Analysis of the Volatile Components in Selaginella doederleinii by Headspace Solid Phase Microextraction-Gas Chromatography-Mass Spectrometry
Abstract
:1. Introduction
2. Results and Discussion
2.1. Optimization of the Parameters for HS-SPME
2.2. Fingerprints of Selaginella doederleinii
2.3. PCA
2.4. HCA
2.5. PLS-DA
3. Material and Methods
3.1. Materials
3.2. Sample Preparation
3.3. Sample Pretreatment
3.4. GC-MS Analysis
3.5. Data Analysis
4. Concluding Remarks
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Li, D.; Ma, X.; Jiang, Y.; Wang, G. Profiling of the volatile components in Selaginella based on HS-SPME and GC-MS. Bangladesh J. Bot. 2018, 47, 727–735. [Google Scholar]
- Li, D.; Qian, Y.; Tian, Y.-J.; Yuan, S.-M.; Wei, W.; Wang, G. Optimization of Ionic Liquid-Assisted Extraction of Biflavonoids from Selaginella doederleinii and Evaluation of Its Antioxidant and Antitumor Activity. Molecules 2017, 22, 586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, Y.-M.; Liang, L.-Z.; Gan, T.-Q.; Li, D.; Wang, G. Phytochemistry and Bioactivities of Biflavonoids. Proceedings of the 6th International Conference on the Internet of Things – IoT’16 2017, 13, 105–108. [Google Scholar]
- Wang, G.; Yao, S.; Zhang, X.-X.; Song, H. Rapid Screening and Structural Characterization of Antioxidants from the Extract of Selaginella doederleinii Hieron with DPPH-UPLC-Q-TOF/MS Method. Int. J. Anal. Chem. 2015, 2015, 1–9. [Google Scholar]
- Wang, C.-Y.; Chen, Y.-W.; Hou, C.-Y. Antioxidant and antibacterial activity of seven predominant terpenoids. Int. J. Food Prop. 2019, 22, 230–238. [Google Scholar] [CrossRef] [Green Version]
- Lin, J.; Dai, Y.; Guo, Y.N. Volatile profile analysis and quality prediction of Longjing tea (Camellia sinensis) by HS-SPME/GC-MS. J. Zhejiang Univ. Sci. B. 2012, 12, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Pawliszyn, J. Theory and practice of solid phase microextraction. Presented at Annual Conference of the Federation of Analytical Chemistry and Spectroscopy Societies, Cincinnati, OH, USA, 15 October 1995. [Google Scholar]
- Xiao, Z.B.; Liu, S.J.; Gu, Y.B. Discrimination of cherry wines based on their sensory properties and aromatic fingerprinting using HS-SPME-GC-MS and multivariate analysis. J. Food Sci. 2014, 79, 284–294. [Google Scholar] [CrossRef]
- Abdelhamid, N.; Farid, B.A.; Zouheir, A. Headspace solid phase microextraction coupled to GC/MS for the analysis of volatiles of honeys from arid and mediterranean areas of algeria. Chem Biodivers. 2019, 13, 78–87. [Google Scholar]
- Steingass, C.B.; Grauwet, T.; Carle, R. Influence of harvest maturity and fruit logistics on pineapple (Ananas comosus [L.] Merr.) volatiles assessed by headspace solid phase microextraction and gas chromatography–mass spectrometry (HS-SPME-GC/MS). Food Chem. 2014, 150, 382–391. [Google Scholar] [CrossRef]
