A Flavone-Based Solvatochromic Probe with A Low Expected Perturbation Impact on the Membrane Physical State
Abstract
:1. Introduction
2. Results and Discussion
2.1. Probe Design and Synthesis
2.2. Optical Characterization
2.3. Analysis of Fluorescence in Lipid Membranes
2.4. Molecular Dynamics in Model Membranes. Thickness and Area Per Lipid
2.5. Deuterium Order Parameter SCD
2.6. Pseudo-Semantic Analysis
2.7. The Binding Energy Between Probe and Membrane
3. Materials and Methods
3.1. Synthesis
3.1.1. Synthesis of 5-(3-chloropropoxy)-2-hydroxy-acetophenone (1)
3.1.2. Synthesis of 5-(3-(methyl(octadecyl)amino)propoxy)-2-hydroxyacetophenone (2)
3.1.3. Synthesis of 4′-diethylamino-6-(3- methyloctadecylaminopropoxy)-3-hydroxyflavone (3)
3.1.4. Synthesis of N-[3-(4′-diethylamino-3-hydroxyflavonyl-6-oxy)propyl]-N,N-(methyloctadecyl ammonium) propane-1-sulfonate (4)
3.2. Preparation of GUVs
3.3. Molecular Dynamics Simulations
3.4. Model Membrane Structural Parameters
3.5. Pseudo-Semantic Approach for the Study of Membrane Fluidity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Simons, K.; Vaz, W.L.C. Model Systems, Lipid Rafts, and Cell Membranes 1. Annu. Rev. Biophys. Biomol. Struct. 2004, 33, 269–295. [Google Scholar] [CrossRef] [PubMed]
- Vaz, W.L.C.; Melo, E. Fluorescence Spectroscopic Studies on Phase Heterogeneity in Lipid Bilayer Membranes. J. Fluoresc. 2001, 11, 255–271. [Google Scholar] [CrossRef] [Green Version]
- Di Martino, M.; Marrafino, F.; Diana, R.; Iannelli, P.; Concilio, S. Fluorescent Probes for Applications in Bioimaging. In Advances in Bionanomaterials II; Piotto, S., Concilio, S., Sessa, L., Rossi, F., Eds.; Lecture Notes in Bioengineering; Springer International Publishing: Cham, Switzerland, 2020; pp. 243–258. [Google Scholar] [CrossRef]
- Klymchenko, A.S.; Kreder, R. Fluorescent Probes for Lipid Rafts: From Model Membranes to Living Cells. Chem. Boil. 2014, 21, 97–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diana, R.; Panunzi, B.; Tuzi, A.; Piotto, S.; Concilio, S.; Caruso, U. An Amphiphilic Pyridinoyl-hydrazone Probe for Colorimetric and Fluorescence pH Sensing. Molecules 2019, 24, 3833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borbone, F.; Caruso, U.; Concilio, S.; Nabha, S.; Piotto, S.; Shikler, R.; Tuzi, A.; Panunzi, B. From cadmium (II)-aroylhydrazone complexes to metallopolymers with enhanced photoluminescence. A structural and DFT study. Inorg. Chim. Acta. 2017, 458, 129–137. [Google Scholar] [CrossRef]
- Baumgart, T.; Hunt, G.; Farkas, E.R.; Webb, W.W.; Feigenson, G.W. Fluorescence probe partitioning between Lo/Ld phases in lipid membranes. Biochim. Biophys. Acta (BBA)-Biomembr. 2007, 1768, 2182–2194. [Google Scholar] [CrossRef] [Green Version]
- Demchenko, A.P.; Mely, Y.; Duportail, G.; Klymchenko, A.S. Monitoring Biophysical Properties of Lipid Membranes by Environment-Sensitive Fluorescent Probes. Biophys. J. 2009, 96, 3461–3470. [Google Scholar] [CrossRef] [Green Version]
