Peptide Designs for Use in Caries Management: A Systematic Review
Abstract
:1. Introduction
2. Results
2.1. Antimicrobial Peptides
2.2. Mineralising Peptides
2.3. Peptides with Antimicrobial and Mineralising Properties
2.4. Risk of Bias in Individual Studies
3. Discussion
3.1. Design Methods of Novel Peptides Used in Caries Management
3.1.1. Template-Based Design Method
3.1.2. Conjugation Method
3.1.3. Synthetic Combinatorial Technology Method
3.1.4. De Novo Design Method
3.1.5. Cyclisation
3.2. Quality of Studies on Peptides for Caries Management
4. Materials and Methods
4.1. Eligibility Criteria
- Original in vitro studies;
- Studies focused on developing novel peptides for the management of caries;
- The first study on a specific novel peptide for managing caries.
4.2. Exclusion Criteria
- Literature reviews;
- Conference abstracts;
- Clinical case reports;
- Case series;
- Studies unrelated to caries or peptides;
- Studies without full papers;
- Not being the first study on a specific novel peptide for managing caries.
4.3. Search Strategies
4.4. Study Selection and Data Extraction
4.5. Assessment of the Risk of Bias in Individual Studies
- Item 1: presence of control;
- Item 2: description of sample size calculation;
- Item 3: peptide synthesis using standard methods;
- Item 4: characterisation of peptides;
- Item 5: assessment of peptide stability;
- Item 6: assessment of peptide biocompatibility;
- Item 7: application methods of peptides;
- Item 8: investigation of peptide mechanisms;
- Item 9: blinding of observers.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wen, P.Y.F.; Chen, M.X.; Zhong, Y.J.; Dong, Q.Q.; Wong, H.M. Global Burden and Inequality of Dental Caries, 1990 to 2019. J. Dent. Res. 2022, 101, 392–399. [Google Scholar] [CrossRef]
- Northridge, M.E.; Kumar, A.; Kaur, R. Disparities in Access to Oral Health Care. Annu. Rev. Public Health 2020, 41, 513–535. [Google Scholar] [CrossRef] [Green Version]
- Mosaddad, S.A.; Tahmasebi, E.; Yazdanian, A.; Rezvani, M.B.; Seifalian, A.; Yazdanian, M.; Tebyanian, H. Oral microbial biofilms: An update. Eur. J. Clin. Microbiol. Infect. Dis. 2019, 38, 2005–2019. [Google Scholar] [CrossRef]
- Bjarnsholt, T.; Ciofu, O.; Molin, S.; Givskov, M.; Hoiby, N. Applying insights from biofilm biology to drug —can a new approach be developed? Nat. Rev. Drug Discov. 2013, 12, 791–808. [Google Scholar] [CrossRef]
- Deglovic, J.; Majtanova, N.; Majtan, J. Antibacterial and Antibiofilm Effect of Honey in the Prevention of Dental Caries: A Recent Perspective. Foods 2022, 11, 2670. [Google Scholar] [CrossRef]
- Huang, R.; Li, M.; Gregory, R.L. Bacterial interactions in dental biofilm. Virulence 2011, 2, 435–444. [Google Scholar] [CrossRef]
- Sasaki, M.; Kodama, Y.; Shimoyama, Y.; Ishikawa, T.; Kimura, S. Aciduricity and acid tolerance mechanisms of Streptococcus anginosus. J. Gen. Appl. Microbiol. 2018, 64, 174–179. [Google Scholar] [CrossRef] [Green Version]
- Khoury, Z.H.; Vila, T.; Puthran, T.R.; Sultan, A.S.; Montelongo-Jauregui, D.; Melo, M.A.S.; Jabra-Rizk, M.A. The Role of Candida albicans Secreted Polysaccharides in Augmenting Streptococcus mutans Adherence and Mixed Biofilm Formation: In vitro and in vivo Studies. Front. Microbiol. 2020, 11, 307. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Daliri, E.B.; Kim, N.; Kim, J.R.; Yoo, D.; Oh, D.H. Microbial Etiology and Prevention of Dental Caries: Exploiting Natural Products to Inhibit Cariogenic Biofilms. Pathogens 2020, 9, 569. [Google Scholar] [CrossRef]
- Brauner, A.; Fridman, O.; Gefen, O.; Balaban, N.Q. Distinguishing between resistance, tolerance and persistence to antibiotic treatment. Nat. Rev. Microbiol. 2016, 14, 320–330. [Google Scholar] [CrossRef]
- Niu, J.Y.; Yin, I.X.; Wu, W.K.K.; Li, Q.L.; Mei, M.L.; Chu, C.H. Antimicrobial peptides for the prevention and treatment of dental caries: A concise review. Arch. Oral Biol. 2021, 122, 105022. [Google Scholar] [CrossRef]
- Yon, M.J.Y.; Gao, S.S.; Chen, K.J.; Duangthip, D.; Lo, E.C.M.; Chu, C.H. Medical Model in Caries Management. Dent. J. 2019, 7, 37. [Google Scholar] [CrossRef] [Green Version]
- Yu, O.Y.; Lam, W.Y.; Wong, A.W.; Duangthip, D.; Chu, C.H. Nonrestorative Management of Dental Caries. Dent. J. 2021, 9, 121. [Google Scholar] [CrossRef]
- Melo, M.A.; Mei, M.L.; Li, K.C.; Hamama, H.H. Editorial: The Use of Bioactive Materials in Caries Management. Front. Oral Health 2022, 3, 832285. [Google Scholar] [CrossRef]
- Zhang, O.L.; Niu, J.Y.; Yin, I.X.; Yu, O.Y.; Mei, M.L.; Chu, C.H. Growing Global Research Interest in Antimicrobial Peptides for Caries Management: A Bibliometric Analysis. J. Funct. Biomater. 2022, 13, 210. [Google Scholar] [CrossRef]
- Wang, Z.; Shen, Y.; Haapasalo, M. Antibiofilm peptides against oral biofilms. J. Oral Microbiol. 2017, 9, 1327308. [Google Scholar] [CrossRef] [Green Version]
- Niu, J.Y.; Yin, I.X.; Wu, W.K.K.; Li, Q.L.; Mei, M.L.; Chu, C.H. Remineralising dentine caries using an artificial antimicrobial peptide: An in vitro study. J. Dent. 2021, 111, 103736. [Google Scholar] [CrossRef]
