Electrochemical Sensor Based on Co-MOF for the Detection of Dihydromyricetin in Ampelopsis grossedentata
Abstract
:1. Introduction
2. Results and Discussion
2.1. SEM, XPS, FTIR and XRD Characterization of Co-MOF
2.2. Electrochemical Characterization of Co-MOF
2.3. Electro-Oxidation Mechanism of DMY on Co-MOF/GCE
2.4. Calibration Curve
2.5. Selectivity, Repeatability and Stability of Co-MOF/GCE
2.6. Analysis of Ampelopsis grossedentata Sample
3. Materials and Methods
3.1. Reagents
3.2. Instruments
3.3. Synthesis of Co-MOF
3.4. Preparation of Co-MOF/GCE Sensor
3.5. Pretreatment of Actual Samples
3.6. Electrochemical Measurements
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wu, R.R.; Li, X.; Cao, Y.H.; Peng, X.; Liu, G.F.; Liu, Z.K.; Yang, Z.; Liu, Z.Y.; Wu, Y. China medicinal plants of the ampelopsis grossedentata—A review of their botanical characteristics, use, phytochemistry, active pharmacological components, and toxicology. Molecules 2023, 28, 7145. [Google Scholar] [CrossRef] [PubMed]
- Zeng, T.; Song, Y.; Qi, S.; Zhang, R.; Xu, L.; Xiao, P.A. Comprehensive review of vine tea: Origin, research on materia medica, phytochemistry and pharmacology. J. Ethnopharmacol. 2023, 317, 116788. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.D.; Gao, J.D.; Dai, Z.Y.; Zhang, W.H.; Zhang, Y.S.; Liu, J. Edible history and safety of ampelopsis grossedentata. Mod. Food Sci. Technol. 2024, 40, 1–6. [Google Scholar]
- Wang, Y.R.; Wang, J.M.; Xiang, H.J.; Ding, P.L.; Wu, T.; Ji, G. Recent update on application of dihydromyricetin in metabolic related diseases. Biomed. Pharmacother. 2022, 148, 112771. [Google Scholar] [CrossRef] [PubMed]
- Xia, T.; Zhu, R. Multiple molecular and cellular mechanisms of the antitumour effect of dihydromyricetin (review). Biomed. Rep. 2024, 20, 82. [Google Scholar] [CrossRef]
- Chen, Y.; Zheng, Y.Y.; Chen, R.X.; Shen, J.R.; Zhang, S.P.; Gu, Y.H.; Shi, J.H.; Meng, G.L. Dihydromyricetin attenuates diabetic cardiomyopathy by inhibiting oxidative stress, inflammation and necroptosis via sirtuin 3 activation. Antioxidants 2023, 12, 200. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, S.S.; Yang, S.W.; Chen, C.; Yang, Y.T.; Lin, M.Y.; Liu, C.; Wang, W.M.; Zhou, X.D.; Ai, Q.D.; et al. Mechanism of dihydromyricetin on inflammatory diseases. Front. Pharmacol. 2022, 12, 794563. [Google Scholar] [CrossRef]
- Wei, C.; Chen, X.L.; Chen, D.W.; Yu, B.; Zheng, P.; He, J.; Chen, H.C.; Yan, H.; Luo, Y.H.; Huang, Z.Q. Dihydromyricetin enhances intestinal antioxidant capacity of growing-finishing pigs by activating ERK/Nrf2/HO-1 signaling pathway. Antioxidants 2022, 11, 704. [Google Scholar] [CrossRef]
- Xiao, X.N.; Wang, F.; Yuan, Y.T.; Liu, J.; Liu, Y.Z.; Yi, X. Antibacterial activity and mode of action of dihydromyricetin from ampelopsis grossedentata leaves against food-borne bacteria. Molecules 2019, 24, 2831. [Google Scholar] [CrossRef]
- Sun, Z.Z.; Lu, W.Q.; Lin, N.; Lin, H.; Zhang, J.; Ni, T.J.; Meng, L.P.; Zhang, C.J.; Guo, H.Y. Dihydromyricetin alleviates doxorubicin-induced cardiotoxicity by inhibiting NLRP3 inflammasome through activation of SIRT1. Biochem. Pharmacol. 2020, 175, 113888. [Google Scholar] [CrossRef]
