Enhanced Fear Memories and Altered Brain Glucose Metabolism (18F-FDG-PET) following Subanesthetic Intravenous Ketamine Infusion in Female Sprague–Dawley Rats
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Animals
4.2. Auditory Fear Conditioning
4.3. IV Ketamine Infusion
4.4. Fear Memory Testing
4.5. Estrous Cycle Monitoring
4.6. CORT and Progesterone Assays
4.7. 18F-FDG-PET and CT Imaging
4.8. 18F-FDG-PET/CT Data Analysis
4.9. Statistics
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Morris, C.; Perris, A.; Klein, J.; Mahoney, P. Anaesthesia in haemodynamically compromised emergency patients: Does ketamine represent the best choice of induction agent? Anaesthesia 2009, 64, 532–539. [Google Scholar] [CrossRef] [PubMed]
- Krystal, J.H.; Karper, L.P.; Seibyl, J.P.; Freeman, G.K.; Delaney, R.; Bremner, J.D.; Heninger, G.R.; Bowers, M.B., Jr.; Charney, D.S. Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans: Psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch. Gen. Psychiatry 1994, 51, 199–214. [Google Scholar] [CrossRef] [PubMed]
- Corlett, P.R.; Cambridge, V.; Gardner, J.M.; Piggot, J.S.; Turner, D.C.; Everitt, J.C.; Arana, F.S.; Morgan, H.L.; Milton, A.L.; Lee, J.L.; et al. Ketamine Effects on Memory Reconsolidation Favor a Learning Model of Delusions. PLoS ONE 2013, 8, e65088. [Google Scholar] [CrossRef] [PubMed]
- Elwood, L.S.; Hahn, K.S.; Olatunji, B.O.; Williams, N.L. Cognitive vulnerabilities to the development of PTSD: A review of four vulnerabilities and the proposal of an integrative vulnerability model. Clin. Psychol. Rev. 2009, 29, 87–100. [Google Scholar] [CrossRef]
- Breslau, N.; Davis, G.C.; Andreski, P.; Peterson, E.L.; Schultz, L.R. Sex Differences in Posttraumatic Stress Disorder. Arch. Gen. Psychiatry 1997, 54, 1044–1048. [Google Scholar] [CrossRef]
- Olff, M.; Langeland, W.; Draijer, N.; Gersons, B.P.R. Gender differences in posttraumatic stress disorder. Psychol. Bull. 2007, 133, 183–204. [Google Scholar] [CrossRef]
- Choi, K.H.; Berman, R.Y.; Zhang, M.; Spencer, H.F.; Radford, K.D. Effects of Ketamine on Rodent Fear Memory. Int. J. Mol. Sci. 2020, 21, 7173. [Google Scholar] [CrossRef]
- Juven-Wetzler, A.; Cohen, H.; Kaplan, Z.; Kohen, A.; Porat, O.; Zohar, J. Immediate ketamine treatment does not prevent posttraumatic stress responses in an animal model for PTSD. Eur. Neuropsychopharmacol. 2014, 24, 469–479. [Google Scholar] [CrossRef]
- Girgenti, M.J.; Ghosal, S.; LoPresto, D.; Taylor, J.R.; Duman, R.S. Ketamine accelerates fear extinction via mTORC1 signaling. Neurobiol. Dis. 2016, 100, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Asim, M.; Hao, B.; Yang, Y.-H.; Fan, B.-F.; Xue, L.; Shi, Y.-W.; Wang, X.-G.; Zhao, H. Ketamine Alleviates Fear Generalization Through GluN2B-BDNF Signaling in Mice. Neurosci. Bull. 2019, 36, 153–164. [Google Scholar] [CrossRef]
- Kulyk, B.D. Antidepressant-Like Effects of Ketamine on Fear Conditioning and Extinction. Master’s Thesis, University of Saskatchewan, Saskatoon, SK, Canada, January 2017. [Google Scholar]