- Mahlapuu, M.; Bjorn, C.; Ekblom, J. Antimicrobial peptides as therapeutic agents: Opportunities and challenges. Crit. Rev. Biotechnol. 2020, 40, 978–992. [Google Scholar] [CrossRef]
- Kumar, P.; Kizhakkedathu, J.N.; Straus, S.K. Antimicrobial Peptides: Diversity, Mechanism of Action and Strategies to Improve the Activity and Biocompatibility In Vivo. Biomolecules 2018, 8, 4. [Google Scholar] [CrossRef] [Green Version]
- Shin, J.M.; Gwak, J.W.; Kamarajan, P.; Fenno, J.C.; Rickard, A.H.; Kapila, Y.L. Biomedical applications of nisin. J. Appl. Microbiol. 2016, 120, 1449–1465. [Google Scholar] [CrossRef] [Green Version]
- Bin Hafeez, A.; Jiang, X.; Bergen, P.J.; Zhu, Y. Antimicrobial Peptides: An Update on Classifications and Databases. Int. J. Mol. Sci. 2021, 22, 1691. [Google Scholar] [CrossRef]
- Lei, J.; Sun, L.; Huang, S.; Zhu, C.; Li, P.; He, J.; Mackey, V.; Coy, D.H.; He, Q. The antimicrobial peptides and their potential clinical applications. Am. J.Transl. Res. 2019, 11, 3919–3931. [Google Scholar]
- Huang, Y.; Huang, J.; Chen, Y. Alpha-helical cationic antimicrobial peptides: Relationships of structure and function. Protein Cell 2010, 1, 143–152. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Guarnieri, M.T.; Vasil, A.I.; Vasil, M.L.; Mant, C.T.; Hodges, R.S. Role of peptide hydrophobicity in the mechanism of action of alpha-helical antimicrobial peptides. Antimicrob. Agents Chemother. 2007, 51, 1398–1406. [Google Scholar] [CrossRef] [Green Version]
- Karle, I.; Gopi, H.N.; Balaram, P. Infinite pleated beta -sheet formed by the beta-hairpin Boc-beta-Phe-beta-Phe-D-Pro-Gly-beta-Phe-beta-Phe-OMe. Proc. Natl. Acad. Sci. USA 2002, 99, 5160–5164. [Google Scholar] [CrossRef] [Green Version]
- Sivanesam, K.; Kier, B.L.; Whedon, S.D.; Chatterjee, C.; Andersen, N.H. Hairpin structure stability plays a role in the activity of two antimicrobial peptides. FEBS Lett. 2016, 590, 4480–4488. [Google Scholar] [CrossRef] [Green Version]
- Wang, G. Improved methods for classification, prediction, and design of antimicrobial peptides. Methods Mol. Biol. 2015, 1268, 43–66. [Google Scholar] [CrossRef] [Green Version]
- Huan, Y.; Kong, Q.; Mou, H.; Yi, H. Antimicrobial Peptides: Classification, Design, Application and Research Progress in Multiple Fields. Front. Microbiol. 2020, 11, 582779. [Google Scholar] [CrossRef]
- Niu, J.Y.; Yin, I.X.; Mei, M.L.; Wu, W.K.K.; Li, Q.L.; Chu, C.H. The multifaceted roles of antimicrobial peptides in oral diseases. Mol. Oral Microbiol. 2021, 36, 159–171. [Google Scholar] [CrossRef]
- Tomasinsig, L.; Zanetti, M. The cathelicidins-structure, function and evolution. Curr. Protein Pept. Sci. 2005, 6, 23–34. [Google Scholar] [CrossRef]
- da Silva, B.R.; Conrado, A.J.S.; Pereira, A.L.; Evaristo, F.F.V.; Arruda, F.V.S.; Vasconcelos, M.A.; Lorenzón, E.N.; Cilli, E.M.; Teixeira, E.H. Antibacterial activity of a novel antimicrobial peptide [W7]KR12-KAEK derived from KR-12 against Streptococcus mutans planktonic cells and biofilms. Biofouling 2017, 33, 835–846. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Fewer, D.P.; Sivonen, K. Genome mining demonstrates the widespread occurrence of gene clusters encoding bacteriocins in cyanobacteria. PLoS ONE 2011, 6, e22384. [Google Scholar] [CrossRef] [Green Version]
- Eckert, R.; He, J.; Yarbrough, D.K.; Qi, F.; Anderson, M.H.; Shi, W. Targeted killing of Streptococcus mutans by a pheromone-guided “smart” antimicrobial peptide. Antimicrob. Agents Chemother. 2006, 50, 3651–3657. [Google Scholar] [CrossRef] [Green Version]
- Bonchev, A.; Vasileva, R.; Dyulgerova, E.; Yantcheva, S. Self-assembling Peptide P-11-4: A Biomimetic Agent for Enamel Remineralization. Int. J. Pept. Res. Ther. 2021, 27, 899–907. [Google Scholar] [CrossRef]
- Lv, X.; Yang, Y.; Han, S.; Li, D.; Tu, H.; Li, W.; Zhou, X.; Zhang, L. Potential of an amelogenin based peptide in promoting reminerlization of initial enamel caries. Arch. Oral Biol. 2015, 60, 1482–1487. [Google Scholar] [CrossRef]
- Andrian, S.; Stoleriu, S.; Taraboanta, I.; Gamen, A.C.; Dimbu, E.; Negraia, D. Remineralization of Incipient Enamel Lesions Using Non-Fluoride Agents. A Review. Int. J. Med. Dent. 2018, 22, 41–49. [Google Scholar]
- Niu, J.Y.; Yin, I.X.; Wu, W.K.K.; Li, Q.L.; Mei, M.L.; Chu, C.H. Efficacy of the dual-action GA-KR12 peptide for remineralising initial enamel caries: An in vitro study. Clin. Oral Investig. 2022, 26, 2441–2451. [Google Scholar] [CrossRef]
- Niu, J.Y.; Yin, I.X.; Wu, W.K.K.; Li, Q.L.; Mei, M.L.; Chu, C.H. A novel dual-action antimicrobial peptide for caries management. J. Dent. 2021, 111, 103729. [Google Scholar] [CrossRef]
- Sullivan, R.; Santarpia, P.; Lavender, S.; Gittins, E.; Liu, Z.; Anderson, M.H.; He, J.; Shi, W.; Eckert, R. Clinical efficacy of a specifically targeted antimicrobial peptide mouth rinse: Targeted elimination of Streptococcus mutans and prevention of demineralization. Caries Res. 2011, 45, 415–428. [Google Scholar] [CrossRef] [Green Version]