- Nie, C.-N.; Zhong, X.-X.; He, L.; Gao, Y.; Zhang, X.; Wang, C.-M.; Du, X. Comparison of different aroma-active compounds of Sichuan Dark brick tea (Camellia sinensis) and Sichuan Fuzhuan brick tea using gas chromatography–mass spectrometry (GC–MS) and aroma descriptive profile tests. Eur. Food Res. Technol. 2019, 245, 1963–1979. [Google Scholar] [CrossRef]
- Wang, L.; Sang, M.; Liu, E.; Banahene, P.O.; Zhang, Y.; Wang, T.; Han, L.; Gao, X. Rapid profiling and pharmacokinetic studies of major compounds in crude extract from Polygonum multiflorum by UHPLC-Q-TOF-MS and UPLC–MS/MS. J. Pharm. Biomed. Anal. 2017, 140, 45–61. [Google Scholar] [CrossRef] [PubMed]
- Tayeb, B.; Nadhir, G.; Isabelle, B. New chemotype of essential oil of achillea santolina l. collected from different regions of algeria. J. Food Meas. Charact. 2018, 12, 1–8. [Google Scholar]
- Chen, J.T.; Ge, S.B.; Liu, Z.L. GC-MS explores biological components in the extract of Pterocarpus macarocarpus kurz. Saudi J. Biol Sci. 2018, 25, 56–63. [Google Scholar]
- Wang, G.; Song, H.; Yao, S.; Zhang, Z.R. Optimization of the microwave-assisted extraction, GC-MS analysis and antimicrobial activity of the volatile oil constituents from Selaginella doederleinii. J. Investig. Med. 2013, 61, 13–16. [Google Scholar]
- Arvind, K.; Vinay, K.V.; Mohan, S.M. HS-SPME/GC/GC-MS analysis of volatile constituents of Morina longifolia wall. J. Essent. Oil Bear Pl. 2018, 21, 155–163. [Google Scholar]
- Yang, Y.-Q.; Yin, H.-X.; Yuan, H.-B.; Jiang, Y.-W.; Dong, C.-W.; Deng, Y.-L. Characterization of the volatile components in green tea by IRAE-HS-SPME/GC-MS combined with multivariate analysis. PLoS ONE 2018, 13, e0193393. [Google Scholar] [CrossRef] [Green Version]
- Hossain, S.Z.; Bojko, B.; Pawliszyn, J. Automated SPME–GC–MS monitoring of headspace metabolomic responses of E. coli to biologically active components extracted by the coating. Anal. Chim. Acta 2013, 776, 41–49. [Google Scholar] [CrossRef]
- McDaniel, A.; Perry, L.; Liu, Q.; Shih, W.-C.; Yu, J. Toward the identification of marijuana varieties by headspace chemical forensics. Forensic Chem. 2018, 11, 23–31. [Google Scholar] [CrossRef]
- Wang, G.; Yao, S.; Cheng, L.; Luo, Y.; Song, H. Antioxidant and anticancer effection of the volatile oil from various habitats of Selaginella doederleinii Hieron. Technol. Health Care 2015, 23, S21–S27. [Google Scholar] [CrossRef]
- Wang, G.; Li, S.H.; Zhou, H.L.; Jiang, Y.M. Phytochemical screening, antioxidant, antibacterial and cytotoxic activities of different extracts of Selaginella doederleinii. Bangladesh J. Bot. 2017, 46, 1193–1201. [Google Scholar]
- Alizadeh, N.; Pourmand, E.; Ghaemi, E. Determination of acrylamide in potato-based foods using headspace solid-phase microextraction based on nanostructured polypyrrole fiber coupled to ion mobility spectrometry: A heat treatment study. Anal. Methods 2017, 9, 5127–5134. [Google Scholar]
