Promising Perspectives for Detection, Identification, and Quantification of Plant Pathogenic Fungi and Oomycetes through Targeting Mitochondrial DNA
Abstract
:1. Introduction
2. A Brief Overview of qPCR for the Detection and Quantification of Plant Pathogenic Fungi and Oomycetes
3. A Brief Overview of DNA Barcoding for Identification of Plant Pathogenic Fungi and Oomycetes
4. Mitogenome Characteristics of Fungi and Oomycetes
5. Targeting mtDNA Improves Detection and Quantification of Plant Pathogenic Fungi and Oomycetes
6. Perspectives of Targeting mtDNA for Barcoding of Plant Pathogenic Fungi and Oomycetes
7. Conclusions and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Fisher, M.C.; Henk, D.A.; Briggs, C.J.; Brownstein, J.S.; Madoff, L.C.; McCraw, S.L.; Gurr, S.J. Emerging fungal threats to animal, plant and ecosystem health. Nature 2012, 484, 186–194. [Google Scholar] [CrossRef] [PubMed]
- Fisher, M.C.; Gow, N.A.R.; Gurr, S.J. Tackling emerging fungal threats to animal health, food security and ecosystem resilience. Philos. Trans. R. Soc. B Biol. Sci. 2016, 371, 20160332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Derevnina, L.; Petre, B.; Kellner, R.; Dagdas, Y.F.; Sarowar, M.N.; Giannakopoulou, A.; de la Concepcion, J.C.; Chaparro-Garcia, A.; Pennington, H.G.; van West, P.; et al. Emerging oomycete threats to plants and animals. Philos. Trans. R. Soc. B Biol. Sci. 2016, 371, 20150459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crous, P.W.; Groenewald, J.Z.; Slippers, B.; Wingfield, M.J. Global food and fibre security threatened by current inefficiencies in fungal identification. Philos. Trans. R. Soc. B Biol. Sci. 2016, 371, 20160024. [Google Scholar] [CrossRef] [Green Version]
- Latijnhouwers, M.; De Wit, P.J.G.M.; Govers, F. Oomycetes and fungi: Similar weaponry to attack plants. Trends Microbiol. 2003, 11, 462–469. [Google Scholar] [CrossRef]
- Richards, T.A.; Dacks, J.B.; Jenkinson, J.M.; Thornton, C.R.; Talbot, N.J. Evolution of filamentous plant pathogens: Gene exchange across eukaryotic kingdoms. Curr. Biol. 2006, 16, 1857–1864. [Google Scholar] [CrossRef] [Green Version]
- Persley, D. Diseases of Fruit Crops (No. 634.0493 D611d); Department of Primary Industries: Queensland, Australia, 1993.
- Ray, M.; Ray, A.; Dash, S.; Mishra, A.; Achary, K.G.; Nayak, S.; Singh, S. Fungal disease detection in plants: Traditional assays, novel diagnostic techniques and biosensors. Biosens. Bioelectron. 2017, 87, 708–723. [Google Scholar] [CrossRef]
- Dean, R.; Van Kan, J.A.L.; Pretorius, Z.A.; Hammond-Kosack, K.E.; Di Pietro, A.; Spanu, P.D.; Rudd, J.J.; Dickman, M.; Kahmann, R.; Ellis, J.; et al. The Top 10 fungal pathogens in molecular plant pathology. Mol. Plant. Pathol. 2012, 13, 414–430. [Google Scholar] [CrossRef] [Green Version]
- Awika, J.M. Major Cereal grains production and use around the world. In Advances in Cereal Science: Implications to Food Processing and Health Promotion; Awika, J.M., Piironen, V., Bean, S., Eds.; American Chemical Society: Washington, DC, USA, 2011; Volume 1089, pp. 1–13. [Google Scholar]
- Romanazzi, G.; Feliziani, E. Botrytis cinerea (Gray Mold). In Postharvest Decay: Control Strategies; Bautista-Baños, S., Ed.; Academic Press: Cambridge, MA, USA, 2014; pp. 131–146. [Google Scholar]
- Kang, S.; Demers, J.; Del Mar Jimenez-Gasco, M.; Rep, M. Fusarium oxysporum. In Genomics of Plant-Associated Fungi and Oomycetes: Dicot Pathogens; Dean, R.A., Lichens-Park, A., Kole, C., Eds.; Springer: New York, NY, USA, 2014; pp. 99–119. [Google Scholar]
- Diao, Y.Z.; Zhang, C.; Liu, F.; Wang, W.Z.; Liu, L.; Cai, L.; Liu, X.L. Colletotrichum species causing anthracnose disease of chili in China. Persoonia Mol. Phylogeny Evol. Fungi 2017, 38, 20–37. [Google Scholar] [CrossRef] [Green Version]
- Marin, S.; Ramos, A.J.; Cano-Sancho, G.; Sanchis, V. Mycotoxins: Occurrence, toxicology, and exposure assessment. Food Chem. Toxicol. 2013, 60, 218–237. [Google Scholar] [CrossRef]
- Mu, U.; Cg, O.; Muritala, A. An overview of mycotoxin contamination of foods and feeds. J. Biochem. Microb. 2017, 1, 101. [Google Scholar]
- Adeyeye, S.A.O. Fungal mycotoxins in foods: A review. Cogent Food Agric. 2016, 2, 1213127. [Google Scholar] [CrossRef]
- Zain, M.E. Impact of mycotoxins on humans and animals. J. Saudi Chem. Soc. 2011, 15, 129–144. [Google Scholar] [CrossRef] [Green Version]
- Erwin, D.; Ribeiro, O. Phytophthora Diseases Worldwide; American Phytopathology Society Press: St. Paul, MN, USA, 1996. [Google Scholar]
- Haas, B.J.; Kamoun, S.; Zody, M.C.; Jiang, R.H.Y.; Handsaker, R.E.; Cano, L.M.; Grabherr, M.; Kodira, C.D.; Raffaele, S.; Torto-Alalibo, T.; et al. Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans. Nature 2009, 461, 393–398. [Google Scholar] [CrossRef]
- Kamoun, S.; Furzer, O.; Jones, J.D.G.; Judelson, H.S.; Ali, G.S.; Dalio, R.J.D.; Roy, S.G.; Schena, L.; Zambounis, A.; Panabières, F.; et al. The Top 10 oomycete pathogens in molecular plant pathology. Mol. Plant. Pathol. 2015, 16, 413–434. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, D.M.; Garbelotto, M.; Hansen, E.M. Phytophthora ramorum: Integrative research and management of an emerging pathogen in California and Oregon forests. Annu. Rev. Phytopathol. 2005, 43, 309–335. [Google Scholar] [CrossRef] [Green Version]
- Agrios, G. Plant Pathology, 5th ed.; Academic Press: Cambridge, MA, USA, 2004. [Google Scholar]
- Lévesque, C.A.; Brouwer, H.; Cano, L.; Hamilton, J.P.; Holt, C.; Huitema, E.; Raffaele, S.; Robideau, G.P.; Thines, M.; Win, J.; et al. Genome sequence of the necrotrophic plant pathogen Pythium ultimum reveals original pathogenicity mechanisms and effector repertoire. Genome Biol. 2010, 11, R73. [Google Scholar] [CrossRef]
- Brown, J.K.M.; Hovmøll, M.S. Aerial dispersal of pathogens on the global and continental scales and its impact on plant disease. Science 2002, 297, 537–541. [Google Scholar] [CrossRef] [Green Version]
- West, J.S. Plant Pathogen Dispersal. In eLS; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2014. [Google Scholar]
- Money, N.P. Spore Production, Discharge, and Dispersal. In The Fungi: Third Edition; Watkinson, S.C., Boddy, L., Money, N.P., Eds.; Academic Press: Cambridge, MA, USA, 2016; pp. 67–97. [Google Scholar]
- Windle, P.N. Exotic pests: Past, present, and future. In Biological Pollution, an Emerging Global Menace; Britton, K., Ed.; APS Press: St. Paul, MN, USA, 2004; pp. 17–27. [Google Scholar]
- Stack, J.P.; Suffert, F.; Gullino, M.L. Bioterrorism: A threat to plant biosecurity? In The Role of Plant. Pathology in Food Safety and Food Security; Strange, R.N., Gullino, M.L., Eds.; Springer: Berlin, Germany, 2010; pp. 115–132. [Google Scholar]
- Osman, Z.A.; Elsanousi, S.M.; Elsheikh, E.A.E. Plant materials as probable growth promoters for certain fungi. Asian J. Plant. Sci. Res. 2013, 3, 87–93. [Google Scholar]
- Palm, M.E. Systematics and the impact of invasive fungi on agriculture in the United States. Bioscience 2001, 51, 141–147. [Google Scholar] [CrossRef] [Green Version]
- Elmer, W.H. Seeds as vehicles for pathogen importation. Biol. Invasions 2001, 3, 262–271. [Google Scholar] [CrossRef]