- Rubio, D.M.; Schoenbaum, E.E.; Lee, L.S.; Schteingart, D.E.; Marantz, P.R.; Anderson, K.E.; Platt, L.D.; Baez, A.; Esposito, K. Defining translational research: Implications for training. Acad. Med. 2010, 85, 470–475. [Google Scholar] [CrossRef] [Green Version]
- Volk, H.D.; Stevens, M.M.; Mooney, D.J.; Grainger, D.W.; Duda, G.N. Key elements for nourishing the translational research environment. Sci. Transl. Med. 2015, 7, 282cm282. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.S.; Kim, S.; Kim, E.; Hyun, B.; Kim, K.K.; Lee, B.J. Synergistic inhibitory effect of cationic peptides and antimicrobial agents on the growth of oral streptococci. Caries Res 2003, 37, 425–430. [Google Scholar] [CrossRef]
- Dashper, S.G.; O’Brien-Simpson, N.M.; Cross, K.J.; Paolini, R.A.; Hoffmann, B.; Catmull, D.V.; Malkoski, M.; Reynolds, E.C. Divalent metal cations increase the activity of the antimicrobial Peptide kappacin. Antimicrob. Agents Chemother. 2005, 49, 2322–2328. [Google Scholar] [CrossRef] [Green Version]
- Hao, Y.; Zhou, X.; Xiao, X.; Lu, J.; Zhang, F.; Hu, T.; Wu, H.; Chen, X. Effects of cecropin-XJ on growth and adherence of oral cariogenic bacteria in vitro. Chin. Med. J. 2005, 118, 155–160. [Google Scholar]
- Altman, H.; Steinberg, D.; Porat, Y.; Mor, A.; Fridman, D.; Friedman, M.; Bachrach, G. In vitro assessment of antimicrobial peptides as potential agents against several oral bacteria. J. Antimicrob. Chemother. 2006, 58, 198–201. [Google Scholar] [CrossRef]
- Padilla, C.; Lobos, O.; Hubert, E.; Poblete, F.; Navarro, A.; Nunez, L. In vitro antibacterial activity of the peptide PsVP-10 against Streptococcus mutans and Streptococcus sobrinus with and without glycocalyx. Int. J. Antimicrob. Agents 2006, 27, 212–216. [Google Scholar] [CrossRef]
- Szynol, A.; de Haard, J.J.; Veerman, E.C.; de Soet, J.J.; van Nieuw Amerongen, A.V. Design of a peptibody consisting of the antimicrobial peptide dhvar5 and a llama variable heavy-chain antibody fragment. Chem. Biol. Drug Des. 2006, 67, 425–431. [Google Scholar] [CrossRef]
- Wei, G.X.; Campagna, A.N.; Bobek, L.A. Effect of MUC7 peptides on the growth of bacteria and on Streptococcus mutans biofilm. J. Antimicrob. Chemother. 2006, 57, 1100–1109. [Google Scholar] [CrossRef]
- Beckloff, N.; Laube, D.; Castro, T.; Furgang, D.; Park, S.; Perlin, D.; Clements, D.; Tang, H.; Scott, R.W.; Tew, G.N.; et al. Activity of an antimicrobial peptide mimetic against planktonic and biofilm cultures of oral pathogens. Antimicrob. Agents Chemother. 2007, 51, 4125–4132. [Google Scholar] [CrossRef] [Green Version]
- Isogai, E.; Isogai, H.; Takahashi, K.; Okumura, K.; Savage, P.B. Ceragenin CSA-13 exhibits antimicrobial activity against cariogenic and periodontopathic bacteria. Oral. Microbiol. Immunol. 2009, 24, 170–172. [Google Scholar] [CrossRef]
- Li, L.; He, J.; Eckert, R.; Yarbrough, D.; Lux, R.; Anderson, M.; Shi, W. Design and characterization of an acid-activated antimicrobial peptide. Chem. Biol. Drug Des. 2010, 75, 127–132. [Google Scholar] [CrossRef] [Green Version]
- Okuda, K.; Hanada, N.; Usui, Y.; Takeuchi, H.; Koba, H.; Nakao, R.; Watanabe, H.; Senpuku, H. Inhibition of Streptococcus mutans adherence and biofilm formation using analogues of the SspB peptide. Arch. Oral Biol. 2010, 55, 754–762. [Google Scholar] [CrossRef]
- Tong, Z.; Dong, L.; Zhou, L.; Tao, R.; Ni, L. Nisin inhibits dental caries-associated microorganism in vitro. Peptides 2010, 31, 2003–2008. [Google Scholar] [CrossRef]
- Huo, L.J.; Zhang, K.; Ling, J.Q.; Peng, Z.X.; Huang, X.Y.; Liu, H.Y.; Gu, L.S. Antimicrobial and DNA-binding activities of the peptide fragments of human lactoferrin and histatin 5 against Streptococcus mutans. Arch. Oral Biol. 2011, 56, 869–876. [Google Scholar] [CrossRef]
- Tao, R.; Tong, Z.C.; Lin, Y.; Xue, Y.P.; Wang, W.; Kuang, R.; Wang, P.; Tian, Y.; Ni, L.X. Antimicrobial and antibiofilm activity of pleurocidin against cariogenic microorganisms. Peptides 2011, 32, 1748–1754. [Google Scholar] [CrossRef]
- Wang, W.; Tao, R.; Tong, Z.C.; Ding, Y.L.; Kuang, R.; Zhai, S.F.; Liu, J.; Ni, L.X. Effect of a novel antimicrobial peptide chrysophsin-1 on oral pathogens and Streptococcus mutans biofilms. Peptides 2012, 33, 212–219. [Google Scholar] [CrossRef]
- da Silva, B.R.; de Freitas, V.A.A.; Carneiro, V.A.; Arruda, F.V.S.; Lorenzon, E.N.; de Aguiar, A.S.W.; Cilli, E.M.; Cavada, B.S.; Teixeira, E.H. Antimicrobial activity of the synthetic peptide Lys-a1 against oral streptococci. Peptides 2013, 42, 78–83. [Google Scholar] [CrossRef]
- Ding, Y.; Wang, W.; Fan, M.; Tong, Z.; Kuang, R.; Jiang, W.; Ni, L. Antimicrobial and anti-biofilm effect of Bac8c on major bacteria associated with dental caries and Streptococcus mutans biofilms. Peptides 2014, 52, 61–67. [Google Scholar] [CrossRef]
- Shang, D.J.; Liang, H.; Wei, S.; Yan, X.; Yang, Q.Z.; Sun, Y. Effects of antimicrobial peptide L-K6, a temporin-1CEb analog on oral pathogen growth, Streptococcus mutans biofilm formation, and anti-inflammatory activity. Appl. Microbiol. Biotechnol. 2014, 98, 8685–8695. [Google Scholar] [CrossRef]
