Redox-Driven Magnetic Regulation in a Series of Couplers in Bridged Nitroxide Diradicals
Abstract
:1. Introduction
2. Results and Discussion
2.1. Diradical Characters and Magnetic Spin Couplings
2.2. Molecular Geometries
2.3. Spin Polarization Analysis
2.4. Spin Coupling Pathways and Spin Alternation Rule Analysis
3. Computational Details
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sanvito, S. Molecular Spintronics. Chem. Soc. Rev. 2011, 40, 3336–3355. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Lee, E.; Kim, S.; Bang, G.S.; Shultz, D.A.; Schmidt, R.D.; Forbes, M.D.E.; Lee, H. Nitronyl Nitroxide Radicals as Organic Memory Elements with Both n- and p-Type Properties. Angew. Chem. Int. Ed. 2011, 50, 4414–4418. [Google Scholar] [CrossRef] [PubMed]
- Gallagher, N.; Zhang, H.; Junghoefer, T.; Giangrisostomi, E.; Ovsyannikov, R.; Pink, M.; Rajca, S.; Casu, M.B.; Rajca, A. Thermally and Magnetically Robust Triplet Ground State Diradical. J. Am. Chem. Soc. 2019, 141, 4764–4774. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.Y.; Pink, M.; Junghoefer, T.; Zhao, W.C.; Hsu, S.N.; Rajca, S.; Calzolari, A.; Boudouris, B.W.; Casu, M.B.; Rajca, A. High-Spin (S = 1) Blatter-Based Diradical with Robust Stability and Electrical Conductivity. J. Am. Chem. Soc. 2022, 144, 6059–6070. [Google Scholar] [CrossRef]
- Wang, C.; Hao, H.; Tajima, K. Essential Role of Triplet Diradical Character for Large Magnetoresistance in Quinoidal Organic Semiconductor with High Electron Mobility. Adv. Sci. 2022, 9, 2201045. [Google Scholar] [CrossRef] [PubMed]
- Han, L.; Bu, Y.X. Computational Design of Ring-Expanded Pyrimidine-Based DNA Motifs with Improved Conductivity. Phys. Chem. Chem. Phys. 2011, 13, 5906–5914. [Google Scholar] [CrossRef] [PubMed]
- Sarbadhikary, P.; Shil, S.; Panda, A.; Misra, A. A Perspective on Designing Chiral Organic Magnetic Molecules with Unusual Behavior in Magnetic Exchange Coupling. J. Org. Chem. 2016, 81, 5623–5630. [Google Scholar] [CrossRef]
- Bajaj, A.; Ali, M.E. First-Principle Design of Blatter’s Diradicals with Strong Ferromagnetic Exchange Interactions. J. Phys. Chem. C 2019, 123, 15186–15194. [Google Scholar] [CrossRef]
- Ma, J.P.; Yuan, Y.; Kang, B.T.; Lee, J.Y. Acetylene Coupler Builds Strong and Tunable Diradical Organic Molecular Magnets. New J. Chem. 2021, 45, 9137. [Google Scholar] [CrossRef]
- Cui, M.L.; Zhao, Y.; Gao, W.; Cui, X.X.; Zhang, C.Y.; Zhang, C.Z.; Meng, Q.T. Theoretical Simulation on Regulating the Magnetic Coupling Properties of Diradical Artificial Bases. J. Phys. Chem. A 2022, 126, 7820–7828. [Google Scholar] [CrossRef]
- Bernard, Y.A.; Shao, Y.H.; Krylov, A.I. General Formulation of Spin-Flip Time-Dependent Density Functional Theory using Non-Collinear Kernels: Theory, Implementation, and Benchmarks. J. Chem. Phys. 2012, 136, 204103. [Google Scholar] [CrossRef]
- Li, J.C.; Yu, J.C.; Chen, Z.H.; Yang, W.T. Linear Scaling Calculations of Excitation Energies with Active-Space Particle-Particle Random-Phase Approximation. J. Phys. Chem. A 2023, 127, 7811–7822. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.E.; Datta, S.N. Broken-Symmetry Density Functional Theory Investigation on Bis-Nitronyl Nitroxide Diradicals: Influence of Length and Aromaticity of Couplers. J. Phys. Chem. A 2006, 110, 2776–2784. [Google Scholar] [CrossRef]
- Latif, I.A.; Panda, A.; Datta, S.N. Very Strongly Ferromagnetically Coupled Diradicals from Mixed Radical Centers: Nitronyl Nitroxide Coupled to Oxoverdazyl via Polyene Spacers. J. Phys. Chem. A 2009, 113, 1595–1600. [Google Scholar] [CrossRef] [PubMed]