- Clifton, N.E.; Thomas, K.L.; Hall, J. The effect of ketamine on the consolidation and extinction of contextual fear memory. J. Psychopharmacol. 2017, 32, 156–162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Radford, K.D.; Park, T.Y.; Jaiswal, S.; Pan, H.; Knutsen, A.; Zhang, M.; Driscoll, M.; Osborne-Smith, L.A.; Dardzinski, B.; Choi, K.H. Enhanced fear memories and brain glucose metabolism (18F-FDG-PET) following sub-anesthetic intravenous ketamine infusion in Sprague-Dawley rats. Transl. Psychiatry 2018, 8, 263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saland, S.K.; Kabbaj, M. Sex Differences in the Pharmacokinetics of Low-dose Ketamine in Plasma and Brain of Male and Female Rats. J. Pharmacol. Exp. Ther. 2018, 367, 393–404. [Google Scholar] [CrossRef] [Green Version]
- Wilson, C.; Kercher, M.; Quinn, B.; Murphy, A.; Fiegel, C.; McLaurin, A. Effects of age and sex on ketamine-induced hyperactivity in rats. Physiol. Behav. 2007, 91, 202–207. [Google Scholar] [CrossRef] [PubMed]
- Radford, K.D.; Berman, R.Y.; Zhang, M.; Wu, T.J.; Choi, K.H. Sex-related differences in intravenous ketamine effects on dissociative stereotypy and antinociception in male and female rats. Pharmacol. Biochem. Behav. 2020, 199, 173042. [Google Scholar] [CrossRef] [PubMed]
- Carrier, N.; Kabbaj, M. Sex differences in the antidepressant-like effects of ketamine. Neuropharmacology 2013, 70, 27–34. [Google Scholar] [CrossRef]
- Chen, B.K.; Luna, V.M.; LaGamma, C.T.; Xu, X.; Deng, S.-X.; Suckow, R.F.; Cooper, T.B.; Shah, A.; Brachman, R.A.; Mendez-David, I.; et al. Sex-specific neurobiological actions of prophylactic (R,S)-ketamine, (2R,6R)-hydroxynorketamine, and (2S,6S)-hydroxynorketamine. Neuropsychopharmacology 2020, 45, 1545–1556. [Google Scholar] [CrossRef]
- Gruene, T.M.; Roberts, E.; Thomas, V.; Ronzio, A.; Shansky, R.M. Sex-Specific Neuroanatomical Correlates of Fear Expression in Prefrontal-Amygdala Circuits. Biol. Psychiatry 2014, 78, 186–193. [Google Scholar] [CrossRef] [Green Version]
- Milad, M.; Igoe, S.; Lebron-Milad, K.; Novales, J. Estrous cycle phase and gonadal hormones influence conditioned fear extinction. Neuroscience 2009, 164, 887–895. [Google Scholar] [CrossRef] [Green Version]
- Chang, Y.-J.; Yang, C.-H.; Liang, Y.-C.; Yeh, C.-M.; Huang, C.-C.; Hsu, K.-S. Estrogen modulates sexually dimorphic contextual fear extinction in rats through estrogen receptor beta. Hippocampus 2009, 19, 1142–1150. [Google Scholar] [CrossRef]
- Merz, C.J.; Kinner, V.L.; Wolf, O.T. Let’s talk about sex … differences in human fear conditioning. Curr. Opin. Behav. Sci. 2018, 23, 7–12. [Google Scholar] [CrossRef]
- Milad, M.; Zeidan, M.; Contero, A.; Pitman, R.; Klibanski, A.; Rauch, S.; Goldstein, J. The influence of gonadal hormones on conditioned fear extinction in healthy humans. Neuroscience 2010, 168, 652–658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dossat, A.M.; Wright, K.N.; Strong, C.E.; Kabbaj, M. Behavioral and biochemical sensitivity to low doses of ketamine: Influence of estrous cycle in C57BL/6 mice. Neuropharmacology 2018, 130, 30–41. [Google Scholar] [CrossRef] [PubMed]
- Deak, T.; Kudinova, A.; Lovelock, D.F.; Gibb, B.E.; Hennessy, M.B. A multispecies approach for understanding neuroimmune mechanisms of stress. Dialogues Clin. Neurosci. 2017, 19, 37–53. [Google Scholar] [PubMed]
- Hueston, C.; Deak, T. On the Time Course, Generality, and Regulation of Plasma Progesterone Release in Male Rats by Stress Exposure. Endocrinology 2014, 155, 3527–3537. [Google Scholar] [CrossRef] [Green Version]
- van Ast, V.A.; Cornelisse, S.; Marin, M.-F.; Ackermann, S.; Garfinkel, S.N.; Abercrombie, H.C. Modulatory mechanisms of cortisol effects on emotional learning and memory: Novel perspectives. Psychoneuroendocrinology 2013, 38, 1874–1882. [Google Scholar] [CrossRef] [Green Version]