- Taniguchi, M.; Ochiai, A.; Takahashi, K.; Nakamichi, S.; Nomoto, T.; Saitoh, E.; Kato, T.; Tanaka, T. Antimicrobial activity and mechanism of action of a novel cationic alpha-helical octadecapeptide derived from alpha-amylase of rice. Biopolymers 2015, 104, 73–83. [Google Scholar] [CrossRef]
- Kreling, P.F.; Aida, K.L.; Massunari, L.; Caiaffa, K.S.; Percinoto, C.; Bedran, T.B.L.; Spolidorio, D.M.P.; Abuna, G.F.; Cilli, E.M.; Duque, C. Cytotoxicity and the effect of cationic peptide fragments against cariogenic bacteria under planktonic and biofilm conditions. Biofouling 2016, 32, 995–1006. [Google Scholar] [CrossRef] [Green Version]
- Ahn, K.B.; Kim, A.R.; Kum, K.Y.; Yun, C.H.; Han, S.H. The synthetic human beta-defensin-3 C15 peptide exhibits antimicrobial activity against Streptococcus mutans, both alone and in combination with dental disinfectants. J. Microbiol. 2017, 55, 830–836. [Google Scholar] [CrossRef]
- Chen, L.; Jia, L.; Zhang, Q.; Zhou, X.; Liu, Z.; Li, B.; Zhu, Z.; Wang, F.; Yu, C.; Zhang, Q.; et al. A novel antimicrobial peptide against dental-caries-associated bacteria. Anaerobe 2017, 47, 165–172. [Google Scholar] [CrossRef]
- Ito, T.; Ichinosawa, T.; Shimizu, T. Streptococcal adhesin SspA/B analogue peptide inhibits adherence and impacts biofilm formation of Streptococcus mutans. PLoS ONE 2017, 12, e0175483. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Yang, G.; Lu, S.; Chen, D.; Fan, S.; Xu, J.; Wu, B.; He, J. Design and antimicrobial activities of LL-37 derivatives inhibiting the formation of Streptococcus mutans biofilm. Chem. Biol. Drug Des. 2019, 93, 1175–1185. [Google Scholar] [CrossRef]
- Liang, D.; Li, H.; Xu, X.; Liang, J.; Dai, X.; Zhao, W. Rational design of peptides with enhanced antimicrobial and anti-biofilm activities against cariogenic bacterium Streptococcus mutans. Chem. Biol. Drug Des. 2019, 94, 1768–1781. [Google Scholar] [CrossRef]
- Kokilakanit, P.; Koontongkaew, S.; Roytrakul, S.; Utispan, K. A novel non-cytotoxic synthetic peptide, Pug-1, exhibited an antibiofilm effect on Streptococcus mutans adhesion. Lett. Appl. Microbiol. 2020, 70, 151–158. [Google Scholar] [CrossRef]
- Wei, H.; Xie, Z.; Tan, X.; Guo, R.; Song, Y.; Xie, X.; Wang, R.; Li, L.; Wang, M.; Zhang, Y. Temporin-Like Peptides Show Antimicrobial and Anti-Biofilm Activities against Streptococcus mutans with Reduced Hemolysis. Molecules 2020, 25, 5724. [Google Scholar] [CrossRef]
- Cai, S.; Meng, K.; Liu, P.; Cao, X.; Wang, G. Suppressive effects of gecko cathelicidin on biofilm formation and cariogenic virulence factors of Streptococcus mutans. Arch. Oral Biol. 2021, 129, 105205. [Google Scholar] [CrossRef]
- Luo, J.; Feng, Z.; Jiang, W.; Jiang, X.; Chen, Y.; Lv, X.; Zhang, L. Novel lactotransferrin-derived synthetic peptides suppress cariogenic bacteria in vitro and arrest dental caries in vivo: Novel lactotransferrin-derived anticaries peptides. J. Oral Microbiol. 2021, 13, 1943999. [Google Scholar] [CrossRef]
- Mohammadipour, H.S.; Akbari, M.; Tanhaeian, A.; Pourgonabadi, S.; Sekandari, S.; Karimian, E. A New Approach Against Some Oral Pathogenic Bacteria Using a Chimeric Antimicrobial Peptide Derived from the Camel Milk; Lactoferrampin Lactoferricin Chimer. Curr. Drug Discov. Technol. 2021, 18, 9–16. [Google Scholar] [CrossRef]
- He, J.; Anderson, M.H.; Shi, W.; Eckert, R. Design and activity of a ‘dual-targeted’ antimicrobial peptide. Int. J. Antimicrob. Agents 2009, 33, 532–537. [Google Scholar] [CrossRef] [Green Version]
- Li, L.N.; Guo, L.H.; Lux, R.; Eckert, R.; Yarbrough, D.; He, J.; Anderson, M.; Shi, W.Y. Targeted antimicrobial therapy against Streptococcus mutans establishes protective non-cariogenic oral biofilms and reduces subsequent infection. Int. J. Oral Sci. 2010, 2, 66–73. [Google Scholar] [CrossRef] [Green Version]
- He, J.; Yarbrough, D.K.; Kreth, J.; Anderson, M.H.; Shi, W.; Eckert, R. Systematic approach to optimizing specifically targeted antimicrobial peptides against Streptococcus mutans. Antimicrob. Agents Chemother. 2010, 54, 2143–2151. [Google Scholar] [CrossRef] [Green Version]
- Huo, L.; Huang, X.; Ling, J.; Liu, H.; Liu, J. Selective activities of STAMPs against Streptococcus mutans. Exp. Ther. Med. 2018, 15, 1886–1893. [Google Scholar] [CrossRef] [Green Version]
- Mai, J.; Tian, X.L.; Gallant, J.W.; Merkley, N.; Biswas, Z.; Syvitski, R.; Douglas, S.E.; Ling, J.Q.; Li, Y.H. A Novel Target-Specific, Salt-Resistant Antimicrobial Peptide against the Cariogenic Pathogen Streptococcus mutans. Antimicrob. Agents Chemother. 2011, 55, 5205–5213. [Google Scholar] [CrossRef] [Green Version]
- Huang, Z.B.; Shi, X.; Mao, J.; Gong, S.Q. Design of a hydroxyapatite-binding antimicrobial peptide with improved retention and antibacterial efficacy for oral pathogen control. Sci. Rep. 2016, 6, 38410. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Xia, L.; Haapasalo, M.; Wei, W.; Zhang, D.; Ma, J.; Shen, Y. A novel hydroxyapatite-binding antimicrobial peptide against oral biofilms. Clin. Oral Investig. 2019, 23, 2705–2712. [Google Scholar] [CrossRef]