- Martinez-Coria, H.; Mendoza-Rojas, M.X.; Arrieta-Cruz, I.; Lopez-Valdes, H.E. Preclinical research of dihydromyricetin for brain aging and neurodegenerative diseases. Front. Pharmacol. 2019, 10, 1334. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Yue, J.; Yao, Y.; Hou, P.F.; Zhang, T.; Zhang, Q.Y.; Yi, L.; Mi, M.T. Dihydromyricetin protects intestinal barrier integrity by promoting IL-22 expression in ILC3s through the AMPK/SIRT3/STAT3 signaling pathway. Nutrients 2023, 15, 355. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liu, C.J.; Zhao, R.J.; Luo, J.Q.; Ran, Y.L.; He, M.J. Inhibitory effects of ethanol extract from ampelopsis grossedentata in enshi against spoilage bacteria on cooked fish. Storage Process 2021, 21, 124–130. [Google Scholar]
- Teng, J.; Liu, X.D.; Hu, X.Q.; Zhao, Y.L.; Tao, N.P.; Wang, M.F. Dihydromyricetin as a functional additive to enhance antioxidant capacity and inhibit the formation of thermally induced food toxicants in a cookie model. Molecules 2018, 23, 2184. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Mao, Y.; Ding, L.; Zeng, X.A. Dihydromyricetin: A review on identification and quantification methods, biological activities, chemical stability, metabolism and approaches to enhance its bioavailability. Trends. Food. Sci. Technol. 2019, 91, 586–597. [Google Scholar] [CrossRef]
- Xu, J.; Ding, P.P.; Cui, Y.F.; Li, H.J.; Jiang, S.; Wang, Y.; Zhang, J.Y. Comprehensive analysis of dihydromyricetin metabolites in rats using ultra-high-performance liquid chromatography coupled with high-resolution mass spectrometry. J. Sep. Sci. 2022, 45, 3930–3941. [Google Scholar]
- Maduraiveeran, G.; Sasidharan, M.; Ganesan, V. Electrochemical sensor and biosensor platforms based on advanced nanomaterials for biological and biomedical applications. Biosens. Bioelectron. 2018, 103, 113–129. [Google Scholar] [CrossRef]
- Hossain, M.I.; Hasnat, M.A. Recent advancements in non-enzymatic electrochemical sensor development for the detection of organophosphorus pesticides in food and environment. Heliyon 2023, 9, 19299. [Google Scholar] [CrossRef]
- Chen, H.N.; Song, J.Y.; Li, Y.Y.; Deng, D.M.; Song, Y.C.; Zhu, X.L.; Luo, L.Q. Cascade signal amplifying strategy for ultrasensitive detection of tumor biomarker by DNAzyme cleaving mediated HCR. Sens. Actuators B Chem. 2024, 420, 136466. [Google Scholar] [CrossRef]
- Cetinkaya, A.; Kaya, S.I.; Ozcelikay, G.; Budak, F.; Ozkan, S.A. Carbon nanomaterials-based novel hybrid platforms for electrochemical sensor applications in drug analysis. Crit. Rev. Anal. Chem. 2022, 8, 1227–1242. [Google Scholar] [CrossRef]
- Li, J.J.; Li, Y.H.; Yang, Y.Q.; Zhao, P.C.; Fei, J.J.; Xie, Y.X. Detection of luteolin in food using a novel electrochemical sensor based on cobalt-doped microporous/mesoporous carbon encapsulated peanut-like FeO(x) composite. Food Chem. 2024, 435, 137651. [Google Scholar] [CrossRef] [PubMed]
- Zou, L.; Xu, Y.; Luo, P.L.; Zhang, S.S.; Ye, B.X. Electrochemical detection of dihydromyricetin using a DNA immobilized ethylenediamine/polyglutamic modified electrode. Analyst 2012, 137, 414–419. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Wang, F.; Wang, L.; Zhao, F.Y.; Yang, B.C.; Ye, B.X. Sensitive voltammetric sensor of dihydromyricetin based on Nafion/SWNT-modified glassy carbon electrode. J. Solid. State. Electrochem. 2012, 16, 1473–1480. [Google Scholar] [CrossRef]
- Wang, F.; Yu, X.; Li, H.J.; Li, M.; Feng, Q.M. Graphene-Nafion composite film modified electrode for voltammetric sensor for determination of dihydromyricetin. J. Chin. Chem. Soc. Taip. 2013, 60, 1019–1026. [Google Scholar] [CrossRef]
