2009, 37, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Chandel, N.S. Amino Acid Metabolism. Cold Spring Harb. Perspect. Biol. 2021, 13, a040584. [Google Scholar] [CrossRef] [PubMed]
- Ardito, F.; Giuliani, M.; Perrone, D.; Troiano, G.; Lo Muzio, L. The crucial role of protein phosphorylation in cell signaling and its use as targeted therapy (Review). Int. J. Mol. Med. 2017, 40, 271–280. [Google Scholar] [CrossRef] [PubMed]
- Yogosawa, S.; Yoshida, K. Tumor suppressive role for kinases phosphorylating p53 in DNA damage-induced apoptosis. Cancer Sci. 2018, 109, 3376–3382. [Google Scholar] [CrossRef] [PubMed]
- McLean, A.; Rubinsztein, J.S.; Robbins, T.W.; Sahakian, B.J. The effects of tyrosine depletion in normal healthy volunteers: Implications for unipolar depression. Psychopharmacology 2004, 171, 286–297. [Google Scholar] [CrossRef]
- Brosnan, M.E.; Brosnan, J.T. Formate: The Neglected Member of One-Carbon Metabolism. Annu. Rev. Nutr. 2016, 36, 369–388. [Google Scholar] [CrossRef]
- Raval, G.N.; Sainger, R.N.; Rawal, R.M.; Patel, J.B.; Patel, B.P.; Jha, F.P.; Patel, D.D.; Patel, P.S. Vitamin B(12) and Folate Status in Head and Neck Cancer. Asian Pac. J. Cancer Prev. 2002, 3, 155–162. [Google Scholar]
- Delbrouck, C.; Kiweler, N.; Chen, O.; Pozdeev, V.I.; Haase, L.; Neises, L.; Oudin, A.; Fouquier d’Hérouël, A.; Shen, R.; Schlicker, L.; et al. Formate promotes invasion and metastasis in reliance on lipid metabolism. Cell Rep. 2023, 42, 113034. [Google Scholar] [CrossRef]
- Liu, Y.M.; Liu, Y.; Lu, C.; Jia, J.Y.; Liu, G.Y.; Weng, L.P.; Wang, J.Y.; Li, G.X.; Wang, W.; Li, S.J.; et al. Relative bioavailability of generic and branded acetylcysteine effervescent tablets: A single-dose, open-label, randomized-sequence, two-period crossover study in fasting healthy Chinese male volunteers. Clin. Ther. 2010, 32, 2097–2105. [Google Scholar] [CrossRef]
- Pedre, B.; Barayeu, U.; Ezeriņa, D.; Dick, T.P. The mechanism of action of N-acetylcysteine (NAC): The emerging role of H2S and sulfane sulfur species. Pharmacol. Ther. 2021, 228, 107916. [Google Scholar] [CrossRef] [PubMed]
- Tenório, M.C.D.S.; Graciliano, N.G.; Moura, F.A.; Oliveira, A.C.M.; Goulart, M.O.F. N-Acetylcysteine (NAC): Impacts on Human Health. Antioxidants 2021, 10, 967. [Google Scholar] [CrossRef]
- Radomska-Lesnniewska, D.M.; Skopinski, P. N-acetylcysteine as an anti-oxidant and anti-inflammatory drug and its some clinical applications. Centr. Eur. J. Immunol. 2012, 37, 57–66. [Google Scholar]
- van Zandwijk, N.; Dalesio, O.; Pastorino, U.; de Vries, N.; van Tinteren, H. EUROSCAN, a randomized trial of vitamin A and N-acetylcysteine in patients with head and neck cancer or lung cancer. For the EUropean Organization for Research and Treatment of Cancer Head and Neck and Lung Cancer Cooperative Groups. J. Natl. Cancer Inst. 2000, 92, 977–986. [Google Scholar] [CrossRef]
- Yoo, J.; Hamilton, S.J.; Angel, D.; Fung, K.; Franklin, J.; Parnes, L.S.; Lewis, D.; Venkatesan, V.; Winquist, E. Cisplatin otoprotection using transtympanic L-N-acetylcysteine: A pilot randomized study in head and neck cancer patients. Laryngoscope 2014, 124, E87–E94. [Google Scholar] [CrossRef] [PubMed]