- Zhang, L.Y.; Fang, Z.H.; Li, Q.L.; Cao, C.Y. A tooth-binding antimicrobial peptide to prevent the formation of dental biofilm. J. Mater. Sci. Mater. Med. 2019, 30, 45. [Google Scholar] [CrossRef]
- Concannon, S.P.; Crowe, T.D.; Abercrombie, J.J.; Molina, C.M.; Hou, P.; Sukumaran, D.K.; Raj, P.A.; Leung, K.P. Susceptibility of oral bacteria to an antimicrobial decapeptide. J. Med. Microbiol. 2003, 52, 1083–1093. [Google Scholar] [CrossRef]
- Li, H.J.; Cheng, J.W.; Yu, H.Y.; Xin, Y.; Tang, L.; Ma, Y.F. Effect of the Antimicrobial Peptide D-Nal-Pac-525 on the Growth of Streptococcus mutans and Its Biofilm Formation. J. Microbiol. Biotechnol. 2013, 23, 1070–1075. [Google Scholar] [CrossRef] [Green Version]
- Xiang, S.W.; Shao, J.; He, J.; Wu, X.Y.; Xu, X.H.; Zhao, W.H. A Membrane-Targeted Peptide Inhibiting PtxA of Phosphotransferase System Blocks Streptococcus mutans. Caries Res. 2019, 53, 176–193. [Google Scholar] [CrossRef]
- Tu, H.X.; Fan, Y.Y.; Lv, X.P.; Han, S.L.; Zhou, X.D.; Zhang, L.L. Activity of Synthetic Antimicrobial Peptide GH12 against Oral Streptococci. Caries Res. 2016, 50, 48–61. [Google Scholar] [CrossRef]
- Chou, S.; Li, Q.; Wu, H.; Chang, Y.F.; Shang, L.; Li, J.; Wang, Z.; Shan, A. Selective antifungal activity and fungal biofilm inhibition of tryptophan center symmetrical short peptide. Int. J. Mol. Sci. 2021, 22, 8231. [Google Scholar] [CrossRef]
- Min, K.R.; Galvis, A.; Williams, B.; Rayala, R.; Cudic, P.; Ajdic, D. Antibacterial and Antibiofilm Activities of a Novel Synthetic Cyclic Lipopeptide against Cariogenic Streptococcus mutans UA159. Antimicrob. Agents Chemother. 2017, 61, e00776-17. [Google Scholar] [CrossRef] [Green Version]
- Simon, G.; Berube, C.; Voyer, N.; Grenier, D. Anti-biofilm and anti-adherence properties of novel cyclic dipeptides against oral pathogens. Bioorg. Med. Chem. 2019, 27, 2323–2331. [Google Scholar] [CrossRef]
- Cao, Y.; Liu, W.; Ning, T.; Mei, M.L.; Li, Q.L.; Lo, E.C.; Chu, C.H. A novel oligopeptide simulating dentine matrix protein 1 for biomimetic mineralization of dentine. Clin. Oral. Investig. 2014, 18, 873–881. [Google Scholar] [CrossRef]
- Basiri, T.; Johnson, N.D.; Moffa, E.B.; Mulyar, Y.; Serra Nunes, P.L.; Machado, M.A.A.M.; Siqueira, W.L. Duplicated or Hybridized Peptide Functional Domains Promote Oral Homeostasis. J. Dent. Res. 2017, 96, 1162–1167. [Google Scholar] [CrossRef]
- Ren, Q.; Li, Z.; Ding, L.; Wang, X.; Niu, Y.; Qin, X.; Zhou, X.; Zhang, L. Anti-biofilm and remineralization effects of chitosan hydrogel containing amelogeninderived peptide on initial caries lesions. Regen. Biomater. 2018, 5, 69–76. [Google Scholar] [CrossRef]
- Wang, X.Q.; Wang, Y.F.; Wang, K.; Ren, Q.; Li, H.R.; Zheng, S.N.; Niu, Y.M.; Zhou, X.D.; Li, W.; Zhang, L.L. Bifunctional anticaries peptides with antibacterial and remineralizing effects. Oral Dis. 2019, 25, 488–496. [Google Scholar] [CrossRef]
- Zhou, L.; Wong, H.M.; Zhang, Y.Y.; Li, Q.L. Constructing an Antibiofouling and Mineralizing Bioactive Tooth Surface to Protect against Decay and Promote Self-Healing. ACS Appl. Mater. Interfaces 2020, 12, 3021–3031. [Google Scholar] [CrossRef]
- Dogan, S.; Fong, H.; Yucesoy, D.T.; Cousin, T.; Gresswell, C.; Dag, S.; Huang, G.; Sarikaya, M. Biomimetic Tooth Repair: Amelogenin-Derived Peptide Enables in Vitro Remineralization of Human Enamel. ACS Biomater. Sci. Eng. 2018, 4, 1788–1796. [Google Scholar] [CrossRef]
- Kosoric, J.; Williams, R.A.D.; Hector, M.P.; Anderson, P. A synthetic peptide based on a natural salivary protein reduces demineralisation in model systems for dental caries and erosion. Int. J. Pept. Res. Ther. 2007, 13, 497–503. [Google Scholar] [CrossRef]
- Wang, K.; Wang, X.Q.; Li, H.R.; Zheng, S.N.; Ren, Q.; Wang, Y.F.; Niu, Y.M.; Li, W.; Zhou, X.D.; Zhang, L.L. A statherin-derived peptide promotes hydroxyapatite crystallization and in situ remineralization of artificial enamel caries. RSC Adv. 2018, 8, 1647–1655. [Google Scholar] [CrossRef] [Green Version]
- Chung, H.Y.; Li, C.C. Microstructure and nanomechanical properties of enamel remineralized with asparagine-serine-serine peptide. Mater. Sci. Eng. C Mater. Biol. Appl. 2013, 33, 969–973. [Google Scholar] [CrossRef]
- Hsu, C.C.; Chung, H.Y.; Yang, J.M.; Shi, W.; Wu, B. Influence of 8DSS peptide on nano-mechanical behavior of human enamel. J. Dent. Res. 2011, 90, 88–92. [Google Scholar] [CrossRef]
- Lee, Y.S.; Park, Y.H.; Lee, D.S.; Seo, Y.M.; Lee, J.H.; Park, J.H.; Choung, H.W.; Park, S.H.; Shon, W.J.; Park, J.C. Tubular Dentin Regeneration Using a CPNE7-Derived Functional Peptide. Materials 2020, 13, 4618. [Google Scholar] [CrossRef]
- Kirkham, J.; Firth, A.; Vernals, D.; Boden, N.; Robinson, C.; Shore, R.C.; Brookes, S.J.; Aggeli, A. Self-assembling peptide scaffolds promote enamel remineralization. J. Dent. Res. 2007, 86, 426–430. [Google Scholar] [CrossRef]