- Alonso Chavez, V.; Parnell, S.; Van den Bosch, F. Monitoring invasive pathogens in plant nurseries for early-detection and to minimise the probability of escape. J. Theor. Biol. 2016, 407, 290–302. [Google Scholar] [CrossRef]
- Brasier, C.M. The biosecurity threat to the UK and global environment from international trade in plants. Plant. Pathol. 2008, 57, 792–808. [Google Scholar] [CrossRef]
- Parnell, S.; van den Bosch, F.; Gottwald, T.; Gilligan, C.A. Surveillance to inform control of emerging plant diseases: An epidemiological perspective. Annu. Rev. Phytopathol. 2017, 55, 591–610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, L.; Giraud, T.; Zhang, N.; Begerow, D.; Cai, G.; Shivas, R.G. The evolution of species concepts and species recognition criteria in plant pathogenic fungi. Fungal Divers. 2011, 50, 121. [Google Scholar] [CrossRef]
- Cai, L.; Udayanga, D.; Manamgoda, D.S.; Maharachchikumbura, S.S.N.; McKenzie, E.H.C.; Guo, L.D.; Liu, X.Z.; Bahkali, A.; Hyde, K.D. The need to carry out re-inventory of plant pathogenic fungi. Trop. Plant. Pathol. 2011, 36, 205–213. [Google Scholar] [CrossRef] [Green Version]
- Raja, H.A.; Miller, A.N.; Pearce, C.J.; Oberlies, N.H. Fungal identification using molecular tools: A primer for the natural products research community. J. Nat. Prod. 2017, 80, 756–770. [Google Scholar] [CrossRef] [PubMed]
- Raja, H.A.; Baker, T.R.; Little, J.G.; Oberlies, N.H. DNA barcoding for identification of consumer-relevant mushrooms: A partial solution for product certification? Food Chem. 2017, 214, 383–392. [Google Scholar] [CrossRef] [Green Version]
- Capote, N.; Mara, A.; Aguado, A.; Snchez-Torres, P. Molecular tools for detection of plant pathogenic fungi and fungicide resistance. In Plant Pathology; Cumagun, C.J., Ed.; InTech: East Providence, RI, USA, 2012; pp. 151–202. [Google Scholar]
- Sharma, P.; Sharma, S. Paradigm shift in plant disease diagnostics: A journey from conventional diagnostics to nano-diagnostics. In Current Trends in Plant Disease Diagnostics and Management Practices; Kumar, P., Gupta, V., Tiwari, A., Kamle, M., Eds.; Springer: Cham, Switzerland, 2016; pp. 237–264. [Google Scholar]
- Mancini, V.; Murolo, S.; Romanazzi, G. Diagnostic methods for detecting fungal pathogens on vegetable seeds. Plant. Pathol. 2016, 65, 691–703. [Google Scholar] [CrossRef]
- Espindola, A.; Schneider, W.; Hoyt, P.R.; Marek, S.M.; Garzon, C. A new approach for detecting fungal and oomycete plant pathogens in next generation sequencing metagenome data utilising electronic probes. Int. J. Data Min. Bioinform. 2015, 12, 115–128. [Google Scholar] [CrossRef]
- Midorikawa, G.E.O.; Miller, R.N.G.; Bittencourt, D.M. de C. Molecular identification and detection of foodborne and feedborne mycotoxigenic fungi. In Molecular Techniques in Food Biology; El Sheikha, A.F., Levin, R., Xu, J., Eds.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2018. [Google Scholar]
- Henson, J.M.; French, R. The polymerase chain reaction and plant disease diagnosis. Annu. Rev. Phytopathol. 1993, 31, 81–109. [Google Scholar] [CrossRef] [PubMed]
- Hadidi, A.; Levy, L.; Podleckis, E.V. Polymerase chain reaction technology in plant pathology. In Molecular Methods in Plant Pathology; Singh, R.P., Singh, U.S., Eds.; CRC Press: Boca Raton, FL, USA, 1995. [Google Scholar]
- Fang, Y.; Ramasamy, R.P. Current and prospective methods for plant disease detection. Biosensors 2015, 5, 537–561. [Google Scholar] [CrossRef] [Green Version]
- Ward, L.; Immanuel, T.M.; Khan, S.; Liefting, L.W.; Delmiglio, C. Conventional PCR. In Molecular Methods in Plant Disease Diagnostics; Boonham, N., Tomlinson, J., Mumford, R., Eds.; CABI: Wallingford, Oxfordshire, UK; Boston, MA, USA, 2016. [Google Scholar]
- Van Elsas, J.D.; Wolters, A. Polymerase chain reaction (PCR) analysis of soil microbial DNA. In Molecular Microbial Ecology Manual; Akkermans, A.D.L., Van Elsas, J.D., De Bruijn, F.J., Eds.; Springer: Dordrecht, Germany, 1995; pp. 235–244. [Google Scholar]
- Yeates, C.; Gillings, M.R.; Davison, A.D.; Altavilla, N.; Veal, D.A. Methods for microbial DNA extraction from soil for PCR amplification. Biol. Proced. Online 1998, 1, 40–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toze, S. PCR and the detection of microbial pathogens in water and wastewater. Water Res. 1999, 33, 3545–3556. [Google Scholar] [CrossRef]
- Lorenz, T.C. Polymerase chain reaction: Basic protocol plus troubleshooting and optimization strategies. J. Vis. Exp. 2012, 63, e3998. [Google Scholar] [CrossRef] [PubMed]
- Ajmal Ali, M.; Gyulai, G.; Hidvégi, N.; Kerti, B.; Al Hemaid, F.M.A.; Pandey, A.K.; Lee, J. The changing epitome of species identification - DNA barcoding. Saudi, J. Biol. Sci. 2014, 21, 204–231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kulik, T.; Ostrowska, A.; Buśko, M.; Pasquali, M.; Beyer, M.; Stenglein, S.; Załuski, D.; Sawicki, J.; Treder, K.; Perkowski, J. Development of an FgMito assay: A highly sensitive mitochondrial based qPCR assay for quantification of Fusarium graminearum sensu stricto. Int. J. Food Microbiol. 2015, 210, 16–23. [Google Scholar] [CrossRef]
- Mesquita, A.G.G.; Paula, T.J.; Moreira, M.A.; De Barros, E.G. Identification of races of Colletotrichum lindemuthianum with the aid of PCR-based molecular markers. Plant. Dis. 1998, 82, 1084–1087. [Google Scholar] [CrossRef] [Green Version]
- Jiménez-Gasco, M.D.M.; Jiménez-Díaz, R.M. Development of a specific polymerase chain reaction-based assay for the identification of Fusarium oxysporum f. sp. ciceris and its pathogenic races 0, 1A, 5, and 6. Phytopathology 2003, 93, 200–209. [Google Scholar] [CrossRef] [Green Version]
- Lievens, B.; Rep, M.; Thomma, B.P. Recent developments in the molecular discrimination of formae speciales of fusarium oxysporum. Pest. Manag. Sci. 2008, 64, 781–788. [Google Scholar] [CrossRef]
- Van Dam, P.; de Sain, M.; ter Horst, A.; van der Gragt, M.; Rep, M. Use of comparative genomics-based markers for discrimination of host specificity in Fusarium oxysporum. Appl. Environ. Microbiol. 2018, 84, e01868–e01917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, H.; Hwang, S.M.; Lee, J.H.; Oh, M.; Han, J.W.; Choi, G.J. Specific PCR detection of Fusarium oxysporum f. sp. raphani: A causal agent of Fusarium wilt on radish plants. Lett. Appl. Microbiol. 2017, 65, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Tang, L.; Gao, Z.G.; Yao, Y.; Liu, X. Identification and genetic diversity of formae speciales of Setosphaeria turcica in China. Plant. Dis. 2015, 99, 482–487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kulik, T. Development of TaqMan assays for 3ADON, 15ADON and NIV Fusarium genotypes based on Tri12 gene. Cereal Res. Commun. 2011, 39, 200–214. [Google Scholar] [CrossRef]
- Nashima, K.; Terakami, S.; Nishio, S.; Kunihisa, M.; Nishitani, C.; Saito, T.; Yamamoto, T. S-genotype identification based on allele-specific PCR in Japanese pear. Breed. Sci. 2015, 65, 208–215. [Google Scholar] [CrossRef] [Green Version]
- Tamura, M.; Ushijima, K.; Sassa, H.; Hirano, H.; Tao, R.; Gradziel, T.M.; Dandekar, A.M. Identification of self-incompatibility genotypes of almond by allele-specific PCR analysis. Theor. Appl. Genet. 2000, 101, 344–349. [Google Scholar] [CrossRef]
- Singh, B.P.; Gupta, V.K. Molecular Markers in Mycology. Diagnostics and Marker Developments; Springer International Publishing: Cham, Switzerland, 2017. [Google Scholar]