- Zhang, W.Q.; Li, X.J.; Ding, X.M.; Hua, K.; Sun, A.L.; Hu, X.X.; Nie, Z.W.; Zhang, Y.S.; Wang, J.C.; Li, R.L.; et al. Progress and opportunities for metal-organic framework composites in electrochemical sensors. RSC. Adv. 2023, 13, 10800–10817. [Google Scholar] [CrossRef]
- Cao, J.; Li, Y.; Wang, L.J.; Qiao, Y.M.; Xu, J.G.; Li, J.; Zhu, L.P.; Zhang, S.N.; Yan, X.X.; Xie, H.Q. One-step electrodeposited binder-free Co-MOF films and their supercapacitor application. J. Solid. State. Electrochem. 2024, 28, 3973–3983. [Google Scholar] [CrossRef]
- Zheng, S.Q.; Lim, S.S.; Foo, C.Y.; Haw, C.Y.; Chiu, W.S.; Chia, C.H.; Khiew, P.S. Solvothermal synthesis of nanostructured nickel-based metal–organic frameworks (Ni-MOFs) with enhanced electrochemical performance for symmetric supercapacitors. J. Mater. Sci. 2023, 58, 11894–11913. [Google Scholar] [CrossRef]
- Kang, F.Y.; Su, Y.J.; Huang, X.Z.; Zhao, Z.L.; Liu, F.Q. Microstructure and bactericidal properties of Cu-MOF, Zr-MOF and Fe-MOF. J. Cent. South Univ. 2023, 30, 3237–3247. [Google Scholar] [CrossRef]
- Kajal, N.; Singh, V.; Gupta, R.; Gautam, S. Metal organic frameworks for electrochemical sensor applications: A review. Environ. Res. 2022, 204, 112320. [Google Scholar] [CrossRef]
- Cao, M.; Feng, Y.; Meng, L.Y.; Tan, C.H.; Chen, Q.J.; Wang, X.F. A water stable cobalt-bipyridine based hydrogen bonding double layered network for catalytic degradation of tetracycline. J. Mol. Struct. 2024, 1321, 140003. [Google Scholar] [CrossRef]
- Bhoite, A.A.; Hubale, V.B.; Sawant, V.A.; Tarwal, N.L. Cobalt-based metal-organic framework (Co-MOF) thin films with high capacitance for supercapacitor electrode. J. Mater. Sci. 2024, 59, 6807–6819. [Google Scholar] [CrossRef]
- Mariyappana, V.; Chen, S.M.; Jeyapragasamb, T.; Meena Devi, J. Designing and construction of a cobalt-metal-organic framework/heteroatoms co-doped reduced graphene oxide mesoporous nanocomposite based efficient electrocatalyst for chlorogenic acid detection. J. Alloys Compd. 2022, 898, 163028. [Google Scholar] [CrossRef]
- Guan, Y.; Si, P.B.; Yang, T.; Wu, Y.; Yang, Y.H.; Hu, R. A novel method for detection of ochratoxin A in foods-Co-MOFs based dual signal ratiometric electrochemical aptamer sensor coupled with DNA walker. Food Chem. 2023, 403, 134316. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Yu, Z.D.; Wang, L.; Wang, B.; Liu, F.M.; Liang, X.S.; Sun, P.; Yan, X.; Chuai, X.H.; Lu, G.Y. Improvement of NO2 sensing characteristic for mixed potential type gas sensor based on YSZ and Rh/Co3V2O8 sensing electrode. RSC Adv. 2017, 78, 49440–49445. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, C.W.; Zhang, Z.; Chen, Y.; Deng, W.Y.; Chen, W.Q. Bimetallic Fe/Co-MOFs for tetracycline elimination. J. Mater. Sci. 2021, 56, 15684–15697. [Google Scholar] [CrossRef]
- Dolgov, A.; Lopaev, D.; Lee, C.J.; Zoethout, E.; Medvedev, V.; Yakushev, O.; Bijkerk, F. Characterization of carbon contamination under ion and hot atom bombardment in a tin-plasma extreme ultraviolet light source. Appl. Surf. Sci. 2015, 353, 708–713. [Google Scholar] [CrossRef]
- Yang, J.; Ma, Z.H.; Gao, W.X.; Wei, M.D. Layered structural Co-based MOF with conductive network frames as a new supercapacitor electrode. Chem. Eur. J. 2017, 23, 631–636. [Google Scholar] [CrossRef]
- Li, Y.; Xie, M.W.; Zhang, X.P.; Liu, Q.; Lin, D.M.; Xu, C.G.; Xie, F.Y.; Sun, X.P. Co-MOF nanosheet array: A high-performance electrochemical sensor for non-enzymatic glucose detection. Sens. Actuators B Chem. 2019, 278, 126–132. [Google Scholar] [CrossRef]