- Li, Z.C.; Qin, X.; Ren, Q.; Hu, D.; Tian, T.; He, T.; Li, W.; Zhang, L.L. Rational Design of beta-sheet Peptides with Self-Assembly into Nanofibres on Remineralisation of Initial Caries Lesions. Chin. J. Dent. Res. 2020, 23, 131–141. [Google Scholar]
- Niu, J.Y.; Yin, X.; Wu WK, K.; Li, Q.L.; Mei, M.L.; Chu, C.H. Data from: A Concise Review on Antimicrobial Peptides for Prevention and Treatment of Dental Caries; University of Hong Kong: Hong Kong, China, 2021. [Google Scholar] [CrossRef]
- Ding, L.J.; Han, S.L.; Wang, K.; Zheng, S.N.; Zheng, W.Y.; Peng, X.; Niu, Y.M.; Li, W.; Zhang, L.L. Remineralization of enamel caries by an amelogenin-derived peptide and fluoride in vitro. Regen. Biomater. 2020, 7, 283–292. [Google Scholar] [CrossRef] [Green Version]
- Furka, A. Forty years of combinatorial technology. Drug Discov. Today 2022, 27, 103308. [Google Scholar] [CrossRef]
- Korendovych, I.V.; DeGrado, W.F. De novo protein design, a retrospective. Q. Rev. Biophys. 2020, 53, e3. [Google Scholar] [CrossRef]
- Oppewal, T.R.; Jansen, I.D.; Hekelaar, J.; Mayer, C. A Strategy to Select Macrocyclic Peptides Featuring Asymmetric Molecular Scaffolds as Cyclization Units by Phage Display. J. Am. Chem. Soc. 2022, 144, 3644–3652. [Google Scholar] [CrossRef]
- Qvit, N.; Kornfeld, O.S. Development of a Backbone Cyclic Peptide Library as Potential Antiparasitic Therapeutics Using Microwave Irradiation. J. Vis. Exp. 2016, 107, e53589. [Google Scholar] [CrossRef] [Green Version]
- Bionda, N.; Stawikowski, M.; Stawikowska, R.; Cudic, M.; Lopez-Vallejo, F.; Treitl, D.; Medina-Franco, J.; Cudic, P. Effects of cyclic lipodepsipeptide structural modulation on stability, antibacterial activity, and human cell toxicity. ChemMedChem 2012, 7, 871–882. [Google Scholar] [CrossRef] [Green Version]
- Xu, V.W.; Nizami, M.Z.I.; Yin, I.X.; Lung, C.Y.K.; Yu, O.Y.; Chu, C.H. Caries Management with Non-Metallic Nanomaterials: A Systematic Review. Int. J. Nanomed. 2022, 17, 5809–5824. [Google Scholar] [CrossRef]
- Chander, N.G. Sample size estimation. J. Indian Prosthodont. Soc. 2017, 17, 217–218. [Google Scholar] [CrossRef]
- Greco, I.; Molchanova, N.; Holmedal, E.; Jenssen, H.; Hummel, B.D.; Watts, J.L.; Hakansson, J.; Hansen, P.R.; Svenson, J. Correlation between hemolytic activity, cytotoxicity and systemic in vivo toxicity of synthetic antimicrobial peptides. Sci. Rep. 2020, 10, 13206. [Google Scholar] [CrossRef]
- Eriksen, M.B.; Frandsen, T.F. The impact of patient, intervention, comparison, outcome (PICO) as a search strategy tool on literature search quality: A systematic review. J. Med. Libr. Assoc. 2018, 106, 420–431. [Google Scholar] [CrossRef]
Design Methods and the Source of Peptides | Authors, Year [Reference Number] |
---|---|
Template-based design method | |
GGN6, frog: gaegurin | Kim et al., 2003 [42] |
Kappacin, bovine: kappa-casein | Dashper et al., 2005 [43] |
Cecropin-XY, insect: cecropin | Hao et al., 2005 [44] |
K4 -S4(1-15)a, tree frog: dermaseptin | Altman et al,. 2006 [45] |
PsVP-10, Pseudomonas sp.: R10 | Padilla et al., 2006 [46] |
dhvar5, human beings: histatin | Szynol et al., 2006 [47] |
MUC7-12mer, human beings: mucin | Wei et al., 2006 [48] |
mPE, frog: magainin | Beckloff et al., 2007 [49] |
CSA-13, human beings: ceragenin | Isogai et al., 2009 [50] |
AAP, styela clava: clavanin A | Li et al., 2010 [51] |
SspB(390–T400K–402), S gordonii: Ssp | Okuda et al., 2010 [52] |
Nisin, bacteria: nisin | Tong et al., 2010 [53] |
hLF1–11, human beings: lactoferrin | Huo et al., 2011 [54] |
Pleurocidin, fish: pleurocidin | Tao et al., 2011 [55] |
chrysophsin-1, fish: chrysophsin | Wang et al., 2012 [56] |
Lys-a1, frog | da Silva et al., 2013 [57] |
Bac8c, bovine: bactenecin | Ding et al., 2014 [58] |
L-K6, frog: temporin-1 | Shang et al., 2014 [59] |
Amyl-1–18, rice: α-amylase | Taniguchi et al., 2015 [60] |
D1–23, human beings: defensin | Kreling et al., 2016 [61] |
hBD3-C15, human beings: defensin | Ahn et al., 2017 [62] |
ZXR-2, insect: mauriporin | Chen et al., 2017 [63] |
KR12-KAKE, human beings: cathelicidin | da Silva et al., 2017 [31] |
Ssp(A4K-A11K), S gordonii: Ssp | Ito et al., 2017 [64] |
IG-13-1 and IG-13-2, human beings: cathelicidin | Chen et al., 2019 [65] |
LR-10, Lactobacillus sp.: reutericin 6 | Liang et al., 2019 [66] |
Pug-1, Punica granatum | Kokilakanit et al., 2020 [67] |
GHaR6R, GHaR7R, GHaR8R, and GHaR9W, frog: temporin | Wei et al., 2020 [68] |
Gj-CATH2, gekko: cathelicidin | Cai et al., 2021 [69] |
LF-1 and LF-2, human beings: lactoferrin | Luo et al., 2021 [70] |
LFA-LFC, camel milk | Mohammadipour et al., 2021 [71] |
Conjugation method | |
C16G2, details in Table 2 | Eckert et al., 2006 [33] |
M8(KH)-20, details in Table 2 | He et al., 2009 [72] |
2_1G2, details in Table 2 | Li et al., 2010 [73] |
Sm6(L1)B33, details in Table 2 | He et al., 2010 [74] |
C11H, details in Table 2 | Huo et al., 2018 [75] |
IMB-2, details in Table 2 | Mai et al., 2011 [76] |
HBAMP, details in Table 2 | Huang et al., 2016 [77] |
SHABP and MHABP, details in Table 2 | Yang et al., 2019 [78] |
DPS-PI, details in Table 2 | Zhang et al., 2019 [79] |