- Wegman-Points, L.; Pope, B.; Zobel-Mask, A.; Winter, L.; Wauson, E.; Duric, V.; Yuan, L.-L. Corticosterone as a Potential Confounding Factor in Delineating Mechanisms Underlying Ketamine’s Rapid Antidepressant Actions. Front. Pharmacol. 2020, 11, 1927. [Google Scholar] [CrossRef]
- Radford, C.K.D.; Park, T.Y.; Osborne-Smith, L.; Choi, K.H. Effects of Subanesthetic Intravenous Ketamine Infusion on Corticosterone and Brain-Derived Neurotrophic Factor in the Plasma of Male Sprague-Dawley Rats. AANA J. 2018, 86, 393–400. [Google Scholar]
- Radford, K.D.; Spencer, H.F.; Zhang, M.; Berman, R.Y.; Girasek, Q.L.; Choi, K.H. Association between intravenous ketamine-induced stress hormone levels and long-term fear memory renewal in Sprague-Dawley rats. Behav. Brain Res. 2019, 378, 112259. [Google Scholar] [CrossRef]
- Khalili-Mahani, N.; Martini, C.H.; Olofsen, E.; Dahan, A.; Niesters, M. Effect of subanaesthetic ketamine on plasma and saliva cortisol secretion. Br. J. Anaesth. 2015, 115, 68–75. [Google Scholar] [CrossRef] [Green Version]
- Khalili-Mahani, N.; Niesters, M.; van Osch, M.J.; Oitzl, M.; Veer, I.; de Rooij, M.; van Gerven, J.; van Buchem, M.A.; Beckmann, C.F.; Rombouts, S.A.; et al. Ketamine interactions with biomarkers of stress: A randomized placebo-controlled repeated measures resting-state fMRI and PCASL pilot study in healthy men. Neuroimage 2015, 108, 396–409. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Liu, L.; Yang, X.; Gao, H.; Tang, Q.-K.; Yin, L.-Y.; Yin, X.-Y.; Hao, J.-R.; Geng, D.-Q.; Gao, C. Ketamine improved depressive-like behaviors via hippocampal glucocorticoid receptor in chronic stress induced- susceptible mice. Behav. Brain Res. 2019, 364, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Winters, W.D.; Hance, A.J.; Cadd, G.C.; Lakin, M.L. Seasonal and sex influences on ketamine-induced analgesia and catalepsy in the rat; a possible role for melatonin. Neuropharmacology 1986, 25, 1095–1101. [Google Scholar] [CrossRef]
- Daviu, N.; Andero, R.; Armario, A.; Nadal, R. Sex differences in the behavioural and hypothalamic–pituitary–adrenal response to contextual fear conditioning in rats. Horm. Behav. 2014, 66, 713–723. [Google Scholar] [CrossRef] [Green Version]
- Matsuda, S.; Matsuzawa, D.; Ishii, D.; Tomizawa, H.; Sutoh, C.; Shimizu, E. Sex differences in fear extinction and involvements of extracellular signal-regulated kinase (ERK). Neurobiol. Learn. Mem. 2015, 123, 117–124. [Google Scholar] [CrossRef]
- Fenton, G.E.; Halliday, D.; Mason, R.; Bredy, T.W.; Stevenson, C.W. Sex differences in learned fear expression and extinction involve altered gamma oscillations in medial prefrontal cortex. Neurobiol. Learn. Mem. 2016, 135, 66–72. [Google Scholar] [CrossRef]
- Lesuis, S.L.; Catsburg, L.A.; Lucassen, P.J.; Krugers, H.J. Effects of corticosterone on mild auditory fear conditioning and extinction; role of sex and training paradigm. Learn. Mem. 2018, 25, 544–549. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.-S.; Tzeng, W.-Y.; Chuang, J.-Y.; Cherng, C.G.; Gean, P.-W.; Yu, L. Roles of testosterone and amygdaloid LTP induction in determining sex differences in fear memory magnitude. Horm. Behav. 2014, 66, 498–508. [Google Scholar] [CrossRef]