- Peng, G.W.; Gao, F.; Zou, J.M.; Wang, X.Q.; Gao, Y.S.; Zhou, H.; Liu, S.W.; Li, M.F.; Lu, L.M. One-step electrochemical synthesis of tremella-like Co-MOFs/carbon nanohorns films for enhanced electrochemical sensing of carbendazim in vegetable and fruit samples. J. Electroanal. Chem. 2022, 918, 116462. [Google Scholar] [CrossRef]
- Si, X.J.; Deng, L.C.; Wang, Y.Z.; Han, M.; Ding, Y.P. An electrochemical sensor for the determination of Luteolin using an alizarin red/carboxylic acid group functionalized carbon nanotube. Microchem. J. 2020, 155, 104652. [Google Scholar] [CrossRef]
- Laviron, E. General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J. Electroanal. Chem. 1979, 101, 19–28. [Google Scholar] [CrossRef]
- Yang, D.X.; Zhu, L.D.; Jiang, X.Y. Electrochemical reaction mechanism and determination of Sudan I at a multi-wall carbon nanotubes modified glassy carbon electrode. J. Electroanal. Chem. 2010, 640, 17–22. [Google Scholar] [CrossRef]
- Ma, Z.Z.; Wang, Y.S.; Liu, B.; Jiao, H.; Xu, L. A non-enzymatic electrochemical sensor of Cu@Co-MOF composite for glucose detection with high sensitivity and selectivity. Chemosensors 2022, 10, 416. [Google Scholar] [CrossRef]
- Janilkarn-Urena, I.; Idrissova, A.; Zhang, M.; VanDreal, M.; Sanghavi, N.; Skinner, S.G.; Cheng, S.; Zhang, Z.Y.; Watanabe, J.J.; Asatryan, L.; et al. Dihydromyricetin supplementation improves ethanol-induced lipid accumulation and inflammation. Front. Nutr. 2023, 10, 1201007. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, L.; Zhang, Y.; Xiong, T.; Niu, Y.; Huang, Y. Extracting myricetin and dihydromyricetin simultaneously from hovenia acerba seed by ultrasound-assisted extraction on a lab and small pilot-scale. Ultrason. Sonochem. 2023, 93, 106304. [Google Scholar] [CrossRef]
Modified Electrode | Linear Range (μM) | Detection Limit (μM) | Ref. |
---|---|---|---|
DNA/En/PGA 1/GCE | 0.04–2 | 0.02 | [22] |
Nafion/SWNT 2/GCE | 0.1–10 | 0.09 | [23] |
Nafion/graphene/GCE | 0.08–20 | 0.02 | [24] |
Co-MOF/GCE | 0.2–20, 20–100 | 0.07 | This work |
No. | Measured Initially (μA) | Average (μA) | RSD (%) | Measured after 7 days (μA) | Average (μA) | RSD (%) |
---|---|---|---|---|---|---|
1 | 6.083 | 6.606 | 7.18 | 5.732 | 6.286 | 5.34 |
2 | 7.005 | 6.325 | ||||
3 | 6.303 | 6.437 | ||||
4 | 7.196 | 6.307 | ||||
5 | 6.444 | 6.631 |
No. | Co-MOF/GCE | HPLC (μM) | |||
---|---|---|---|---|---|
Detected (μM) | Added (μM) | Total (μM) | Recovery (%) | ||
1 | 3.005 | 5 | 8.155 | 103 | 3.213 |
2 | 3.545 | 5 | 9.072 | 111 | 3.447 |
3 | 3.277 | 5 | 8.840 | 111 | 3.283 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Si, X.; Huang, Y.; Han, M.; Luo, L. Electrochemical Sensor Based on Co-MOF for the Detection of Dihydromyricetin in Ampelopsis grossedentata. Molecules 2025, 30, 180. https://doi.org/10.3390/molecules30010180
Si X, Huang Y, Han M, Luo L. Electrochemical Sensor Based on Co-MOF for the Detection of Dihydromyricetin in Ampelopsis grossedentata. Molecules. 2025; 30(1):180. https://doi.org/10.3390/molecules30010180
Chicago/Turabian StyleSi, Xiaojing, Yue Huang, Mei Han, and Liqiang Luo. 2025. "Electrochemical Sensor Based on Co-MOF for the Detection of Dihydromyricetin in Ampelopsis grossedentata" Molecules 30, no. 1: 180. https://doi.org/10.3390/molecules30010180
APA StyleSi, X., Huang, Y., Han, M., & Luo, L. (2025). Electrochemical Sensor Based on Co-MOF for the Detection of Dihydromyricetin in Ampelopsis grossedentata. Molecules, 30(1), 180. https://doi.org/10.3390/molecules30010180