Synthetic combinatorial technology method | |
KSL, decapeptide library | Concannon et al., 2003 [80] |
D-Nal-Pac-525, tryptophan-rich peptides library | Li et al., 2013 [81] |
C10-KKWW, lipopeptide library | Xiang et al., 2019 [82] |
De novo design method | |
GH12 | Tu et al., 2016 [83] |
P19 | Chou et al., 2021 [84] |
Cyclisationmethod | |
CLP-4, bacterial: fusaricidin | Min et al., 2017 [85] |
39a, 39b, 39c, 41a, and 41b, cyclic dipeptides | Simon et al., 2019 [86] |
Peptides [Ref. No.] | Function Domain I and Source | Function Domain II and Source |
---|---|---|
C16G2 [33] | S. mutans targeting domain; S. mutans: competence-stimulating peptide | Antimicrobial domain; sheep: antimicrobial peptide 29 |
M8(KH)-20 [72] | S. mutans targeting domain; S. mutans: competence-stimulating peptide | Pseudomonas spp. targeting domain; KH peptide |
2_1G2 [73] | S. mutans targeting domain; 2_1 | Antimicrobial domain; sheep: antimicrobial peptide 29 |
Sm6(L1)B33 [74] | S. mutans targeting domain; Sm6 | Antimicrobial domain; peptides binary libraries |
C11H [75] | S. mutans targeting domain; S. mutans: competence-stimulating peptide | Antimicrobial domain; human beings: lactoferrin |
IMB-2 [76] | S. mutans targeting domain; S. mutans: competence-stimulating peptide | Antimicrobial domain; marine flatfish: pleurocidin |
HBAMP [77] | Hydroxyapatite-binding domain; HBP7 | Antimicrobial domain; KSLW |
SHABP [78] | Hydroxyapatite-binding domain; CNPGFAQAC | Antimicrobial domain; 1018 |
MHABP [78] | Hydroxyapatite-binding domain; CMLPHHGAC | Antimicrobial domain; 1018 |
DPS-PI [79] | Hydroxyapatite-binding domain; phosphoserine | Antimicrobial domain; horseshoe crab: polyphemusin I |
Novel oligopeptide [87] | Mineralising domain; human beings: dentine matrix protein 1 | Mineralising domain; human beings: amelogenin |
DR9-RR14 [88] | Mineralising domain; human beings: statherin | Antimicrobial domain; human beings: histatin-3 |
CS-QP5 [89] | Mineralising domain; human beings: amelogenin | Antimicrobial domain; antimicrobial chitosan hydrogel |
TVH19 [90] | Mineralising domain; human beings: amelogenin | Antimicrobial domain; GH12 |
Sp−H5 [91] | Mineralising domain; phosphoserine | Antimicrobial domain; human beings: histatin-5 |
GA-KR12 [38] | Mineralising domain; gallic acid | Antimicrobial domain; human beings: LL-37 |
Functions of Peptiedes [Reference Number] | ||
---|---|---|
Inhibition of S. mutans growth in the planktonic phase | ||
|
|
|
|
|
|
|
|
|
|
| |
Inhibition of S. mutans growth in the planktonic phase and biofilm | ||
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Killing of S. mutans in multispecies biofilm | ||
|
|
|
Inhibition of S. mutans biofilm formation on hydroxyapatite | ||
|
|
|
Inhibition of C. albicans growth in the planktonic phase | ||
|
|
|
|
| |
Inhibition of C. albicans growth in the planktonic phase and biofilm | ||
|
No. | Study Authors, Year [Reference Number] | Item # | Score | Risk of Bias | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | ||||
1 | Chou et al., 2021 [84] | ● | ● | ● | ● | ● | ● | ● | 7 | Low | ||
2 | Luo et al., 2021 [70] | ● | ● | ● | ● | ● | ● | 6 | Medium | |||
3 | Cai et al., 2021 [69] | ● | ● | ● | ● | ● | ● | 6 | Medium | |||
4 | Wei et al., 2020 [68] | ● | ● | ● | ● | ● | ● | 6 | Medium | |||
5 | Chen et al., 2019 [65] | ● | ● | ● | ● | ● | ● | 6 | Medium | |||
6 | Chen et al., 2017 [63] | ● | ● | ● | ● | ● | ● | 6 | Medium | |||
7 | Min et al., 2017 [85] | ● | ● | ● | ● | ● | ● | 6 | Medium | |||
8 | Huang et al., 2016 [77] | ● | ● | ● | ● | ● | ● | 6 | Medium | |||
9 | Shang et al., 2014 [59] | ● | ● | ● | ● | ● | ● | 6 | Medium | |||
10 | Li et al., 2010 [51] | ● | ● | ● | ● | ● | ● | 6 | Medium | |||
11 | Dashper et al., 2005 [43] | ● | ● | ● | ● | ● | ● | 6 | Medium | |||
12 | Kokilakanit et al., 2020 [67] | ● | ● | ● | ● | ● | 5 | Medium | ||||
13 | Liang et al., 2019 [66] | ● | ● | ● | ● | ● | 5 | Medium | ||||
14 | Yang et al., 2019 [78] | ● | ● | ● | ● | ● | 5 | Medium | ||||
15 | Zhang et al., 2019 [79] | ● | ● | ● | ● | ● | 5 | Medium | ||||
16 | Huo et al., 2018 [75] | ● | ● | ● | ● | ● | 5 | Medium | ||||
17 | Xiang et al., 2019 [82] | ● | ● | ● | ● | ● | 5 | Medium | ||||
18 | da Silva et al., 2017 [31] | ● | ● | ● | ● | ● | 5 | Medium | ||||
19 | Ding et al., 2014 [58] | ● | ● | ● | ● | ● | 5 | Medium | ||||
20 | Li et al., 2013 [81] | ● | ● | ● | ● | ● | 5 | Medium | ||||
21 | Wang et al., 2012 [56] | ● | ● | ● | ● | ● | 5 | Medium | ||||
22 | Mai et al., 2011 [76] | ● | ● | ● | ● | ● | 5 | Medium | ||||
23 | Hao et al., 2005 [44] | ● | ● | ● | ● | ● | 5 | Medium | ||||
24 | Concannon et al., 2003 [80] | ● | ● | ● | ● | ● | 5 | Medium | ||||
25 | Kim et al., 2003 [42] | ● | ● | ● | ● | ● | 5 | Medium | ||||
26 | Mohammadipour et al., 2021 [71] | ● | ● | ● | ● | 4 | Medium | |||||
27 | Kreling et al., 2016 [61] | ● | ● | ● | ● | 4 | Medium | |||||
28 | Taniguchi et al., 2015 [60] | ● | ● | ● | ● | 4 | Medium | |||||
29 | Tao et al., 2011 [55] | ● | ● | ● | ● | 4 | Medium | |||||