- Panunzi, B.; Borbone, F.; Capobianco, A.; Concilio, S.; Diana, R.; Peluso, A.; Piotto, S.; Tuzi, A.; Velardo, A.; Caruso, U. Synthesis, spectroscopic properties and DFT calculations of a novel multipolar azo dye and its zinc(II) complex. Inorg. Chem. Commun. 2017, 84, 103–108. [Google Scholar] [CrossRef]
- Bansal, M.; Kaur, R. Electromeric effect of substitution at 6 th position in 2-(Furan-2-yl)-3-hydroxy-4 H-chromen-4-one (FHC) on the absorption and emission spectra. J. Chem. Sci. 2015, 127, 405–412. [Google Scholar] [CrossRef]
- Klymchenko, A.S.; Demchenko, A.P. Electrochromic Modulation of Excited-State Intramolecular Proton Transfer: The New Principle in Design of Fluorescence Sensors. J. Am. Chem. Soc. 2002, 124, 12372–12379. [Google Scholar] [CrossRef]
- Klymchenko, A.S.; Demchenko, A.P. Multiparametric probing of intermolecular interactions with fluorescent dye exhibiting excited state intramolecular proton transfer. Phys. Chem. Chem. Phys. 2003, 5, 461–468. [Google Scholar] [CrossRef]
- Klymchenko, A.S.; Duportail, G.; Ozturk, T.; Pivovarenko, V.; Mély, Y.; Demchenko, A.P. Novel two-band ratiometric fluorescence probes with different location and orientation in phospholipid membranes. Chem. Boil. 2002, 9, 1199–1208. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, D.; Batuta, S.; Das, S.; Begum, N.A.; Mandal, D. Proton Transfer Dynamics of 4′-N,N-Dimethylamino-3-hydroxyflavone Observed in Hydrogen-Bonding Solvents and Aqueous Micelles. J. Phys. Chem. B 2015, 119, 5650–5661. [Google Scholar] [CrossRef] [PubMed]
- Shynkar, V.V.; Mely, Y.; Duportail, G.; Piemont, E.; Klymchenko, A.S.; Demchenko, A.P. Picosecond time-resolved fluorescence studies are consistent with reversible excited-state intramolecular proton transfer in 4 ‘-(dialkylamino)-3-hydroxyflavones. J. Phys. Chem. A 2003, 107, 9522–9529. [Google Scholar] [CrossRef]
- Darwich, Z.; Kucherak, O.; Kreder, R.; Richert, L.; Vauchelles, R.; Mély, Y.; Klymchenko, A.S. Rational design of fluorescent membrane probes for apoptosis based on 3-hydroxyflavone. Methods Appl. Fluoresc. 2013, 1, 25002. [Google Scholar] [CrossRef] [PubMed]
- Ozturk, T.; Klymchenko, A.S.; Capan, A.; Oncul, S.; Cikrikci, S.; Taskiran, S.; Tasan, B.; Kaynak, F.B.; Ozbey, S.; Demchenko, A.P. New 3-hydroxyflavone derivatives for probing hydrophobic sites in microheterogeneous systems. Tetrahedron 2007, 63, 10290–10299. [Google Scholar] [CrossRef]
- Vigh, L.; Escribá, P.V.; Sonnleitner, A.; Sonnleitner, M.; Piotto, S.; Maresca, B.; Horvàth, I.; Harwood, J.L. The significance of lipid composition for membrane activity: New concepts and ways of assessing function. Prog. Lipid Res. 2005, 44, 303–344. [Google Scholar] [CrossRef]
- Török, Z.; Crul, T.; Maresca, B.; Schütz, G.J.; Viana, F.; Dindia, L.; Piotto, S.; Brameshuber, M.; Balogh, G.; Péter, M.; et al. Plasma membranes as heat stress sensors: From lipid-controlled molecular switches to therapeutic applications. Biochim. Biophys. Acta (BBA)-Biomembr. 2014, 1838, 1594–1618. [Google Scholar] [CrossRef] [Green Version]