- Sio, T.T.; Blanchard, M.J.; Novotny, P.J.; Patel, S.H.; Rwigema, J.M.; Pederson, L.D.; McGee, L.A.; Gamez, M.E.; Seeger, G.R.; Martenson, J.A.; et al. N-Acetylcysteine Rinse for Thick Secretion and Mucositis of Head and Neck Chemoradiotherapy (Alliance MC13C2): A Double-Blind Randomized Clinical Trial. Mayo Clin. Proc. 2019, 94, 1814–1824. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhang, J.; Chen, L.; Li, J.; Zhang, H.; Guo, X. Glycine Suppresses AGE/RAGE Signaling Pathway and Subsequent Oxidative Stress by Restoring Glo1 Function in the Aorta of Diabetic Rats and in HUVECs. Oxid. Med. Cell Longev. 2019, 2019, 4628962. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Flores, M.; Cruz, M.; Duran-Reyes, G.; Munguia-Miranda, C.; Loza-Rodríguez, H.; Pulido-Casas, E.; Torres-Ramírez, N.; Gaja-Rodriguez, O.; Kumate, J.; Baiza-Gutman, L.A.; et al. Oral supplementation with glycine reduces oxidative stress in patients with metabolic syndrome, improving their systolic blood pressure. Can. J. Physiol. Pharmacol. 2013, 91, 855–860. [Google Scholar] [CrossRef]
- Proffitt, C.; Bidkhori, G.; Lee, S.; Tebani, A.; Mardinoglu, A.; Uhlen, M.; Moyes, D.L.; Shoaie, S. Genome-scale metabolic modelling of the human gut microbiome reveals changes in the glyoxylate and dicarboxylate metabolism in metabolic disorders. iScience 2022, 25, 104513. [Google Scholar] [CrossRef]
- Chen, X.; Kuang, S.; He, Y.; Li, H.; Yi, C.; Li, Y.; Wang, C.; Chen, G.; Chen, S.; Yu, D. The Differential Metabolic Response of Oral Squamous Cell Carcinoma Cells and Normal Oral Epithelial Cells to Cisplatin Exposure. Metabolites 2022, 12, 389. [Google Scholar] [CrossRef]
- Jiang, M.; Gu, X.; Xu, Y.; Wang, J. Metabolism-associated molecular classification and prognosis signature of head and neck squamous cell carcinoma. Heliyon 2024, 10, e27587. [Google Scholar] [CrossRef] [PubMed]
- Eriksson, I.; Johansson, E.; Kettaneh-Wold, N.; Wold, S. Multi- and Megavariate Data Analysis. Principles and Applications; Umetrics Academy: Umeå, Sweden, 2001; 533p, ISBN 91-973730-1-X. [Google Scholar]
Study Group | Males | Females | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Responders | Non-Responders | Responders | Non-Responders | Responders | Non-Responders | |||||||
Patients | 27 | 19 | 19 | 10 | 8 | 9 | ||||||
Age (median) | 57 | 54.5 | 58 | 58.5 | 52.5 | 53 | ||||||
Age (range) | 22–71 | 40–73 | 22–65 | 51–73 | 34–71 | 40–60 | ||||||
Primary tumor site | ||||||||||||
Oropharynx | 13 | 5 | 9 | 4 | 5 | 0 | ||||||
Nasopharynx | 4 | 7 | 2 | 3 | 2 | 4 | ||||||
Hypopharynx | 3 | 6 | 3 | 2 | 0 | 4 | ||||||
Larynx | 6 | 2 | 5 | 1 | 1 | 1 | ||||||
T stage | T stage | T stage | ||||||||||
c | y | c | y | c | y | c | y | c | y | c | y | |
0 | 0 | 11 | 0 | 0 | 0 | 10 | 0 | 0 | 0 | 1 | 0 | 0 |
1 | 2 | 11 | 3 | 11 | 1 | 7 | 2 | 6 | 0 | 5 | 1 | 4 |
2 | 9 | 4 | 3 | 5 | 7 | 2 | 2 | 3 | 2 | 2 | 1 | 2 |
3 | 9 | 0 | 7 | 1 | 7 | 0 | 3 | 0 | 2 | 0 | 4 | 1 |
4 | 6 | 0 | 7 | 3 | 3 | 0 | 3 | 1 | 4 | 0 | 3 | 2 |
N stage | N stage | N stage | ||||||||||
c | y | c | y | c | y | c | y | c | y | c | y | |
0 | 1 | 9 | 2 | 8 | 0 | 7 | 0 | 4 | 1 | 3 | 2 | 3 |
1 | 3 | 4 | 4 | 4 | 2 | 2 | 2 | 3 | 1 | 2 | 2 | 1 |
2a | 0 | 2 | 5 | 4 | 2 | 1 | 3 | 1 | 3 | 1 | 2 | 3 |
2b | 10 | 5 | 5 | 3 | 4 | 5 | 3 | 2 | 1 | 0 | 1 | 1 |
2c | 9 | 5 | 3 | 2 | 5 | 3 | 1 | 1 | 1 | 2 | 2 | 1 |
3 | 8 | 0 | 1 | 0 | 6 | 0 | 1 | 0 | 1 | 0 | 0 | 0 |
TNM stage | TNM stage | TNM stage | ||||||||||
c | y | c | y | c | y | c | y | c | y | c | y | |
0 | 0 | 3 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 |
I | 0 | 7 | 0 | 6 | 0 | 5 | 0 | 4 | 0 | 3 | 0 | 1 |
II | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 2 |