- Upcroft, P.; Upcroft, J.A. Comparison of properties of agarose for electrophoresis of DNA. J. Chromatogr. B Biomed. Sci. Appl. 1993, 618, 79–93. [Google Scholar] [CrossRef]
- Aslanzadeh, J. Brief review: Preventing PCR amplification carryover contamination in a clinical laboratory. Ann. Clin. Lab. Sci. 2004, 34, 389–396. [Google Scholar]
- Mirmajlessi, S.M.; Destefanis, M.; Gottsberger, R.A.; Mänd, M.; Loit, E. PCR-based specific techniques used for detecting the most important pathogens on strawberry: A systematic review. Syst. Rev. 2015, 4, 9. [Google Scholar] [CrossRef]
- Roberts, P.D.; Jones, J.B.; Chandler, C.K.; Stall, R.E.; Berger, R.D. Survival of Xanthomonas fragariae on strawberry in summer nurseries in Florida detected by specific primers and nested polymerase chain reaction. Plant. Dis. 1996, 8, 1283–1288. [Google Scholar] [CrossRef]
- Notomi, T. Loop-medicated isothermal amplification of DNA. Nucleic Acids Res. 2000, 28, E63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bergmans, H.E.N.; Gaastra, W. Dot-Blot hybridization method. In New Nucleic Acid Techniques; Walker, J.M., Ed.; Humana Press: Totowa, NJ, USA, 1988; pp. 385–390. [Google Scholar]
- Rahman, M.T.; Uddin, M.S.; Sultana, R.; Moue, A.; Setu, M. Polymerase Chain Reaction (PCR): A short review. Anwer Khan Mod. Med. Coll. J. 2013, 4, 30–36. [Google Scholar] [CrossRef]
- Clark, D.P.; Pazdernik, N.J. Polymerase Chain Reaction. In Molecular Biology; Elsevier: Amsterdam, The Netherlands, 2013; pp. e55–e61. [Google Scholar]
- Alemu, K. Real-Time PCR and its application in plant disease diagnostics. Adv. Life Sci. Technol. 2014, 27, 39–49. [Google Scholar]
- Valasek, M.A.; Repa, J.J. The power of real-time PCR. Am. J. Physiol.—Adv. Physiol. Educ. 2005, 29, 151–159. [Google Scholar] [CrossRef]
- Jia, Y. Chapter 3—Real-Time PCR. In Methods in Cell Biology; Conn, M.P., Ed.; Academic Press: Cambridge, MA, USA, 2012; Volume 112, pp. 55–68. [Google Scholar]
- Heid, C.A.; Stevens, J.; Livak, K.J.; Williams, P.M. Real time quantitative PCR. Genome Res. 1996, 6, 986–994. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lees, A.K.; Cullen, D.W.; Sullivan, L.; Nicolson, M.J. Development of conventional and quantitative real-time PCR assays for the detection and identification of Rhizoctonia solani AG-3 in potato and soil. Plant. Pathol. 2002, 51, 293–302. [Google Scholar] [CrossRef]
- Shuey, M.M.; Drees, K.P.; Lindner, D.L.; Keim, P.; Foster, J.T. Highly sensitive quantitative PCR for the detection and differentiation of Pseudogymnoascus destructans and other Pseudogymnoascus species. Appl. Environ. Microbiol. 2014, 80, 1726–1731. [Google Scholar] [CrossRef] [Green Version]
- Sun, G.; Liu, J.; Li, G.; Zhang, X.; Chen, T.; Chen, J.; Zhang, H.; Wang, D.; Sun, F.; Pan, H. Quick and accurate detection and quantification of magnaporthe oryzae in rice using real-time quantitative polymerase chain reaction. Plant. Dis. 2015, 99, 219–224. [Google Scholar] [CrossRef] [Green Version]
- Suarez, M.B.; Walsh, K.; Boonham, N.; O’Neill, T.; Pearson, S.; Barker, I. Development of real-time PCR (TaqMan®) assays for the detection and quantification of Botrytis cinerea in planta. Plant. Physiol. Biochem. 2005, 43, 890–899. [Google Scholar] [CrossRef]
- Diguta, C.F.; Rousseaux, S.; Weidmann, S.; Bretin, N.; Vincent, B.; Guilloux-Benatier, M.; Alexandre, H. Development of a qPCR assay for specific quantification of Botrytis cinerea on grapes. FEMS Microbiol. Lett. 2010, 313, 81–87. [Google Scholar] [CrossRef] [Green Version]
- Moretti, C.; Quaglia, M.; Cerri, M.; Nicosia, D.E.; Buonaurio, R. A real-time PCR assay for detection and quantification of Botrytis cinerea in Pelargonium x hortorum plants, and its use for evaluation of plant resistance. Eur. J. Plant. Pathol. 2015, 143, 159–171. [Google Scholar] [CrossRef]
- Gachon, C.; Saindrenan, P. Real-time PCR monitoring of fungal development in Arabidopsis thaliana infected by Alternaria brassicicola and Botrytis cinerea. Plant. Physiol. Biochem. 2004, 42, 367–371. [Google Scholar] [CrossRef]
- Bilska, K.; Kulik, T.; Ostrowska-Kołodziejczak, A.; Buśko, M.; Pasquali, M.; Beyer, M.; Baturo-Cieśniewska, A.; Juda, M.; Załuski, D.; Treder, K.; et al. Development of a highly sensitive FcMito qPCR assay for the quantification of the toxigenic fungal plant pathogen Fusarium culmorum. Toxins 2018, 10, E211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nicolaisen, M.; Suproniene, S.; Nielsen, L.K.; Lazzaro, I.; Spliid, N.H.; Justesen, A.F. Real-time PCR for quantification of eleven individual Fusarium species in cereals. J. Microbiol. Methods 2009, 76, 234–240. [Google Scholar] [CrossRef] [PubMed]
- Waalwijk, C.; Van Der Heide, R.; De Vries, I.; Van Der Lee, T.; Schoen, C.; Costrel-de Corainville, G.; Häuser-Hahn, I.; Kastelein, P.; Köhl, J.; Lonnet, P.; et al. Quantitative detection of Fusarium species in wheat using TaqMan. Eur. J. Plant. Pathol. 2004, 110, 481–494. [Google Scholar] [CrossRef]
- Haegi, A.; Catalano, V.; Luongo, L.; Vitale, S.; Scotton, M.; Ficcadenti, N.; Belisario, A. A newly developed real-time PCR assay for detection and quantification of Fusarium oxysporum and its use in compatible and incompatible interactions with grafted melon genotypes. Phytopathology 2013, 103, 802–810. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.R.; Schnieder, F.; Verreet, J.A. Presymptomatic and quantitative detection of Mycosphaerella graminicola development in wheat using a real-time PCR assay. FEMS Microbiol. Lett. 2006, 262, 223–229. [Google Scholar] [CrossRef] [Green Version]
- Abd-Elsalam, K.; Bahkali, A.H.; Moslem, M.; de Wit, P.J.G.M.; Verreet, J.A. Detection of Mycosphaerella graminicola in wheat leaves by a microsatellite dinucleotide specific-primer. Int. J. Mol. Sci. 2011, 12, 682–693. [Google Scholar] [CrossRef]
- Debode, J.; Van Hemelrijck, W.; Baeyen, S.; Creemers, P.; Heungens, K.; Maes, M. Quantitative detection and monitoring of colletotrichum acutatum in strawberry leaves using real-time PCR. Plant. Pathol. 2009, 58, 504–514. [Google Scholar] [CrossRef]
- Samuelian, S.K.; Greer, L.A.; Savocchia, S.; Steel, C.C. Detection and monitoring of greeneria uvicola and colletotrichum acutatum development on grapevines by real-time PCR. Plant. Dis. 2011, 95, 298–303. [Google Scholar] [CrossRef]
- Lees, A.K.; Sullivan, L.; Lynott, J.S.; Cullen, D.W. Development of a quantitative real-time PCR assay for Phytophthora infestans and its applicability to leaf, tuber and soil samples. Plant. Pathol. 2012, 61, 867–876. [Google Scholar] [CrossRef]
- Hussain, T.; Singh, B.P.; Anwar, F. A quantitative real time PCR based method for the detection of Phytophthora infestans causing late blight of potato, in infested soil. Saudi, J. Biol. Sci. 2014, 21, 380–386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, R.G.; McDowell, J.M. A PCR assay for the quantification of growth of the oomycete pathogen Hyaloperonospora arabidopsidis in Arabidopsis thaliana. Mol. Plant. Pathol. 2015, 16, 893–898. [Google Scholar] [CrossRef] [PubMed]