- Piotto, S.; Trapani, A.; Bianchino, E.; Ibarguren, M.; Lopez, D.J.; Busquets, X.; Concilio, S. The effect of hydroxylated fatty acid-containing phospholipids in the remodeling of lipid membranes. Biochim. Biophys. Acta (BBA)-Biomembr. 2014, 1838, 1509–1517. [Google Scholar] [CrossRef] [Green Version]
- Concilio, S.; Ferrentino, I.; Sessa, L.; Massa, A.; Iannelli, P.; Diana, R.; Panunzi, B.; Rella, A.; Piotto, S. A novel fluorescent solvatochromic probe for lipid bilayers. Supramol. Chem. 2017, 29, 1–9. [Google Scholar] [CrossRef]
- Kreder, R.; Oncul, S.; Kucherak, O.; Pyrshev, K.A.; Klymchenko, A.S.; Real, E.; Mély, Y. Blue fluorogenic probes for cell plasma membranes fill the gap in multicolour imaging. RSC Adv. 2015, 5, 22899–22905. [Google Scholar] [CrossRef] [Green Version]
- Shynkar, V.V.; Klymchenko, A.S.; Kunzelmann, C.; Duportail, G.; Muller, C.; Demchenko, A.P.; Freyssinet, J.-M.; Mely, Y. Fluorescent Biomembrane Probe for Ratiometric Detection of Apoptosis. J. Am. Chem. Soc. 2007, 129, 2187–2193. [Google Scholar] [CrossRef] [PubMed]
- Fenz, S.F.; Sengupta, K. Giant vesicles as cell models. Integr. Boil. 2012, 4, 982. [Google Scholar] [CrossRef] [PubMed]
- Walde, P.; Cosentino, K.; Engel, H.; Stano, P. Giant Vesicles: Preparations and Applications. ChemBioChem 2010, 11, 848–865. [Google Scholar] [CrossRef] [PubMed]
- Pautot, S.; Frisken, B.J.; Weitz, D.A. Production of Unilamellar Vesicles Using an Inverted Emulsion. Langmuir 2003, 19, 2870–2879. [Google Scholar] [CrossRef]
- Miele, Y.; Bánsági, T.; Taylor, A.; Stano, P.; Rossi, F. Engineering Enzyme-Driven Dynamic Behaviour in Lipid Vesicles. In Advances in Artificial Life, Evolutionary Computation and Systems Chemistry; Rossi, F., Mavelli, F., Stano, P., Caivano, D., Eds.; Communications in Computer and Information Science; Springer International Publishing: Cham, Switzerland, 2016; pp. 197–208. [Google Scholar] [CrossRef]
- Moga, A.; Yandrapalli, N.; Dimova, R.; Robinson, T. Optimization of the Inverted Emulsion Method for High-Yield Production of Biomimetic Giant Unilamellar Vesicles. ChemBioChem 2019, 20, 2674–2682. [Google Scholar] [CrossRef] [Green Version]
- Stano, P.; De Souza, T.P.; Carrara, P.; Altamura, E.; Caputo, M.; Luisi, P.L.; Mavelli, F.; D’Aguanno, E. Recent Biophysical Issues About the Preparation of Solute-Filled Lipid Vesicles. Mech. Adv. Mater. Struct. 2014, 22, 748–759. [Google Scholar] [CrossRef]
- Miele, Y.; Medveczky, Z.; Holló, G.; Tegze, B.; Derényi, I.; Hórvölgyi, Z.; Altamura, E.; Lagzi, I.; Rossi, F. Self-division of giant vesicles driven by an internal enzymatic reaction. Chem. Sci. 2020, 11, 3228–3235. [Google Scholar] [CrossRef] [Green Version]
- Peyret, A.; Ibarboure, E.; Le Meins, J.; Lecommandoux, S. Asymmetric Hybrid Polymer–Lipid Giant Vesicles as Cell Membrane Mimics. Adv. Sci. 2017, 5, 1700453. [Google Scholar] [CrossRef]
- Miele, Y.; Mingotaud, A.-F.; Caruso, E.; Malacarne, M.C.; Izzo, L.; Lonetti, B.; Rossi, F. Hybrid giant lipid vesicles incorporating a PMMA-based copolymer. Biochim. et Biophys. Acta (BBA)-Gen. Subj. 2020, 129611. [Google Scholar] [CrossRef]