- Ko, K.C.; Cho, D.; Lee, J.Y. Systematic Approach To Design Organic Magnetic Molecules: Strongly Coupled Diradicals with Ethylene Coupler. J. Phys. Chem. A 2012, 116, 6837–6844. [Google Scholar] [CrossRef] [PubMed]
- Cho, D.; Ko, K.C.; Lee, J.Y. Organic Magnetic Diradicals (Radical-Coupler-Radical): Standardization of Couplers for Strong Ferromagnetism. J. Phys. Chem. A 2014, 118, 5112–5121. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.W.; Zhang, F.Y.; Song, X.Y.; Bu, Y.X. Diradicalized Biphenyl Derivative Carbon-Based Material Molecules: Exploring the Tuning Effects on Magnetic Couplings. Phys. Chem. Chem. Phys. 2017, 19, 5932–5943. [Google Scholar] [CrossRef]
- Tian, X.Y.; Guo, J.X.; Sun, W.T.; Yuan, L.Z.; Dou, C.D.; Wang, Y. Tuning Diradical Properties of Boron-Containing π-Systems by Structural Isomerism. Chem. Eur. J. 2022, 28, e202200045. [Google Scholar] [CrossRef]
- Shil, S.; Misra, A. Photoinduced Antiferromagnetic to Ferromagnetic Crossover in Organic Systems. J. Phys. Chem. A 2010, 114, 2022–2027. [Google Scholar] [CrossRef]
- Tokunaga, A.; Mutoh, K.; Hasegawa, T.; Abe, J. Reversible Valence Photoisomerization between Closed-Shell Quinoidal and Open-Shell Biradical Forms. J. Phys. Chem. Lett. 2018, 9, 1833–1837. [Google Scholar] [CrossRef]
- Zhao, P.W.; Bu, Y.X. Azobenzene-Bridged Diradical Janus Nucleobases with Photo-Converted Magnetic Properties Between Antiferromagnetic and Ferromagnetic Couplings. J. Comput. Chem. 2018, 39, 1398–1405. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Song, X.Y.; Li, P.; Bu, Y.X. Proton-Transfer Regulated Magnetic Spin Couplings in Nitroxide-Functionalized Porphycene Diradicaloids. J. Phys. Chem. C 2019, 123, 10764–10776. [Google Scholar] [CrossRef]
- Malik, R.; Bu, Y.X. Intramolecular Proton Transfer Modulation of Magnetic Spin Coupling Interaction in Photochromic Azobenzene Derivatives with an Ortho-Site Hydroxyl as a Modulator. J. Phys. Chem. A 2022, 126, 9165–9177. [Google Scholar] [CrossRef] [PubMed]
- Shi, Q.Q.; Pei, Z.P.; Song, J.S.; Li, S.J.; Wei, D.H.; Coote, M.L.; Lan, Y. Diradical Generation via Relayed Proton-Coupled Electron Transfer. J. Am. Chem. Soc. 2022, 144, 3137–3145. [Google Scholar] [CrossRef]
- Souto, M.; Guasch, J.; Lloveras, V.; Mayorga, P.; López Navarrete, J.T.; Casado, J.; Ratera, I.; Rovira, C.; Painelli, A.; Veciana, J. Thermomagnetic Molecular System Based on TTF-PTM Radical: Switching the Spin and Charge Delocalization. J. Phys. Chem. Lett. 2013, 4, 2721–2726. [Google Scholar] [CrossRef]
- Ali, M.E.; Staemmler, V.; Illas, F.; Oppeneer, P.M. Designing the Redox-Driven Switching of Ferro- to Antiferromagnetic Couplings in Organic Diradicals. J. Chem. Theory Comput. 2013, 9, 5216–5220. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.Y.; Song, X.Y.; Bu, Y.X. Redox-Modulated Magnetic Transformations between Ferro- and Antiferromagnetism in Organic Systems: Rational Design of Magnetic Organic Molecular Switches. J. Phys. Chem. C 2015, 119, 27930–27937. [Google Scholar] [CrossRef]
- Gaudenzi, R.; de Bruijckere, J.; Reta, D.; Moreira, I.d.P.R.; Rovira, C.; Veciana, J.; van der Zant, H.S.J.; Burzurí, E. Redox-Induced Gating of the Exchange Interactions in a Single Organic Diradical. ACS Nano 2017, 11, 5879–5883. [Google Scholar] [CrossRef]
- Zhang, F.Y.; Zhang, Z.J.; Zhao, Y.L.; Du, C.; Li, Y.; Gao, J.Q.; Ren, X.B.; Ma, T.; Li, B.Q.; Bu, Y.X. Redox-Regulated Magnetic Conversions between Ferro- and Antiferromagnetism in Organic Nitroxide Diradicals. Molecules 2023, 28, 6232. [Google Scholar] [CrossRef]