- Hayden, K.J.; Rizzo, D.; Tse, J.; Garbelotto, M. Detection and quantification of Phytophthora ramorum from California forests using a real-time polymerase chain reaction assay. Phytopathology 2004, 94, 1075–1083. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tooley, P.W.; Martin, F.N.; Carras, M.M.; Frederick, R.D. Real-time fluorescent polymerase chain reaction detection of Phytophthora ramorum and Phytophthora pseudosyringae using mitochondrial gene regions. Phytopathology 2006, 96, 336–345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schena, L.; Hughes, K.J.D.; Cooke, D.E.L. Detection and quantification of Phytophthora ramorum, P. kernoviae, P. citricola and P. quercina in symptomatic leaves by multiplex real-time PCR. Mol. Plant. Pathol. 2006, 7, 365–379. [Google Scholar] [CrossRef]
- Bienapfl, J.C.; Malvick, D.K.; Percich, J.A. Specific molecular detection of Phytophthora sojae using conventional and real-time PCR. Fungal Biol. 2011, 115, 733–740. [Google Scholar] [CrossRef]
- Catal, M.; Erler, F.; Fulbright, D.W.; Adams, G.C. Real-time quantitative PCR assays for evaluation of soybean varieties for resistance to the stem and root rot pathogen Phytophthora sojae. Eur. J. Plant. Pathol. 2013, 137, 859–869. [Google Scholar] [CrossRef]
- Silvar, C.; Díaz, J.; Merino, F. Real-time polymerase chain reaction quantification of Phytophthora capsici in different pepper genotypes. Phytopathology 2005, 95, 1423–1429. [Google Scholar] [CrossRef] [Green Version]
- Valsesia, G.; Gobbin, D.; Patocchi, A.; Vecchione, A.; Pertot, I.; Gessler, C. Development of a high-throughput method for quantification of Plasmopara viticola DNA in grapevine leaves by means of quantitative real-time polymerase chain reaction. Phytopathology 2005, 95, 672–678. [Google Scholar] [CrossRef] [Green Version]
- Engelbrecht, J.; Duong, T.A.; van den Berg, N. Development of a nested quantitative real-time PCR for detecting Phytophthora cinnamomi in Persea americana rootstocks. Plant. Dis. 2013, 97, 1012–1017. [Google Scholar] [CrossRef] [Green Version]
- Schroeder, K.L.; Okubara, P.A.; Tambong, J.T.; Lévesque, C.A.; Paulitz, T.C. Identification and quantification of pathogenic Pythium spp. from soils in eastern Washington using real-time polymerase chain reaction. Phytopathology 2006, 96, 637–647. [Google Scholar] [CrossRef] [Green Version]
- Lievens, B.; Brouwer, M.; Vanachter, A.C.R.C.; Cammue, B.P.A.; Thomma, B.P.H.J. Real-time PCR for detection and quantification of fungal and oomycete tomato pathogens in plant and soil samples. Plant. Sci. 2006, 171, 155–165. [Google Scholar] [CrossRef]
- Spies, C.F.J.; Mazzola, M.; McLeod, A. Characterisation and detection of Pythium and Phytophthora species associated with grapevines in South Africa. Eur. J. Plant. Pathol. 2011, 131, 103. [Google Scholar] [CrossRef]
- Demeke, T.; Gräfenhan, T.; Clear, R.M.; Phan, A.; Ratnayaka, I.; Chapados, J.; Patrick, S.K.; Gaba, D.; Lévesque, C.A.; Seifert, K.A. Development of a specific TaqMan® real-time PCR assay for quantification of Fusarium graminearum clade 7 and comparison of fungal biomass determined by PCR with deoxynivalenol content in wheat and barley. Int. J. Food Microbiol. 2010, 141, 45–50. [Google Scholar] [CrossRef]
- Tao, G.; Hyde, K.D.; Cai, L. Species-specific real-time PCR detection of Colletotrichum kahawae. J. Appl. Microbiol. 2013, 114, 828–835. [Google Scholar] [CrossRef]
- Huang, C.H.; Tsai, R.T.; Vallad, G.E. Development of a TaqMan Real-Time Polymerase Chain Reaction assay for detection and quantification of Fusarium oxysporum f. sp. lycopersici in Soil. J. Phytopathol. 2016, 164, 455–463. [Google Scholar] [CrossRef]
- Lin, Y.H.; Su, C.C.; Chao, C.P.; Chen, C.Y.; Chang, C.J.; Huang, J.W.; Chang, P.F.L. A molecular diagnosis method using real-time PCR for quantification and detection of Fusarium oxysporum f. sp. cubense race 4. Eur. J. Plant. Pathol. 2013, 135, 395–405. [Google Scholar] [CrossRef]
- Aguayo, J.; Mostert, D.; Fourrier-Jeandel, C.; Cerf-Wendling, I.; Hostachy, B.; Viljoen, A.; Ioos, R. Development of a hydrolysis probe-based real-time assay for the detection of tropical strains of Fusarium oxysporum f. Sp. Cubense race 4. PLoS ONE 2017, 12, e0171767. [Google Scholar] [CrossRef]
- De Sousa, M.V.; Machado, J.D.C.; Simmons, H.E.; Munkvold, G.P. Real-time quantitative PCR assays for the rapid detection and quantification of Fusarium oxysporum f. sp. phaseoli in Phaseolus vulgaris (common bean) seeds. Plant. Pathol. 2015, 64, 478–488. [Google Scholar] [CrossRef]
- Okubara, P.A.; Harrison, L.A.; Gatch, E.W.; Vandemark, G.; Schroeder, K.L.; du Toit, L.J. Development and evaluation of a TaqMan real-time PCR assay for Fusarium oxysporum f. sp. spinaciae. Plant. Dis. 2013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sayler, R.J.; Yang, Y. Detection and quantification of Rhizoctonia solani AG-1 IA, the rice sheath blight pathogen, in rice using real-time PCR. Plant. Dis. 2007, 97, 927–937. [Google Scholar]
- Tao, G.; Liu, Z.Y.; Liu, F.; Gao, Y.H.; Cai, L. Endophytic Colletotrichum species from Bletilla ochracea (Orchidaceae), with descriptions of seven new speices. Fungal Divers. 2013, 61, 139–164. [Google Scholar] [CrossRef]
- O’Donnell, K.; Ward, T.J.; Geiser, D.M.; Kistler, H.C.; Aoki, T. Genealogical concordance between the mating type locus and seven other nuclear genes supports formal recognition of nine phylogenetically distinct species within the Fusarium graminearum clade. Fungal Genet. Biol. 2004, 41, 600–623. [Google Scholar] [CrossRef]
- Starkey, D.E.; Ward, T.J.; Aoki, T.; Gale, L.R.; Kistler, H.C.; Geiser, D.M.; Suga, H.; Tóth, B.; Varga, J.; O’Donnell, K. Global molecular surveillance reveals novel Fusarium head blight species and trichothecene toxin diversity. Fungal Genet. Biol. 2007, 44, 1191–1204. [Google Scholar] [CrossRef]
- Shivas, R.G.; Tan, Y.P. A taxonomic re-assessment of Colletotrichum acutatum, introducing C. fioriniae comb. et stat. nov. and C. simmondsii sp. nov. Fungal Divers. 2009, 39, 111–122. [Google Scholar]
- Damm, U.; Woudenberg, J.H.C.; Cannon, P.F.; Crous, P.W. Colletotrichum species with curved conidia from herbaceous hosts. Fungal Divers. 2009, 39, 45–87. [Google Scholar]
- Stewart, J.E.; Timmer, L.W.; Lawrence, C.B.; Pryor, B.M.; Peever, T.L. Discord between morphological and phylogenetic species boundaries: Incomplete lineage sorting and recombination results in fuzzy species boundaries in an asexual fungal pathogen. BMC Evol. Biol. 2014, 14, 38. [Google Scholar] [CrossRef]
- Feau, N.; Decourcelle, T.; Husson, C.; Desprez-Loustau, M.L.; Dutech, C. Finding single copy genes out of sequenced genomes for multilocus phylogenetics in non-model fungi. PLoS ONE 2011, 6, e18803. [Google Scholar] [CrossRef]
- Pöggeler, S.; Nowrousian, M.; Ringelberg, C.; Loros, J.J.; Dunlap, J.C.; Kück, U. Microarray and real-time PCR analyses reveal mating type-dependent gene expression in a homothallic fungus. Mol. Genet. Genomics 2006, 275, 492–503. [Google Scholar] [CrossRef]