- Subczynski, W.K.; Pasenkiewicz-Gierula, M.; Widomska, J.; Mainali, L.; Raguz, M. High Cholesterol/Low Cholesterol: Effects in Biological Membranes: A Review. Cell Biophys. 2017, 75, 369–385. [Google Scholar] [CrossRef] [PubMed]
- Drolle, E.; Kučerka, N.; Hoopes, M.; Choi, Y.; Katsaras, J.; Karttunen, M.; Leonenko, Z. Effect of melatonin and cholesterol on the structure of DOPC and DPPC membranes. Biochim. Biophys. Acta (BBA)-Biomembr. 2013, 1828, 2247–2254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kučerka, N.; Nieh, M.-P.; Katsaras, J. Fluid phase lipid areas and bilayer thicknesses of commonly used phosphatidylcholines as a function of temperature. Biochim. Biophys. Acta (BBA)-Biomembr. 2011, 1808, 2761–2771. [Google Scholar] [CrossRef]
- Wu, E.L.; Cheng, X.; Jo, S.; Rui, H.; Song, K.C.; Dávila-Contreras, E.M.; Qi, Y.; Lee, J.; Monje-Galvan, V.; Venable, R.M. CHARMM-GUI membrane builder toward realistic biological membrane simulations. J. Comput. Chem. 2014, 35, 1997–2004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Warschawski, D.; Devaux, P.F. Order parameters of unsaturated phospholipids in membranes and the effect of cholesterol: A 1H–13C solid-state NMR study at natural abundance. Eur. Biophys. J. 2005, 34, 987–996. [Google Scholar] [CrossRef] [PubMed]
- Stano, P.; Wodlei, F.; Carrara, P.; Ristori, S.; Marchettini, N.; Rossi, F. Approaches to Molecular Communication Between Synthetic Compartments Based on Encapsulated Chemical Oscillators. In Advances in Artificial Life and Evolutionary Computation; Pizzuti, C., Spezzano, G., Eds.; Communications in Computer and Information Science; Springer International Publishing: Cham, Switzerland, 2014; pp. 58–74. [Google Scholar] [CrossRef]
- Krieger, E.; Vriend, G. YASARA View–molecular graphics for all devices–from smartphones to workstations. Bioinformatics 2014, 30, 2981–2982. [Google Scholar] [CrossRef] [Green Version]
- Casas, J.; Ibarguren, M.; Álvarez, R.; Terés, S.; Lladó, V.; Piotto, S.; Concilio, S.; Busquets, X.; Lopez, D.J.; Escribá, P.V.; et al. G protein-membrane interactions II: Effect of G protein-linked lipids on membrane structure and G protein-membrane interactions. Biochim. et Biophys. Acta (BBA)–Biomembr. 2017, 1859, 1526–1535. [Google Scholar] [CrossRef]
- Piotto, S.; Concilio, S.; Bianchino, E.; Iannelli, P.; Lopez, D.J.; Terés, S.; Ibarguren, M.; Barceló-Coblijn, G.; Martin, M.L.; Guardiola-Serrano, F.; et al. Differential effect of 2-hydroxyoleic acid enantiomers on protein (sphingomyelin synthase) and lipid (membrane) targets. Biochim. et Biophys. Acta (BBA)–Biomembr. 2014, 1838, 1628–1637. [Google Scholar] [CrossRef]
- Mario, S.; Di Marino, S.; Grimaldi, M.; Campana, F.; Vitiello, G.; Piotto, S.; D’Errico, G.; D’Ursi, A.M. Structural features of the C8 antiviral peptide in a membrane-mimicking environment. Biochim. et Biophys. Acta (BBA)–Biomembr. 2014, 1838, 1010–1018. [Google Scholar] [CrossRef] [Green Version]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef]