30 | Huo et al., 2011 [54] | ● | ● | ● | ● | 4 | Medium | |||||
31 | Tong et al., 2010 [53] | ● | ● | ● | ● | 4 | Medium | |||||
32 | Wei et al., 2006 [48] | ● | ● | ● | ● | 4 | Medium | |||||
33 | Eckert et al., 2006 [33] | ● | ● | ● | ● | 4 | Medium | |||||
34 | Simon et al., 2019 [86] | ● | ● | ● | 3 | High | ||||||
35 | Ahn et al., 2017 [62] | ● | ● | ● | 3 | High | ||||||
36 | Ito et al., 2017 [64] | ● | ● | ● | 3 | High | ||||||
37 | Tu et al., 2016 [83] | ● | ● | ● | 3 | High | ||||||
38 | da Silva et al., 2013 [57] | ● | ● | ● | 3 | High | ||||||
39 | Okuda et al., 2010 [52] | ● | ● | ● | 3 | High | ||||||
40 | Li et al., 2010 [73] | ● | ● | ● | 3 | High | ||||||
41 | He et al., 2010 [74] | ● | ● | ● | 3 | High | ||||||
42 | He et al., 2009 [72] | ● | ● | ● | 3 | High | ||||||
43 | Isogai et al., 2009 [50] | ● | ● | ● | 3 | High | ||||||
44 | Beckloff et al., 2007 [49] | ● | ● | ● | 3 | High | ||||||
45 | Szynol et al., 2006 [47] | ● | ● | ● | 3 | High | ||||||
46 | Altman et al., 2006 [45] | ● | ● | 2 | High | |||||||
47 | Padilla et al., 2006 [46] | ● | ● | 2 | High |
Design Methods and the Source of Peptides | Authors, Year [Reference Number] |
---|---|
Template-based design method | |
StN21, human beings: statherin | Kosoric et al., 2007 [93] |
8DSS, human beings: dentin phosphoprotein | Hsu et al., 2011 [96] |
3NSS, human beings: dentin phosphoprotein | Chung et al., 2013 [95] |
QP5, human beings: amelogenin | Lv et al., 2015 [35] |
shADP5, human beings: amelogenin | Dogan et al., 2018 [92] |
DE-11, human beings: statherin | Wang et al., 2018 [94] |
Cpne7-DP, human beings: Copine 7 | Lee et al., 2020 [97] |
Conjugation method | |
Novel oligopeptide, details in Table 2 | Cao et al., 2014 [87] |
De novo design method | |
P11-4 | Kirkham et al., 2007 [98] |
ID8 | Li et al., 2020 [99] |
Functions of Peptides [Reference Number] | ||
---|---|---|
Reduction of mineral loss in hydroxyapatite | ||
| ||
Reconstruction of the interrod regions in enamel caries | ||
| ||
Promotion of enamel caries remineralisation | ||
|
|
|
|
|
|
Promotion of dentine caries remineralisation | ||
|
|
No. | Study Authors, Year [Reference Number] | Item # | Score | Risk of Bias | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | ||||
1 | Li et al., 2020 [99] | ● | ● | ● | ● | ● | 5 | Medium | ||||
2 | Lee et al., 2020 [97] | ● | ● | ● | ● | ● | 5 | Medium | ||||
3 | Wang et al., 2018 [94] | ● | ● | ● | ● | ● | 5 | Medium | ||||
4 | Dogan et al., 2018 [92] | ● | ● | ● | ● | 4 | Medium | |||||
5 | Lv et al., 2015 [35] | ● | ● | ● | ● | 4 | Medium | |||||
6 | Cao et al., 2014 [87] | ● | ● | ● | ● | 4 | Medium | |||||
7 | Hsu et al., 2011 [96] | ● | ● | ● | ● | 4 | Medium | |||||
8 | Kirkham et al., 2007 [98] | ● | ● | ● | ● | 4 | Medium | |||||
9 | Kosoric et al., 2007 [93] | ● | ● | ● | ● | 4 | Medium | |||||
10 | Chung et al., 2013 [95] | ● | ● | ● | 3 | High |
Peptides (Authors, Year) [Reference Number] | Functions for Caries Management |
---|---|
DR9-RR14 (Basiri et al., 2017) [88] | Inhibition of S. mutans growth in planktonic phase Inhibition of C. albicans growth in planktonic phase Prevention of enamel demineralisation |
TVH19 (Wang et al., 2019) [90] | Inhibition of S. mutans growth in planktonic phase and biofilm Promotion of enamel caries remineralisation |
Sp−H5 (Zhou et al., 2020) [91] | Inhibition of S. mutans growth in planktonic phase and biofilm Promotion of enamel caries remineralisation |
GA-KR12 (Niu et al., 2021) [38] | Inhibition of S. mutans growth in planktonic phase Inhibition of C. albicans growth in planktonic phase Promotion of enamel caries remineralisation |
CS-QP5 (Ren et al., 2019) [89] | Inhibition of S. mutans growth in planktonic phase and biofilm Promotion of enamel caries remineralisation |
No. | Study Authors, Year [Reference Number] | Item # | Score | Risk of Bias | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | ||||
1 | Niu et al., 2021 [38] | ● | ● | ● | ● | ● | ● | ● | ● | 8 | Low | |
2 | Zhou et al., 2020 [91] | ● | ● | ● | ● | ● | ● | ● | 7 | Low | ||
3 | Wang et al.,2019 [90] | ● | ● | ● | ● | ● | ● | 6 | Medium | |||
4 | Ren et al., 2019 [89] | ● | ● | ● | ● | ● | 5 | Medium | ||||
5 | Basiri et al., 2017 [88] | ● | ● | ● | ● | 4 | Medium |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, O.L.; Niu, J.Y.; Yu, O.Y.; Mei, M.L.; Jakubovics, N.S.; Chu, C.H. Peptide Designs for Use in Caries Management: A Systematic Review. Int. J. Mol. Sci. 2023, 24, 4247. https://doi.org/10.3390/ijms24044247
Zhang OL, Niu JY, Yu OY, Mei ML, Jakubovics NS, Chu CH. Peptide Designs for Use in Caries Management: A Systematic Review. International Journal of Molecular Sciences. 2023; 24(4):4247. https://doi.org/10.3390/ijms24044247
Chicago/Turabian StyleZhang, Olivia Lili, John Yun Niu, Ollie Yiru Yu, May Lei Mei, Nicholas Stephen Jakubovics, and Chun Hung Chu. 2023. "Peptide Designs for Use in Caries Management: A Systematic Review" International Journal of Molecular Sciences 24, no. 4: 4247. https://doi.org/10.3390/ijms24044247