- Czaja, W.; Miller, K.Y.; Miller, B.L. Complex mechanisms regulate developmental expression of the matA (HMG) mating type gene in homothallic Aspergillus nidulans. Genetics 2011, 189, 795–808. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gagnon, M.C.; Kawchuk, L.; Mathieu Tremblay, D.; Carisse, O.; Danies, G.; Fry, W.E.; Lévesque, C.A.; Bilodeau, G.J. Identification of the dominant genotypes of phytophthora infestans in Canada using real-time PCR with ASO-PCR Assays. Plant. Dis. 2016, 100, 1482–1491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luchi, N.; Ioos, R.; Santini, A. Fast and reliable molecular methods to detect fungal pathogens in woody plants. Appl. Microbiol. Biotechnol. 2020, 104, 2453–2468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klimek-Ochab, M.; Brzezińska-Rodak, M.; Zymańczyk-Duda, E.; Lejczak, B.; Kafarski, P. Comparative study of fungal cell disruption-scope and limitations of the methods. Folia Microbiol. (Praha). 2011, 56, 469–475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schumann, U.; Smith, N.A.; Wang, M.B. A fast and efficient method for preparation of high-quality RNA from fungal mycelia. BMC Res. Notes 2013, 6, 71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taniwaki, M.H.; Pitt, J.I.; Hocking, A.D.; Fleet, G.H. Comparison of hyphal length, ergosterol, mycelium dry weight, and colony diameter for quantifying growth of fungi from foods. In Proceedings of the Advances in Experimental Medicine and Biology; Hocking, A.D., Pitt, J.I., Samson, R.A., Thrane, U., Eds.; Springer: Berlin, Germany, 2005; pp. 49–67. [Google Scholar]
- Grosdidier, M.; Aguayo, J.; Marçais, B.; Ioos, R. Detection of plant pathogens using real-time PCR: How reliable are late Ct values? Plant. Pathol. 2017, 66, 359–367. [Google Scholar] [CrossRef]
- Martin, F.N.; Tooley, P.W.; Blomquist, C. Molecular detection of Phytophthora ramorum, the causal agent of sudden oak death in California, and two additional species commonly recovered from diseased plant material. Phytopathology 2004, 94, 621–631. [Google Scholar] [CrossRef] [Green Version]
- Yin, J.L.; Shackel, N.A.; Zekry, A.; McGuinness, P.H.; Richards, C.; Van Der Putten, K.; McCaughan, G.W.; Eris, J.M.; Bishop, G.A. Real-time reverse transcriptase-polymerase chain reaction (RT-PCR) for measurement of cytokine and growth factor mRNA expression with fluorogenic probes or SYBR Green I. Immunol. Cell Biol. 2001, 79, 213–221. [Google Scholar] [CrossRef] [Green Version]
- Feckler, A.; Schrimpf, A.; Bundschuh, M.; Bärlocher, F.; Baudy, P.; Cornut, J.; Schulz, R. Quantitative real-time PCR as a promising tool for the detection and quantification of leafassociated fungal species - A proof-ofconcept using Alatospora pulchella. PLoS ONE 2017, 12, e0174634. [Google Scholar] [CrossRef] [Green Version]
- Veronesi, F.; Santoro, A.; Milardi, G.L.; Diaferia, M.; Branciari, R.; Miraglia, D.; Cioffi, A.; Gabrielli, S.; Ranucci, D. Comparison of PCR assays targeting the multi-copy targets B1 gene and 529 bp repetitive element for detection of Toxoplasma gondii in swine muscle. Food Microbiol. 2017, 63, 213–216. [Google Scholar] [CrossRef]
- Fenollar, F.; Fournier, P.E.; Robert, C.; Raoult, D. Use of genome selected repeated sequences increases the sensitivity of PCR detection of Tropheryma whipplei. J. Clin. Microbiol. 2004, 42, 401–403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kress, W.J.; Erickson, D.L. DNA Barcodes: Methods and Protocols. In DNA Barcodes; Kress, W.J., Erickson, D.L., Eds.; Humana Press: Totowa, NJ, USA, 2012; pp. 3–8. [Google Scholar]
- Hollingsworth, P.M.; Graham, S.W.; Little, D.P. Choosing and using a plant DNA barcode. PLoS ONE 2011, 6, e19254. [Google Scholar] [CrossRef] [PubMed]
- Eberhardt, U. Methods for DNA Barcoding of Fungi. In DNA Barcodes; Kress, W.J., Erickson, D.L., Eds.; Humana Press: Totowa, NJ, USA, 2012; pp. 183–205. [Google Scholar]
- Xu, J. Fungal DNA barcoding1. Genome 2016, 59, 913–932. [Google Scholar] [CrossRef] [Green Version]
- Riit, T.; Tedersoo, L.; Drenkhan, R.; Runno-Paurson, E.; Kokko, H.; Anslan, S. Oomycete-specific ITS primers for identification and metabarcoding. MycoKeys 2016, 14, 17–30. [Google Scholar] [CrossRef] [Green Version]
- Kress, W.J.; García-Robledo, C.; Uriarte, M.; Erickson, D.L. DNA barcodes for ecology, evolution, and conservation. Trends Ecol. Evol. 2015, 30, 25–35. [Google Scholar] [CrossRef]
- Gao, R.; Zhang, G. Potential of DNA barcoding for detecting quarantine fungi. Phytopathology 2013, 103, 1103–1107. [Google Scholar] [CrossRef] [Green Version]
- Hebert, P.D.N.; Cywinska, A.; Ball, S.L.; DeWaard, J.R. Biological identifications through DNA barcodes. Proc. R. Soc. B Biol. Sci. 2003, 270, 313–321. [Google Scholar] [CrossRef] [Green Version]
- Seifert, K.A. Progress towards DNA barcoding of fungi. Mol. Ecol. Resour. 2009, 9, 83–89. [Google Scholar] [CrossRef]
- Seifert, K.A.; Samson, R.A.; DeWaard, J.R.; Houbraken, J.; Lévesque, C.A.; Moncalvo, J.M.; Louis-Seize, G.; Hebert, P.D.N. Prospects for fungus identification using CO1 DNA barcodes, with Penicillium as a test case. Proc. Natl. Acad. Sci. USA 2007, 104, 3901–3906. [Google Scholar] [CrossRef] [Green Version]
- Schoch, C.L.; Seifert, K.A.; Huhndorf, S.; Robert, V.; Spouge, J.L.; Levesque, C.A.; Chen, W.; Bolchacova, E.; Voigt, K.; Crous, P.W.; et al. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc. Natl. Acad. Sci. USA 2012, 109, 6241–6246. [Google Scholar] [CrossRef] [Green Version]
- Robideau, G.P.; De Cock, A.W.A.M.; Coffey, M.D.; Voglmayr, H.; Brouwer, H.; Bala, K.; Chitty, D.W.; Désaulniers, N.; Eggertson, Q.A.; Gachon, C.M.M.; et al. DNA barcoding of oomycetes with cytochrome c oxidase subunit I and internal transcribed spacer. Mol. Ecol. Resour. 2011, 11, 1002–1011. [Google Scholar] [CrossRef]
- Kiss, L. Limits of nuclear ribosomal DNA internal transcribed spacer (ITS) sequences as species barcodes for Fungi. Proc. Natl. Acad. Sci. USA 2012, 109, e1811. [Google Scholar] [CrossRef] [Green Version]
- Sharma, R.; Polkade, A.V.; Shouche, Y.S. “Species concept” in microbial taxonomy and systematics. Curr. Sci. 2015, 108, 1804–1814. [Google Scholar]
- Kashyap, P.L.; Rai, P.; Kumar, S.; Chakdar, H.; Srivastava, A.K. DNA barcoding for diagnosis and monitoring of fungal plant pathogens. In Molecular Markers in Mycology; Singh, B.P., Gupta, V.K., Eds.; Springer: Berlin, Germany, 2017; pp. 87–122. [Google Scholar]
- Thines, M. Repeats of the ITS2 of Plasmopara species and their relevance for phylogenetic studies. In Advances in Downy Mildew Research. Vol. 3; Lebeda, A., Spencer-Philips, P., Eds.; Palacký University and JOLA, v.o.s: Olomouc and Kostelec na Hané: Olomouc, Czech Republic, 2007; pp. 31–35. [Google Scholar]
- Goodwin, S.B.; Legard, D.E.; Smart, C.D.; Levy, M.; Fry, W.E. Gene flow analysis of molecular markers confirms that Phytophthora mirabilis and P. infestans are separate species. Mycologia 1999, 91, 796. [Google Scholar] [CrossRef]
- Cooke, D.E.L.; Drenth, A.; Duncan, J.M.; Wagels, G.; Brasier, C.M. A molecular phylogeny of Phytophthora and related Oomycetes. Fungal Genet. Biol. 2000, 30, 17–32. [Google Scholar] [CrossRef]
- Jung, T.; Burgess, T.I. Re-evaluation of Phytophthora citricola isolates from multiple woody hosts in Europe and North America reveals a new species, Phytophthora plurivora sp. nov. Persoonia—Mol. Phylogeny Evol. Fungi 2009, 22, 95–110. [Google Scholar] [CrossRef] [Green Version]
- Choi, Y.-J.; Hong, S.-B.; Shin, H.-D. Re-consideration of Peronospora farinosa infecting Spinacia oleracea as distinct species, Peronospora effusa. Mycol. Res. 2007, 111, 381–391. [Google Scholar] [CrossRef]