- Santos, B.R.; Elias, A.M.; Coelho, G.L. Use of HS-SPME for analysis of the influence of salt concentration and temperature on the activity coefficient at infinite dilution of ethanol-water-salt systems. Fluid Phase Equilibria 2016, 429, 21–26. [Google Scholar] [CrossRef]
- Qin, G.; Tao, S.; Cao, Y.; Wu, J.; Zhang, H.; Huang, W.; Zhang, S. Evaluation of the volatile profile of 33 Pyrus ussuriensis cultivars by HS-SPME with GC–MS. Food Chem. 2012, 134, 2367–2382. [Google Scholar] [CrossRef] [PubMed]
- Sook, W.W.; Bin, Y.; Philip, C. Characterising the release of flavour compounds from chewing gum through HS-SPME analysis and mathematical modelling. Food Chem. 2009, 114, 852–858. [Google Scholar]
- Lv, S.-D.; Wu, Y.-S.; Song, Y.-Z.; Zhou, J.-S.; Lian, M.; Wang, C.; Liu, L.; Meng, Q.-X. Multivariate Analysis Based on GC-MS Fingerprint and Volatile Composition for the Quality Evaluation of Pu-Erh Green Tea. Food Anal. Methods 2014, 8, 321–333. [Google Scholar] [CrossRef]
- Nuutinen, T. Medicinal properties of terpenes found in Cannabis sativa and Humulus lupulus. Eur. J. Med. Chem. 2018, 157, 198–228. [Google Scholar] [CrossRef]
- Kumar, S.; Bajpai, V.; Singh, A.; Kumar, B. Identification, characterization and distribution of terpene indole alkaloids in ethanolic extracts of Catharanthus roseus using high-performance liquid chromatography/electrospray ionization quadrupole time-of-flight tandem mass spectrometry and the stud. Rapid Commun. Mass Spectrom. 2018, 32, 319–332. [Google Scholar] [CrossRef]
- Gunaseelan, S.; Balupillai, A.; Govindasamy, K.; Muthusamy, G.; Ramasamy, K.; Shanmugam, M.; Prasad, N.R. The preventive effect of linalool on acute and chronic UVB-mediated skin carcinogenesis in Swiss albino mice. Photochem. Photobiol. Sci. 2016, 15, 851–860. [Google Scholar] [CrossRef]
- Zhang, K.; Yao, L. Anxiolytic Effect of Cedrol on Behavior and Brain Neurotransmitter Levels of Female Mice. Boil. Pharm. Bull. 2019, 42, 1575–1580. [Google Scholar] [CrossRef]
- Takeoka, G.; Perrino, C.; Buttery, R. Volatile Constituents of Used Frying Oils. J. Agric. Food Chem. 1996, 44, 654–660. [Google Scholar] [CrossRef]
- Pino, J.A.; Mesa, J.; Muñoz, Y.; Martí, M.P.; Marbot, R. Volatile Components from Mango (Mangifera indicaL.) Cultivars. J. Agric. Food Chem. 2005, 53, 2213–2223. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.-X.; Li, X.-N.; Liang, Y.-Z.; Fang, H.-Z.; Huang, L.-F.; Guo, F.-Q. Comparative analysis of chemical components of essential oils from different samples of Rhododendron with the help of chemometrics methods. Chemom. Intell. Lab. Syst. 2006, 82, 218–228. [Google Scholar] [CrossRef]