- Burnea, F.K.B.; Nam, Y.; Lee, J.Y. H-Bonding on Spin Centres Enhances Spin-Spin Coupling for Organic Diradicals. J. Mater. Chem. C 2020, 8, 3402–3408. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, Z.L.; Huang, H.C.; Song, X.Y.; Bu, Y.X. Intriguing Strain-Governed Magnetic Phase Transitions in 2D Vanadium Porphyrin Sheets. Phys. Chem. Chem. Phys. 2022, 24, 3834–3843. [Google Scholar] [CrossRef]
- Sugiura, S.; Kubo, T.; Haketa, Y.; Hori, Y.; Shigeta, Y.; Sakai, H.; Hasobe, T.; Maeda, H. Deprotonation-Induced and Ion-Pairing-Modulated Diradical Properties of Partially Conjugated Pyrrole-Quinone Conjunction. J. Am. Chem. Soc. 2023, 145, 8122–8129. [Google Scholar] [CrossRef] [PubMed]
- McConnel, H.M. Indirect Hyperfine Interactions in the Paramagnetic Resonance Spectra of Aromatic Free Raqdicals. J. Chem. Phys. 1956, 24, 764–766. [Google Scholar] [CrossRef]
- McConnel, H.M. Ferromagnetism in Solid Free Radicals. J. Chem. Phys. 1963, 39, 1910. [Google Scholar] [CrossRef]
- Lee, C.; Yang, W.T.; Parr, R.G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Phys. Rev. B. 1988, 37, 785–789. [Google Scholar] [CrossRef]
- Zhao, Y.; Truhlar, D.G. The M06 Suite of Density Functionals for Main Group Thermochemistry, Thermochemical Kinetics, Noncovalent Interactions, Excited States, and Transition Elements: Two New Functionals and Systematic Testing of Four M06-Class Functionals and 12 Other Functionals. Theor. Chem. Acc. 2008, 120, 215–241. [Google Scholar]
- Yamaguchi, K.; Takahara, Y.; Fueno, T.; Nasu, K. Ab Initio MO Calculations of Effective Exchange Integrals Between Transition-Metal Ions via Oxygen Dianions: Nature of the Copper-Oxygen Bonds and Superconductivity. Jpn. J. Appl. Phys. 1987, 26, L1362–L1364. [Google Scholar] [CrossRef]
- Yamaguchi, K.; Jensen, F.; Dorigo, A.; Houk, K.N. A Spin Correction Procedure for Unrestricted Hartree-Fock and Møller-Plesset Wavefunctions for Singlet Diradicals and Polyradicals. Chem. Phys. Lett. 1988, 149, 537–542. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 09; Gaussian, Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
Species | Average Spin Density Delocalization into Coupler (%) | J | Species | Average Spin Density Delocalization into Coupler (%) | J |
---|---|---|---|---|---|
1a | 15.1 | −37.9 | 1b | 17.6 | 408.0 |
1a′ | 15.0 | 17.0 | 1b′ | 21.7 | −987.3 |
2a | 15.9 | −115.6 | 2b | 16.6 | −405.2 |
2a′ | 15.4 | 166.0 | 2b′ | 14.9 | 230.6 |
2a″ | — | — | 2b″ | 16.9 | −593.2 |
1c | 16.9 | 339.6 | 1d | 17.8 | −302.5 |
1c′ | 21.0 | −918.0 | 1d′ | 16.9 | 152.4 |
2c | 16.3 | −394.1 | 2d | 15.5 | −150.3 |
2c′ | 14.5 | 208.9 | 2d′ | 15.8 | 201.4 |
2c″ | 16.0 | −528.8 | 2d″ | 19.8 | −725.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, F.; Song, M.; Luo, C.; Ma, T.; Zhao, Y.; Li, B.; Bu, Y. Redox-Driven Magnetic Regulation in a Series of Couplers in Bridged Nitroxide Diradicals. Molecules 2025, 30, 576. https://doi.org/10.3390/molecules30030576
Zhang F, Song M, Luo C, Ma T, Zhao Y, Li B, Bu Y. Redox-Driven Magnetic Regulation in a Series of Couplers in Bridged Nitroxide Diradicals. Molecules. 2025; 30(3):576. https://doi.org/10.3390/molecules30030576
Chicago/Turabian StyleZhang, Fengying, Meiwen Song, Cheng Luo, Teng Ma, Yali Zhao, Boqiong Li, and Yuxiang Bu. 2025. "Redox-Driven Magnetic Regulation in a Series of Couplers in Bridged Nitroxide Diradicals" Molecules 30, no. 3: 576. https://doi.org/10.3390/molecules30030576
APA StyleZhang, F., Song, M., Luo, C., Ma, T., Zhao, Y., Li, B., & Bu, Y. (2025). Redox-Driven Magnetic Regulation in a Series of Couplers in Bridged Nitroxide Diradicals. Molecules, 30(3), 576. https://doi.org/10.3390/molecules30030576