- Voglmayr, H.; Montes-Borrego, M.; Landa, B.B. Disentangling Peronospora on Papaver: Phylogenetics, taxonomy, nomenclature and host range of downy mildew of opium poppy (Papaver somniferum) and related species. PLoS ONE 2014, 9, e96838. [Google Scholar] [CrossRef] [Green Version]
- O’Donnell, K.; Rooney, A.P.; Proctor, R.H.; Brown, D.W.; McCormick, S.P.; Ward, T.J.; Frandsen, R.J.N.; Lysøe, E.; Rehner, S.A.; Aoki, T.; et al. Phylogenetic analyses of RPB1 and RPB2 support a middle Cretaceous origin for a clade comprising all agriculturally and medically important fusaria. Fungal Genet. Biol. 2013, 52, 20–31. [Google Scholar] [CrossRef]
- Rai, S.; Kashyap, P.L.; Kumar, S.; Srivastava, A.K.; Ramteke, P.W. Identification, characterization and phylogenetic analysis of antifungal Trichoderma from tomato rhizosphere. Springerplus 2016, 5, 1939. [Google Scholar] [CrossRef] [Green Version]
- Kristensen, R.; Torp, M.; Kosiak, B.; Holst-Jensen, A. Phylogeny and toxigenic potential is correlated in Fusarium species as revealed by partial translation elongation factor 1 alpha gene sequences. Mycol. Res. 2005, 109, 173–186. [Google Scholar] [CrossRef]
- Knutsen, A.K.; Torp, M.; Holst-Jensen, A. Phylogenetic analyses of the Fusarium poae, Fusarium sporotrichioides and Fusarium langsethiae species complex based on partial sequences of the translation elongation factor-1 alpha gene. Int. J. Food Microbiol. 2004, 95, 287–295. [Google Scholar] [CrossRef]
- Geiser, D.M.; Jiménez-Gasco, M.D.M.; Kang, S.; Makalowska, I.; Veeraraghavan, N.; Ward, T.J.; Zhang, N.; Kuldau, G.A.; O’Donnell, K. FUSARIUM-ID v. 1.0: A DNA sequence database for identifying Fusarium. Eur. J. Plant. Pathol. 2004, 110, 473–479. [Google Scholar] [CrossRef]
- Aroca, A.; Raposo, R.; Lunello, P. A biomarker for the identification of four Phaeoacremonium species using the β-tubulin gene as the target sequence. Appl. Microbiol. Biotechnol. 2008, 80, 1131–1140. [Google Scholar] [CrossRef]
- Mostert, L.; Groenewald, J.Z.; Summerbell, R.C.; Gams, W.; Crous, P.W. Taxonomy and pathology of Togninia (Diaporthales) and its Phaeoacremonium anamorphs. Stud. Mycol. 2006, 54, 1–113. [Google Scholar] [CrossRef] [Green Version]
- Fraaije, B.A.; Lovell, D.J.; Coelho, J.M.; Baldwin, S.; Hollomon, D.W. PCR-based assays to assess wheat varietal resistance to blotch (Septoria tritici and Stagonospora nodorum) and rust (Puccinia striiformis and Puccinia recondita) diseases. Eur. J. Plant. Pathol. 2001, 107, 905–917. [Google Scholar] [CrossRef]
- De Beer, Z.W.; Duong, T.A.; Barnes, I.; Wingfield, B.D.; Wingfield, M.J. Redefining Ceratocystis and allied genera. Stud. Mycol. 2014, 79, 187–219. [Google Scholar] [CrossRef] [Green Version]
- Mulè, G.; Susca, A.; Stea, G.; Moretti, A. Specific detection of the toxigenic species Fusarium proliferatum and F. oxysporum from asparagus plants using primers based on calmodulin gene sequences. FEMS Microbiol. Lett. 2004, 230, 235–240. [Google Scholar] [CrossRef] [Green Version]
- Hatsch, D.; Phalip, V.; Jeltsch, J.M. Use of genes encoding cellobiohydrolase-C and topoisomerase II as targets for phylogenetic analysis and identification of Fusarium. Res. Microbiol. 2004, 155, 290–296. [Google Scholar] [CrossRef]
- Stielow, J.B.; Lévesque, C.A.; Seifert, K.A.; Meyer, W.; Irinyi, L.; Smits, D.; Renfurm, R.; Verkley, G.J.M.; Groenewald, M.; Chaduli, D.; et al. One fungus, which genes? Development and assessment of universal primers for potential secondary fungal DNA barcodes. Persoonia Mol. Phylogeny Evol. Fungi 2015, 35, 242–263. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, H.D.T.; Jančič, S.; Meijer, M.; Tanney, J.B.; Zalar, P.; Gunde-Cimerman, N.; Seifert, K.A. Application of the phylogenetic species concept to wallemia sebi from house dust and indoor air revealed by multi-locus genealogical concordance. PLoS ONE 2015, 10, e0120894. [Google Scholar] [CrossRef] [Green Version]
- Balasundaram, S.V.; Engh, I.B.; Skrede, I.; Kauserud, H. How many DNA markers are needed to reveal cryptic fungal species? Fungal Biol. 2015, 119, 940–945. [Google Scholar] [CrossRef]
- Laurence, M.H.; Summerell, B.A.; Burgess, L.W.; Liew, E.C.Y. Genealogical concordance phylogenetic species recognition in the Fusarium oxysporum species complex. Fungal Biol. 2014, 118, 374–384. [Google Scholar] [CrossRef]
- Bartelli, T.F.; Bruno, D.C.F.; Briones, M.R.S. Evidence for mitochondrial genome methylation in the yeast Candida albicans: A potential novel epigenetic mechanism affecting adaptation and pathogenicity? Front. Genet. 2018, 9, 166. [Google Scholar] [CrossRef] [Green Version]
- Chatre, L.; Ricchetti, M. Are mitochondria the Achilles’ heel of the Kingdom Fungi? Curr. Opin. Microbiol. 2014, 20, 49–54. [Google Scholar] [CrossRef]
- Calderone, R.; Li, D.M.; Traven, A. System-level impact of mitochondria on fungal virulence: To metabolism and beyond. FEMS Yeast Res. 2015, 15. [Google Scholar] [CrossRef] [Green Version]
- Sandor, S.; Zhang, Y.J.; Xu, J.P. Fungal mitochondrial genomes and genetic polymorphisms. Appl. Microbiol. Biotechnol. 2018, 102, 9433–9448. [Google Scholar] [CrossRef]
- Shingu-Vazquez, M.; Traven, A. Mitochondria and fungal pathogenesis: Drug tolerance, virulence, and potential for antifungal therapy. Eukaryot. Cell 2011, 10, 1376–1383. [Google Scholar] [CrossRef] [Green Version]
- Hausner, G. Fungal mitochondrial genomes, plasmids and introns. In Applied Mycology and Biotechnology; Arora, D.K., Khachatourians, G.G., Eds.; Elsevier: Amsterdam, The Netherlands, 2003; Volume 3, pp. 101–131. [Google Scholar]
- Aguileta, G.; de Vienne, D.M.; Ross, O.N.; Hood, M.E.; Giraud, T.; Petit, E.; Gabaldon, T. High variability of mitochondrial gene order among fungi. Genome Biol. Evol. 2014, 6, 451–465. [Google Scholar] [CrossRef] [Green Version]
- Franco, M.E.E.; Lopez, S.M.Y.; Medina, R.; Lucentini, C.G.; Troncozo, M.I.; Pastorino, G.N.; Saparrat, M.C.N.; Balatti, P.A. The mitochondrial genome of the plant-pathogenic fungus Stemphylium lycopersici uncovers a dynamic structure due to repetitive and mobile elements. PLoS ONE 2017, 12, e0185545. [Google Scholar] [CrossRef] [Green Version]
- Bullerwell, C.E.; Lang, B.F. Fungal evolution: The case of the vanishing mitochondrion. Curr. Opin. Microbiol. 2005, 8, 362–369. [Google Scholar] [CrossRef]
- Mardanov, A.V.; Beletsky, A.V.; Kadnikov, V.V.; Ignatov, A.N.; Ravin, N.V. The 203 kbp mitochondrial genome of the phytopathogenic fungus sclerotinia borealis reveals multiple invasions of introns and genomic duplications. PLoS ONE 2014, 9, e107536. [Google Scholar] [CrossRef]
- Losada, L.; Pakala, S.B.; Fedorova, N.D.; Joardar, V.; Shabalina, S.A.; Hostetler, J.; Pakala, S.M.; Zafar, N.; Thomas, E.; Rodriguez-Carres, M.; et al. Mobile elements and mitochondrial genome expansion in the soil fungus and potato pathogen Rhizoctonia solani AG-3. Fems Microbiol. Lett. 2014, 352, 165–173. [Google Scholar] [CrossRef] [Green Version]
- Basse, C.W. Mitochondrial inheritance in fungi. Curr. Opin. Microbiol. 2010, 13, 712–719. [Google Scholar] [CrossRef]
- Wilson, A.J.; Xu, J. Mitochondrial inheritance: Diverse patterns and mechanisms with an emphasis on fungi. Mycology 2012, 3, 158–166. [Google Scholar]