- Radulović, N.; Blagojević, P.; Palić, R. Comparative Study of the Leaf Volatiles of Arctostaphylos uva-ursi (L.) Spreng. and Vaccinium vitis-idaea L. (Ericaceae). Molecules 2010, 15, 6168–6185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Javidnia, K.; Miri, R.; Kamalinejad, M. Chemical composition of the essential oils of Anthemis altissima L. Grown in Iran. Flavour Frag. J. 2004, 19, 213–216. [Google Scholar] [CrossRef]
- Hazzit, M.; Baaliouamer, A.; Faleiro, M.L. Composition of the essential oils of thymus and origanum species from algeria and their antioxidant and antimicrobial activities. J. Agric. Food Chem. 2006, 54, 6314–6321. [Google Scholar] [CrossRef]
- Zhao, C.; Zeng, Y.; Wan, M.; Li, R.; Liang, Y.; Li, C.; Zeng, Z.; Chau, F.-T. Comparative analysis of essential oils from eight herbal medicines with pungent flavor and cool nature by GC-MS and chemometric resolution methods. J. Sep. Sci. 2009, 32, 660–670. [Google Scholar] [CrossRef]
- Tomassen, P.; Vandeplas, G.; Van Zele, T.; Cardell, L.-O.; Arebro, J.; Olze, H.; Förster-Ruhrmann, U.; Kowalski, M.L.; Olszewska-Ziąber, A.; Holtappels, G.; et al. Inflammatory endotypes of chronic rhinosinusitis based on cluster analysis of biomarkers. J. Allergy Clin. Immunol. 2016, 137, 1449–1456. [Google Scholar] [CrossRef] [Green Version]
- Morton, C.; Anable, J.; Nelson, J.D. Consumer structure in the emerging market for electric vehicles: Identifying market segments using cluster analysis. Int. J. Sustain. Transp. 2017, 11, 443–459. [Google Scholar] [CrossRef]
- Yi, M.; Li, Q.; Zhao, Y.; Nie, S.; Wu, N.; Wang, D. Metabolomics study on the therapeutic effect of traditional Chinese medicine Xue-Fu-Zhu-Yu decoction in coronary heart disease based on LC-Q-TOF/MS and GC-MS analysis. Drug Metab. Pharmacokinet. 2019, 34, 340–349. [Google Scholar] [CrossRef]
- Almeida, M.R.; Fidelis, C.H.; Barata, L.E.; Poppi, R. Classification of Amazonian rosewood essential oil by Raman spectroscopy and PLS-DA with reliability estimation. Talanta 2013, 117, 305–311. [Google Scholar] [CrossRef]
- Wang, G.; Song, H.; Yao, S.; Zhang, Z.R. Analysis of Volatile Oil in Selaginella doederleinii Hieron from Various Habitats by GC-MS. Adv. Mater. Res. 2013, 641, 862–866. [Google Scholar] [CrossRef]
- Dawidowicz, A.L.; Szewczyk, J.; Dybowski, M.P. Modified application of HS-SPME for quality evaluation of essential oil plant materials. Talanta 2016, 146, 195–202. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Ni, H.; Qiu, X.-J.; Li, T.; Zhang, L.-Z.; Li, L.-J.; Jiang, Z.-D.; Li, Q.-B.; Chen, F.; Zheng, F.-P. Suppressive Interaction Approach for Masking Stale Note of Instant Ripened Pu-Erh Tea Products. Molecules 2019, 24, 4473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Sample Availability: Samples of the compounds are available from the authors. |