- Cossio, R.; Carreira, M.B.; Vásquez, C.E.; Britton, G.B. Sex differences and estrous cycle effects on foreground contextual fear conditioning. Physiol. Behav. 2016, 163, 305–311. [Google Scholar] [CrossRef]
- Carvalho, M.C.; Genaro, K.; Leite-Panissi, C.R.; Lovick, T.A. Influence of estrous cycle stage on acquisition and expression of fear conditioning in female rats. Physiol. Behav. 2021, 234, 113372. [Google Scholar] [CrossRef]
- Roozendaal, B. Glucocorticoids and the regulation of memory consolidation. Psychoneuroendocrinology 2000, 25, 213–238. [Google Scholar] [CrossRef]
- Roozendaal, B.; Quirarte, G.L.; McGaugh, J.L. Glucocorticoids interact with the basolateral amygdala β-adrenoceptor–cAMP/cAMP/PKA system in influencing memory consolidation. Eur. J. Neurosci. 2002, 15, 553–560. [Google Scholar] [CrossRef] [PubMed]
- Abrari, K.; Rashidy-Pour, A.; Semnanian, S.; Fathollahi, Y. Post-training administration of corticosterone enhances consolidation of contextual fear memory and hippocampal long-term potentiation in rats. Neurobiol. Learn. Mem. 2009, 91, 260–265. [Google Scholar] [CrossRef] [PubMed]
- Goel, N.; Workman, J.L.; Lee, T.T.; Innala, L.; Viau, V. Sex Differences in the HPA Axis. Compr. Physiol. 2014, 4, 1121–1155. [Google Scholar] [CrossRef] [PubMed]
- Hueston, C.M.; Deak, T. The inflamed axis: The interaction between stress, hormones, and the expression of inflammatory-related genes within key structures comprising the hypothalamic-pituitary-adrenal axis. Physiol. Behav. 2014, 124, 77–91. [Google Scholar] [CrossRef]
- Arakawa, K.; Arakawa, H.; Hueston, C.M.; Deak, T. Effects of the Estrous Cycle and Ovarian Hormones on Central Expression of Interleukin-1 Evoked by Stress in Female Rats. Neuroendocrinology 2014, 100, 162–177. [Google Scholar] [CrossRef]
- Resko, J.A. Endocrine Control of Adrenal Progesterone Secretion in the Ovariectomized Rat. Science 1969, 164, 70–71. [Google Scholar] [CrossRef]
- Zohar, J.; Yahalom, H.; Kozlovsky, N.; Cwikel-Hamzany, S.; Matar, M.A.; Kaplan, Z.; Yehuda, R.; Cohen, H. High dose hydrocortisone immediately after trauma may alter the trajectory of PTSD: Interplay between clinical and animal studies. Eur. Neuropsychopharmacol. 2011, 21, 796–809. [Google Scholar] [CrossRef]
- Schelling, G.; Briegel, J.; Roozendaal, B.; Stoll, C.; Rothenhäusler, H.-B.; Kapfhammer, H.-P. The effect of stress doses of hydrocortisone during septic shock on posttraumatic stress disorder in survivors. Biol. Psychiatry 2001, 50, 978–985. [Google Scholar] [CrossRef]
- Elzinga, B.M.; Schmahl, C.; Vermetten, E.; Van Dyck, R.; Bremner, J.D. Higher Cortisol Levels Following Exposure to Traumatic Reminders in Abuse-Related PTSD. Neuropsychopharmacology 2003, 28, 1656–1665. [Google Scholar] [CrossRef]
- Delahanty, D.L.; Nugent, N.; Christopher, N.C.; Walsh, M. Initial urinary epinephrine and cortisol levels predict acute PTSD symptoms in child trauma victims. Psychoneuroendocrinology 2005, 30, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Reder, L.M.; Oates, J.M.; Dickison, D.; Anderson, J.R.; Gyulai, F.; Quinlan, J.J.; Ferris, J.L.; Dulik, M.; Jefferson, B.F.; Gyula, F. Retrograde facilitation under midazolam: The role of general and specific interference. Psychon. Bull. Rev. 2007, 14, 261–269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hauer, D.; Ratano, P.; Morena, M.; Scaccianoce, S.; Briegel, I.; Palmery, M.; Cuomo, V.; Roozendaal, B.; Schelling, G.; Campolongo, P. Propofol Enhances Memory Formation via an Interaction with the Endocannabinoid System. Anesthesiology 2011, 114, 1380–1388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parker, E.S.; Birnbaum, I.M.; Weingartner, H.; Hartley, J.T.; Stillman, R.C.; Wyatt, R.J. Retrograde enhancement of human memory with alcohol. Psychopharmacology 1980, 69, 219–222. [Google Scholar] [CrossRef] [PubMed]