- Xu, J.; Li, H. Current perspectives on mitochondrial inheritance in fungi. Cell Health Cytoskelet. 2015, 7, 143. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Wang, P. Mitochondrial inheritance in basidiomycete fungi. Fungal Biol. Rev. 2015, 29, 209–219. [Google Scholar] [CrossRef]
- Lang, B.F.; Laforest, M.J.; Burger, G. Mitochondrial introns: A critical view. Trends Genet. 2007, 23, 119–125. [Google Scholar] [CrossRef]
- Lambowitz, A.M.; Zimmerly, S. Group II introns: Mobile ribozymes that invade DNA. Cold Spring Harb. Perspect. Biol. 2011, 3, a003616. [Google Scholar] [CrossRef]
- Joardar, V.; Abrams, N.F.; Hostetler, J.; Paukstelis, P.J.; Pakala, S.; Pakala, S.B.; Zafar, N.; Abolude, O.O.; Payne, G.; Andrianopoulos, A.; et al. Sequencing of mitochondrial genomes of nine Aspergillus and Penicillium species identifies mobile introns and accessory genes as main sources of genome size variability. BMC Genomics 2012, 13, 698. [Google Scholar] [CrossRef]
- Pogoda, C.S.; Keepers, K.G.; Nadiadi, A.Y.; Bailey, D.W.; Lendemer, J.C.; Tripp, E.A.; Kane, N.C. Genome streamlining via complete loss of introns has occurred multiple times in lichenized fungal mitochondria. Ecol. Evol. 2019, 9, 4245–4263. [Google Scholar] [CrossRef] [Green Version]
- Brankovics, B.; van Dam, P.; Rep, M.; de Hoog, G.S.; van der Lee, T.A.J.; Waalwijk, C.; van Diepeningen, A.D. Mitochondrial genomes reveal recombination in the presumed asexual Fusarium oxysporum species complex. BMC Genomics 2017, 18, 735. [Google Scholar] [CrossRef] [Green Version]
- Yin, L.F.; Hu, M.J.; Wang, F.; Kuang, H.H.; Zhang, Y.; Schnabel, G.; Li, G.Q.; Luo, C.X. Frequent Gain and Loss of Introns in Fungal Cytochrome b Genes. PLoS ONE 2012, 7, e49096. [Google Scholar] [CrossRef] [Green Version]
- Kolesnikova, A.I.; Putintseva, Y.A.; Simonov, E.P.; Biriukov, V.V.; Oreshkova, N.V.; Pavlov, I.N.; Sharov, V.V.; Kuzmin, D.A.; Anderson, J.B.; Krutovsky, K.V. Mobile genetic elements explain size variation in the mitochondrial genomes of four closely-related Armillaria species. BMC Genomics 2019, 20, 351. [Google Scholar] [CrossRef] [Green Version]
- Hooks, K.B.; Delneri, D.; Griffiths-Jones, S. Intron evolution in Saccharomycetaceae. Genome Biol. Evol. 2014, 6, 2543–2556. [Google Scholar] [CrossRef] [Green Version]
- Yuan, X.; Feng, C.; Zhang, Z.; Zhang, C. Complete mitochondrial genome of Phytophthora nicotianae and identification of molecular markers for the oomycetes. Front. Microbiol. 2017, 8, 1484. [Google Scholar] [CrossRef] [Green Version]
- Martin, F.N.; Zhang, Y.; Cooke, D.E.L.; Coffey, M.D.; Grünwald, N.J.; Fry, W.E. Insights into evolving global populations of Phytophthora infestans via new complementary mtDNA haplotype markers and nuclear SSRs. PLoS ONE 2019, 14, e0208606. [Google Scholar] [CrossRef]
- Martinelli, F.; Scalenghe, R.; Davino, S.; Panno, S.; Scuderi, G.; Ruisi, P.; Villa, P.; Stroppiana, D.; Boschetti, M.; Goulart, L.R.; et al. Advanced methods of plant disease detection. A review. Agron. Sustain. Dev. 2015, 35, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Taanman, J.W. The mitochondrial genome: Structure, transcription, translation and replication. Biochim. Biophys. Acta - Bioenerg. 1999, 1410, 103–123. [Google Scholar] [CrossRef] [Green Version]
- Chinnery, P.F.; Hudson, G. Mitochondrial genetics. Br. Med. Bull. 2013, 106, 135–159. [Google Scholar] [CrossRef] [Green Version]
- Costa, C.; Vidaud, D.; Olivi, M.; Bart-Delabesse, E.; Vidaud, M.; Bretagne, S. Development of two real-time quantitative TaqMan PCR assays to detect circulating Aspergillus fumigatus DNA in serum. J. Microbiol. Methods 2001, 44, 263–269. [Google Scholar] [CrossRef]
- Rantakokko-Jalava, K.; Laaksonen, S.; Issakainen, J.; Vauras, J.; Nikoskelainen, J.; Viljanen, M.K.; Salonen, J. Semiquantitative detection by real-time PCR of Aspergillus fumigatus in bronchoalveolar lavage fluids and tissue biopsy specimens from patients with invasive aspergillosis. J. Clin. Microbiol. 2003, 41, 4304–4311. [Google Scholar] [CrossRef] [Green Version]
- Millon, L.; Grenouillet, F.; Legrand, F.; Loewert, S.; Bellanger, A.P.; Gbaguidi-Haore, H.; Scherer, E.; Henon, T.; Rohrlich, P.; Deconinck, E. Ribosomal and mitochondrial DNA target for real-time PCR diagnosis of invasive aspergillosis. J. Clin. Microbiol. 2011, 49, 1058–1063. [Google Scholar] [CrossRef] [Green Version]
- Gao, X.; Jackson, T.A.; Lambert, K.N.; Li, S.; Hartman, G.L.; Niblack, T.L. Detection and quantification of Fusarium solani f. sp. glycines in soybean roots with real-time quantitative polymerase chain reaction. Plant. Dis. 2004, 88, 1372–1380. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Hartman, G.L.; Domier, L.L.; Boykin, D. Quantification of Fusarium solani f. sp. glycines isolates in soybean roots by colony-forming unit assays and real-time quantitative PCR. Theor. Appl. Genet. 2008, 117, 343–352. [Google Scholar] [CrossRef]
- Mbofung, G.C.Y.; Fessehaie, A.; Bhattacharyya, M.K.; Leandro, L.F.S. A new TaqMan real-time polymerase chain reaction assay for quantification of Fusarium virguliforme in soil. Plant. Dis. 2011, 95, 1420–1426. [Google Scholar] [CrossRef] [Green Version]
- Aoki, T.; O’Donnell, K.; Scandiani, M.M. Sudden death syndrome of soybean in South America is caused by four species of Fusarium: Fusarium brasiliense sp. nov., F. cuneirostrum sp. nov., F. tucumaniae, and F. virguliforme. Mycoscience 2005, 46, 162–183. [Google Scholar] [CrossRef]
- O’Donnell, K.; Sink, S.; Scandiani, M.M.; Luque, A.; Colletto, A.; Biasoli, M.; Lenzi, L.; Salas, G.; González, V.; Ploper, L.D.; et al. Soybean sudden death syndrome species diversity within North and South America revealed by multilocus genotyping. Phytopathology 2010, 100, 58–71. [Google Scholar] [CrossRef] [Green Version]
- Sarver, B.A.J.; Ward, T.J.; Gale, L.R.; Broz, K.; Corby Kistler, H.; Aoki, T.; Nicholson, P.; Carter, J.; O’Donnell, K. Novel Fusarium head blight pathogens from Nepal and Louisiana revealed by multilocus genealogical concordance. Fungal Genet. Biol. 2011, 48, 1096–1107. [Google Scholar] [CrossRef]
- Bilodeau, G.J.; Martin, F.N.; Coffey, M.D.; Blomquist, C.L. Development of a multiplex assay for genus- and species-specific detection of phytophthora based on differences in mitochondrial gene order. Phytopathology 2014, 104, 733–748. [Google Scholar] [CrossRef] [Green Version]
- Gilmore, S.R.; GrÄfenhan, T.; Louis-Seize, G.; Seifert, K.A. Multiple copies of cytochrome oxidase 1 in species of the fungal genus Fusarium. Mol. Ecol. Resour. 2009, 9, 90–98. [Google Scholar] [CrossRef]
- Santamaria, M.; Vicario, S.; Pappadà, G.; Scioscia, G.; Scazzocchio, C.; Saccone, C. Towards barcode markers in Fungi: An intron map of Ascomycota mitochondria. BMC Bioinformatics 2009, 10, S15. [Google Scholar] [CrossRef] [Green Version]
- Hamari, Z.; Juhász, Á.; Kevei, F. Role of mobile introns in mitochondrial genome diversity of fungi: (A mini review). Acta Microbiol. Immunol. Hung. 2002, 49, 331–335. [Google Scholar] [CrossRef]
- Vialle, A.; Feau, N.; Allaire, M.; Didukh, M.; Martin, F.; Moncalvo, J.M.; Hamelin, R.C. Evaluation of mitochondrial genes as DNA barcode for Basidiomycota. Mol. Ecol. Resour. 2009, 9, 99–113. [Google Scholar] [CrossRef]