III | 2 | 5 | 4 | 4 | 1 | 2 | 1 | 2 | 1 | 3 | 3 | 2 |
IVa | 18 | 10 | 15 | 8 | 13 | 7 | 19 | 4 | 6 | 2 | 6 | 4 |
IVb | 6 | 0 | 1 | 0 | 5 | 1 | 0 | 0 | 1 | 0 | 0 | 0 |
OPLS-DA Model Diagnostics | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Study Group | Males | Females | ||||||||
Predictive component | R2X | R2Y | Q2 | R2X | R2Y | Q2 | R2X | R2Y | Q2 | |
0.29 | 0.30 | 0.20 | 0.19 | 0.59 | 0.37 | 0.33 | 0.33 | 0.12 | ||
Orthogonal component | R2X(o) | R2X(o) | R2X(o) | |||||||
- | 0.23 | - | ||||||||
cv-ANOVA p | 0.008 | 0.02 | 0.42 | |||||||
List of the important metabolites from the OPLS-DA model | ||||||||||
Name | p(corr) | p-value | Median FC | p(corr) | p-value | Median FC | p(corr) | p-value | Median FC | |
Metabolites increased in responders | ||||||||||
1 | Isoleucine 0.95 ppm | 0.77 | 0.03 | 1.09 | 0.56 | 0.04 | 1.30 | 0.48 | 0.90 | 0.91 |
2 | Isoleucine 1.02 ppm | 0.76 | 0.01 | 1.20 | 0.52 | 0.04 | 1.25 | 0.50 | 0.47 | 1.10 |
3 | Alanine | 0.57 | 0.01 | 1.23 | 0.55 | 0.05 | 1.28 | 0.38 | 0.09 | 1.26 |
4 | Glycine | 0.11 | 0.07 | 1.14 | 0.38 | 0.04 | 1.27 | 0.40 | 0.13 | 1.11 |
5 | Tyrosine | 0.62 | 0.02 | 1.19 | 0.53 | 0.07 | 1.23 | 0.52 | 0.1 | 1.14 |
6 | N-acetylcysteine | 0.30 | 0.01 | 1.13 | 0.54 | 0.01 | 1.13 | 0.39 | 0.42 | 1.11 |
7 | Lipids 0.9 ppm | 0.44 | 0.15 | 1.05 | 0.36 | 0.02 | 1.12 | |||
8 | Lipids 1.3 ppm | 0.52 | 0.17 | 1.06 | 0.36 | 0.07 | 1.13 | |||
9 | Lipids 5.3 ppm | 0.46 | 0.17 | 1.02 | 0.36 | 0.02 | 1.09 | |||
10 | Acetate | 0.53 | 0.16 | 1.26 | ||||||
14 | Formate | 0.66 | 0.96 | 1.08 | ||||||
Metabolites decreased in responders | ||||||||||
10 | Acetate | −0.26 | 0.79 | 0.95 | −0.57 | 0.28 | 0.85 | |||
11 | Glutamate | −0.66 | 0.24 | 0.91 | −0.30 | 0.81 | 0.98 | −0.76 | 0.42 | 0.68 |
12 | 3-hydroxybutyrate 4.21 | −0.72 | – | 0.92 | −0.33 | 0.15 | 0.97 | −0.80 | 0.06 | 0.66 |
13 | 3-hydroxybutyrate 1.23 | −0.66 | 0.10 | 0.67 | −0.23 | 0.58 | 0.91 | −0.76 | 0.27 | 0.55 |
14 | Formate | −0.23 | 0.18 | 0.96 | −0.56 | 0.20 | 0.95 | |||
15 | Acetone | −0.38 | 0.95 | 1.01 | −0.28 | 0.77 | 1.02 | −0.51 | 0.96 | 1.02 |
16 | Acetoacetate | −0.52 | 0.33 | 0.85 | −0.25 | 0.84 | 1.01 | −0.63 | 0.53 | 1.02 |
7 | Lipids 0.9 ppm | −0.61 | 0.60 | 0.99 | ||||||
8 | Lipids 1.3 ppm | −0.41 | 0.89 | 1.03 | ||||||
9 | Lipids 5.3 ppm | −0.56 | 0.81 | 0.96 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boguszewicz, Ł.; Bieleń, A.; Jarczewski, J.D.; Ciszek, M.; Skorupa, A.; Mrochem-Kwarciak, J.; Składowski, K.; Sokół, M. NMR-Based Metabolomics of Blood Serum in Predicting Response to Induction Chemotherapy in Head and Neck Cancer—A Preliminary Approach. Int. J. Mol. Sci. 2024, 25, 7555. https://doi.org/10.3390/ijms25147555
Boguszewicz Ł, Bieleń A, Jarczewski JD, Ciszek M, Skorupa A, Mrochem-Kwarciak J, Składowski K, Sokół M. NMR-Based Metabolomics of Blood Serum in Predicting Response to Induction Chemotherapy in Head and Neck Cancer—A Preliminary Approach. International Journal of Molecular Sciences. 2024; 25(14):7555. https://doi.org/10.3390/ijms25147555
Chicago/Turabian StyleBoguszewicz, Łukasz, Agata Bieleń, Jarosław Dawid Jarczewski, Mateusz Ciszek, Agnieszka Skorupa, Jolanta Mrochem-Kwarciak, Krzysztof Składowski, and Maria Sokół. 2024. "NMR-Based Metabolomics of Blood Serum in Predicting Response to Induction Chemotherapy in Head and Neck Cancer—A Preliminary Approach" International Journal of Molecular Sciences 25, no. 14: 7555. https://doi.org/10.3390/ijms25147555