- Guixà-González, R.; Rodríguez-Espigares, I.; Ramirez-Anguita, J.M.; Carrió-Gaspar, P.; Monne, H.M.-S.; Giorgino, T.; Selent, J. MEMBPLUGIN: Studying membrane complexity in VMD. Bioinform. 2014, 30, 1478–1480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nardiello, A.M.; Piotto, S.; Di Biasi, L.; Sessa, L. Pseudo-semantic Approach to Study Model Membranes. In Advances in Bionanomaterials II; Piotto, S., Concilio, S., Sessa, L., Rossi, F., Eds.; Lecture Notes in Bioengineering; Springer International Publishing: Cham, Switzerland, 2020; pp. 120–127. [Google Scholar] [CrossRef]
- Piotto, S.; Nardiello, A.M.; Di Biasi, L.; Sessa, L. Encoding Materials Dynamics for Machine Learning Applications. In Advances in Bionanomaterials II; Piotto, S., Concilio, S., Sessa, L., Rossi, F., Eds.; Lecture Notes in Bioengineering; Springer International Publishing: Cham, Switzerland, 2020; pp. 128–136. [Google Scholar] [CrossRef]
- Maaten, L.v.d.; Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605. [Google Scholar]
Sample Availability: Samples of the compound 3HF18 are available from the authors. |
Solvent | λAbs (nm) 1 | ε (M−1 cm−1) 2 | λN*Em (nm) | λT*Em (nm) | IN*/IT* |
---|---|---|---|---|---|
Dioxane | 405 | 1.1⋅104 | 475 | 571 | 0.48 |
AcOet | 406 | 1.3⋅104 | 483 | 568 | 0.94 |
DCM | 416 | 2.4⋅104 | 502 | 564 | 1.8 |
Acetone | 426 | 3.2⋅104 | 502 | 567 | 1.9 |
Propan-2-ol | 440 | 3.4⋅104 | 515 | - 3 | - 3 |
MeOH | 440 | 3.4⋅104 | 534 | - 3 | - 3 |
DMF | 438 | 4.4⋅104 | 509 | 576 | 2.05 |
DMSO | 440 | 4.2⋅104 | 519 | - 4 | - 4 |
Ethylene Glycol | 453 | 4.4⋅104 | 551 | - 3 | - 3 |
H2O 5 | - | - | - | - | - |
POPC 1 | DPPC-Chol 1 | POPC 2 | DPPC-Chol 2 |
---|---|---|---|
37.3 ± 0.3 | 45.9 ± 0.2 | 39.8 ± 0.8 | 44.8 |
POPC + 3HF18(N*) 3 | POPC + 3HF18(T*) 4 | DPPC-Chol + 3HF18(N*) 5 | DPPC-Chol + 3HF18(T*) 6 |
37.4 ± 0.2 | 37.8 ± 0.2 | 46.4 ± 0.3 | 46.1 ± 0.2 |
POPC 1 | DPPC-Chol 1 | POPC + 3HF18 (N*) 2 | POPC + 3HF18 (T*) 3 | DPPC-Chol + 3HF18 (N*) 4 | DPPC-Chol + 3HF18 (T*) 5 |
---|---|---|---|---|---|
68.3 | 43.2-48.6 | 69.9 ± 0.5 | 69.2 ± 0.5 | 43.2 ± 0.2 | 43.6 ± 0.2 |
POPC + 3HF18(N*) 1 | POPC + 3HF18(T*) 2 | DPPC-Chol + 3HF18(N*) 3 | DPPC-Chol + 3HF18(T*) 4 | |
---|---|---|---|---|
Binding energy (kcal/mol) | 286 ± 14 | 249 ± 18 | 273 ± 12 | 281 ± 16 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Concilio, S.; Di Martino, M.; Nardiello, A.M.; Panunzi, B.; Sessa, L.; Miele, Y.; Rossi, F.; Piotto, S. A Flavone-Based Solvatochromic Probe with A Low Expected Perturbation Impact on the Membrane Physical State. Molecules 2020, 25, 3458. https://doi.org/10.3390/molecules25153458
Concilio S, Di Martino M, Nardiello AM, Panunzi B, Sessa L, Miele Y, Rossi F, Piotto S. A Flavone-Based Solvatochromic Probe with A Low Expected Perturbation Impact on the Membrane Physical State. Molecules. 2020; 25(15):3458. https://doi.org/10.3390/molecules25153458
Chicago/Turabian StyleConcilio, Simona, Miriam Di Martino, Anna Maria Nardiello, Barbara Panunzi, Lucia Sessa, Ylenia Miele, Federico Rossi, and Stefano Piotto. 2020. "A Flavone-Based Solvatochromic Probe with A Low Expected Perturbation Impact on the Membrane Physical State" Molecules 25, no. 15: 3458. https://doi.org/10.3390/molecules25153458