- Liang, X.; Tian, X.; Liu, W.; Wei, T.; Wang, W.; Dong, Q.; Wang, B.; Meng, Y.; Zhang, R.; Gleason, M.L.; et al. Comparative analysis of the mitochondrial genomes of Colletotrichum gloeosporioides sensu lato: Insights into the evolution of a fungal species complex interacting with diverse plants. BMC Genomics 2017, 18, 171. [Google Scholar] [CrossRef] [Green Version]
- Fourie, G.; Van der Merwe, N.A.; Wingfield, B.D.; Bogale, M.; Wingfield, M.J.; Steenkamp, E.T. Mitochondrial introgression and interspecies recombination in the Fusarium fujikuroi species complex. IMA Fungus 2018, 9, 37–48. [Google Scholar] [CrossRef] [Green Version]
- Gomes, F.E.E.S.; Arantes, T.D.; Fernandes, J.A.L.; Ferreira, L.C.; Romero, H.; Bosco, S.M.G.; Oliveira, M.T.B.; Del Negro, G.M.B.; Theodoro, R.C. Polymorphism in mitochondrial group I introns among Cryptococcus neoformans and Cryptococcus gattii genotypes and its association with drug susceptibility. Front. Microbiol. 2018, 9, 86. [Google Scholar] [CrossRef] [Green Version]
- Choi, Y.J.; Beakes, G.; Glockling, S.; Kruse, J.; Nam, B.; Nigrelli, L.; Ploch, S.; Shin, H.D.; Shivas, R.G.; Telle, S.; et al. Towards a universal barcode of oomycetes—A comparison of the cox1 and cox2 loci. Mol. Ecol. Resour. 2015, 15, 1275–1288. [Google Scholar] [CrossRef] [Green Version]
- Moorthie, S.; Mattocks, C.J.; Wright, C.F. Review of massively parallel DNA sequencing technologies. Hugo J. 2011, 5, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Férandon, C.; Xu, J.; Barroso, G. The 135 kbp mitochondrial genome of Agaricus bisporus is the largest known eukaryotic reservoir of group I introns and plasmid-related sequences. Fungal Genet. Biol. 2013, 55, 85–91. [Google Scholar] [CrossRef]
- Zhang, W.; Cui, H.; Wong, L.J.C. Comprehensive one-step molecular analyses of mitochondrial genome by massively parallel sequencing. Clin. Chem. 2012, 58, 1322–1331. [Google Scholar] [CrossRef]
- Deiner, K.; Renshaw, M.A.; Li, Y.; Olds, B.P.; Lodge, D.M.; Pfrender, M.E. Long-range PCR allows sequencing of mitochondrial genomes from environmental DNA. Methods Ecol. Evol. 2017, 8, 1888–1898. [Google Scholar] [CrossRef] [Green Version]
- Cameron, S.L. How to sequence and annotate insect mitochondrial genomes for systematic and comparative genomics research. Syst. Entomol. 2014, 39, 400–411. [Google Scholar] [CrossRef] [Green Version]
Species | DNA Target | Real-Time Format | LOD (Limit of Detection) | References |
---|---|---|---|---|
Plant Pathogenic Fungi | ||||
Magnaporthe oryzae | 18S-28S rDNA | SybrGreen | 0.069 pg of genomic DNA extracted from fungal culture | [78] |
Botrytis cinerea | IGS | TaqMan | 0.02 pg of genomic DNA extracted from fungal culture and from infected plant material | [79] |
IGS | SybrGreen | 6.3 pg of genomic DNA extracted from fungal culture | [80] | |
RPB2 | EvaGreen | 1.55 pg from infected plant material | [81] | |
Cutinase A | SybrGreen | 0.2 pg genomic DNA extracted from fungal culture | [79,82] | |
F. culmorum | Mitochondrial Cox2 | TaqMan | 0.005−0.05 pg of genomic DNA extracted from fungal culture | [83] |
Fusarium graminearum | TEF-1α | SybrGreen | 0.1 pg genomic DNA extracted from fungal culture | [84] |
Anonymous | TaqMan | 0.09 pg genomic DNA extracted from fungal culture | [85] | |
F. oxysporum | TEF-1α | SybrGreen | 1 pg of genomic DNA extracted from fungal culture | [86] |
Zymoseptoria tritici (former Mycosphaerella graminicola) | rDNA | SybrGreen | 1 pg of DNA extracted from infected leaf samples | [87] |
microsatellite repeats | SybrGreen | 0.01 pg of genomic DNA extracted from fungal culture0.05 pg of DNA extracted from infected leaf samples | [88] | |
Colletotrichumacutatum | ITS1 rDNA | TaqMan | 0.05 pg of genomic DNA extracted from fungal culture and 12 pg per 100 mg plant material. | [89] |
ITS rDNA | SybrGreen | 0.02 pg from infected plant samples | [90] | |
Plant Pathogenic Oomycetes | ||||
Phytophthora infestans | ITS rDNA | TaqMan | 0.1 pg extracted from pure cultures of P. infestans | [91] |
ITS rDNA | SybrGreen | 0.5 pg/μL | [92] | |
Hyaloperonospora arabidopsidis | single-copy Hpa gene | SybrGreen | not determined | [93] |
Phytophthora ramorum | ITS rDNA | SybrGreen | 0.012 pg of genomic DNA extracted from pathogen biomass | [94] |
IGS between Cox II and Cox I | TaqMan | 0.001 pg of genomic DNA extracted from pathogen biomass | [95] | |
Ypt1 | TaqMan (multiplex) | 0.1 pg of genomic DNA extracted from pathogen biomass | [96] | |
Phytophthora sojae | ITS rDNA | SybrGreen | 1 pg of genomic DNA extracted from pathogen biomass | [97] |
ITS rDNA | SybrGreen | 0.001 pg/μL of genomic DNA extracted from pathogen biomass | [98] | |
Phytophthora capsici | ITS rDNA | SybrGreen | 0.01 pg of genomic DNA extracted from pathogen biomass | [99] |
Plasmopara viticola | ITS rDNA | TaqMan | 0.1 pg of genomic DNA extracted from pathogen biomass | [100] |
Phytophthora cinnamomi | LPV | SybrGreen (nested PCR) | 0.02 pg of genomic DNA extracted from pure cultures of P. cinnamomi | [101] |
Pythium ultimum | ITS rDNA | SybrGreen | 0.005 pg from contaminated soil | [102] |
ITS rDNA | SybrGreen | Not determined | [103] | |
Pythium ultimum var. ultimum | ITS rDNA | SybrGreen | 0.013 pg μL−1 from infected plant tissue | [104] |
Species | DNA Target | Real-Time Format | LOD (Limit of Detection) | References |
---|---|---|---|---|
Cryptic Species | ||||
F. graminearum s.s. | MAT | TaqMan | 0.64 pg of genomic DNA extracted from fungal culture | [105] |
Mitochondrial Cob | TaqMan | 0.2–0.06 pg of genomic DNA extracted from fungal culture | [53] | |
Colletotrichum kahawae | GAPDH | TaqMan | 0.08 pg μL–1 of genomic DNA extracted from fungal culture | [106] |
Formae Speciales | ||||
F. oxysporum f. sp. lycopersici | SIX1 | TaqMan | 0.44 pg of genomic DNA extracted from fungal culture | [107] |
F. oxysporumf. sp. cubense race 4 | Anonymous | SybrGreen | 0.1 pg of genomic DNA extracted from fungal culture | [108] |
Putative virulence gene | TaqMan | 24 plasmid copies of target DNA per reaction tube | [109] | |
F. oxysporumf. sp. phaseoli | virulence factor ftf1 | TaqMan | 2 pg of genomic DNA extracted from fungal culture | [110] |
F. oxysporumf. sp. spinaciae | IGS | TaqMan | 0.01 pg of genomic DNA extracted from fungal culture | [111] |
Anastomosis Groups | ||||
Rhizoctonia solani AG-1 IA | ITS rDNA | SybrGreen | 1 pg of genomic DNA extracted from fungal cultures | [112] |
Rhizoctonia solani AG-3 | ITS rDNA | TaqMan | 0.006–0.009 pg DNA µL−1 in naturally contaminated soil | [76] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kulik, T.; Bilska, K.; Żelechowski, M. Promising Perspectives for Detection, Identification, and Quantification of Plant Pathogenic Fungi and Oomycetes through Targeting Mitochondrial DNA. Int. J. Mol. Sci. 2020, 21, 2645. https://doi.org/10.3390/ijms21072645
Kulik T, Bilska K, Żelechowski M. Promising Perspectives for Detection, Identification, and Quantification of Plant Pathogenic Fungi and Oomycetes through Targeting Mitochondrial DNA. International Journal of Molecular Sciences. 2020; 21(7):2645. https://doi.org/10.3390/ijms21072645
Chicago/Turabian StyleKulik, Tomasz, Katarzyna Bilska, and Maciej Żelechowski. 2020. "Promising Perspectives for Detection, Identification, and Quantification of Plant Pathogenic Fungi and Oomycetes through Targeting Mitochondrial DNA" International Journal of Molecular Sciences 21, no. 7: 2645. https://doi.org/10.3390/ijms21072645