- Sakura, M.; Yoshioka, M.; Kobayashi, M.; Takebe, K. The site of inhibitory action of a natural (corticosterone) and synthetic steroid (dexamethasone) in the hypo-thalamic-pituitary-adrenal axis. Neuroendocrinology 1981, 32, 174–178. [Google Scholar] [CrossRef] [PubMed]
- Makino, S.; Gold, P.W.; Schulkin, J. Corticosterone effects on corticotropin-releasing hormone mRNA in the central nucleus of the amygdala and the parvocellular region of the paraventricular nucleus of the hypothalamus. Brain Res. 1994, 640, 105–112. [Google Scholar] [CrossRef] [Green Version]
- Davis, D.W.; Mans, A.M.; Biebuyck, J.F.; Hawkins, R.A. The influence of ketamine on regional brain glucose use. Anesthesiology 1988, 69, 199–205. [Google Scholar]
- Långsjö, J.W.; Salmi, E.; Kaisti, K.K.; Aalto, S.; Hinkka, S.; Aantaa, R.; Oikonen, V.; Viljanen, T.; Kurki, T.; Silvanto, M.; et al. Effects of Subanesthetic Ketamine on Regional Cerebral Glucose Metabolism in Humans. Anesthesiology 2004, 100, 1065–1071. [Google Scholar] [CrossRef]
- Breier, A.; Malhotra, A.K.; A Pinals, D.; I Weisenfeld, N.; Pickar, D. Association of ketamine-induced psychosis with focal activation of the prefrontal cortex in healthy volunteers. Am. J. Psychiatry 1997, 154, 805–811. [Google Scholar] [CrossRef] [Green Version]
- Vollenweider, F.; Leenders, K.; Scharfetter, C.; Antonini, A.; Maguire, P.; Missimer, J.; Angst, J. Metabolic hyperfrontality and psychopathology in the ketamine model of psychosis using positron emission tomography (PET) and [18F]fluorodeoxyglucose (FDG). Eur. Neuropsychopharmacol. 1997, 7, 9–24. [Google Scholar] [CrossRef]
- Radford, K.D.; Park, T.Y.; Lee, B.H.; Moran, S.; Osborne, L.A.; Choi, K.H. Dose-response characteristics of intravenous ketamine on dissociative stereotypy, locomotion, sensorimotor gating, and nociception in male Sprague-Dawley rats. Pharmacol. Biochem. Behav. 2017, 153, 130–140. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Radford, K.D.; Berman, R.Y.; Jaiswal, S.; Kim, S.Y.; Zhang, M.; Spencer, H.F.; Choi, K.H. Enhanced Fear Memories and Altered Brain Glucose Metabolism (18F-FDG-PET) following Subanesthetic Intravenous Ketamine Infusion in Female Sprague–Dawley Rats. Int. J. Mol. Sci. 2022, 23, 1922. https://doi.org/10.3390/ijms23031922
Radford KD, Berman RY, Jaiswal S, Kim SY, Zhang M, Spencer HF, Choi KH. Enhanced Fear Memories and Altered Brain Glucose Metabolism (18F-FDG-PET) following Subanesthetic Intravenous Ketamine Infusion in Female Sprague–Dawley Rats. International Journal of Molecular Sciences. 2022; 23(3):1922. https://doi.org/10.3390/ijms23031922
Chicago/Turabian StyleRadford, Kennett D., Rina Y. Berman, Shalini Jaiswal, Sharon Y. Kim, Michael Zhang, Haley F. Spencer, and Kwang H. Choi. 2022. "Enhanced Fear Memories and Altered Brain Glucose Metabolism (18F-FDG-PET) following Subanesthetic Intravenous Ketamine Infusion in Female Sprague–Dawley Rats" International Journal of Molecular Sciences 23, no. 3: 1922. https://doi.org/10.3390/ijms23031922