No | RIa | RIb | Rt/Min | Identification | Compounds | C | CAS | Peak Areas Ratios (%) | p Value | Vip | |
---|---|---|---|---|---|---|---|---|---|---|---|
Zhejiang (n = 11) | Guizhou (n = 13) | ||||||||||
1 | 951 | 956 | 8.188 | STD,MS,RI | 2-heptenal | A | 18829-55-5 | 0.35 ± 0.03 | 0.67 ± 0.02 | 0.029 | 0.593 |
2 | 979 | 984 | 8.874 | STD,MS,LR,RI | 1-octen-3-ol | B | 3391-86-4 | 0.21 ± 0.02 | 0.82 ± 0.12 | 0.006 | 1.033 |
3 | 983 | 989 | 8.992 | MS,LR,RI | 3-octanone | C | 106-68-3 | 0.33 ± 0.16 | 0.37 ± 0.09 | 0.679 | 0.151 |
4 | 986 | 967 | 9.095 | MS,LR,RI | 1-heptanol* | B | 111-70-6 | 0.17 ± 0.05 | 0.41 ± 0.16 | 0.009 | 0.714 |
5 | 989 | 988 | 9.187 | STD,MS,RI | 2-pentylfuran | D | 3777-69-3 | 7.50 ± 1.25 | 5.48 ± 0.13 | 0.003 | 1.150 |
6 | 1059 | 1056 | 11.245 | STD,MS,LR,RI | 2-octenal* | A | 2548-87-0 | 1.11 ± 0.23 | 1.92 ± 0.38 | 0.003 | 1.226 |
7 | 1103 | 1102 | 12.579 | STD,MS,LR,RI | 1-nonanal | A | 124-19-6 | 0.75 ± 0.31 | 0.59 ± 0.25 | 0.099 | 0.470 |
8 | 1104 | 1106 | 12.693 | STD,MS,LR,RI | linalool | H | 78-70-6 | 2.37 ± 0.68 | 3.36 ± 0.23 | 0.012 | 1.044 |
9 | 1143 | 1142 | 13.978 | STD,MS,LR,RI | 4-oxoisophorone* | C | 1125-21-9 | 0.76 ± 0.31 | 1.45 ± 0.11 | 0.017 | 1.163 |
10 | 1154 | 1159 | 14.475 | MS,LR,RI | 2-nonenal | A | 2463-53-8 | 2.45 ± 0.16 | 1.46 ± 0.06 | 0.009 | 0.927 |
11 | 1183 | 1181 | 14.767 | MS,LR,RI | terpinen-4-ol* | H | 562-74-3 | 0.85 ± 0.26 | 0.83 ± 0.05 | 0.475 | 0.237 |
12 | 1204 | 1201 | 15.405 | STD,MS,RI | 4-allylanisole* | F | 140-67-0 | 0.31 ± 0.18 | 0.73 ± 0.12 | 0.001 | 0.836 |
13 | 1207 | 1203 | 15.594 | STD,MS,LR,RI | decanal* | A | 112-31-2 | 0.15 ± 0.06 | 2.05 ± 0.38 | 0.008 | 1.267 |
14 | 1216 | 1214 | 15.739 | STD,MS,LR,RI | 2,4-nonadienal* | A | 5910-87-2 | 4.65 ± 0.76 | 5.6 ± 0.34 | 0.050 | 0.537 |
15 | 1247 | 1241 | 17.092 | STD,MS,LR,RI | citral | A | 5392-40-5 | 0.37 ± 0.08 | 0.55 ± 0.16 | 0.020 | 0.651 |
16 | 1257 | 1243 | 17.203 | MS,LR,RI | 2,4-decadienal | A | 2363-88-4 | 0.21 ± 0.05 | 0.43 ± 0.35 | 0.012 | 0.699 |
17 | 1259 | 1255 | 17.322 | STD,MS,LR,RI | 6-undecanone* | C | 927-49-1 | 0.17 ± 0.09 | 0.79 ± 0.18 | 0.007 | 1.005 |
18 | 1260 | 1254 | 17.468 | MS,RI | 2-decen-1-ol* | B | 22104-80-9 | 0.15 ± 0.07 | 0.38 ± 0.17 | 0.008 | 0.730 |
19 | 1267 | 1262 | 17.727 | STD,MS,RI | anethol* | H | 104-46-1 | 0.56 ± 0.15 | 12.78 ± 0.3 | 0.003 | 1.310 |
20 | 1276 | Nr | 18.208 | STD,MS,LR,RI | dodecanal* | A | 112-54-9 | 0.74 ± 0.16 | 0.79 ± 0.13 | 0.346 | 0.307 |
21 | 1290 | 1292 | 18.543 | STD,MS,RI | carvacrol* | H | 499-75-2 | 2.21 ± 0.48 | 1.14 ± 0.24 | 0.011 | 1.129 |
22 | 1356 | 1355 | 19.721 | STD,MS,RI | γ-nonanolactone* | J | 104-61-0 | 0.13 ± 0.03 | 0.69 ± 0.05 | 0.015 | 1.161 |
23 | 1358 | 1355 | 19.883 | MS,RI | 6-dodecanone* | C | 6064-27-3 | 0.35 ± 0.09 | 1.21 ± 0.31 | 0.009 | 1.208 |
24 | 1375 | 1378 | 19.980 | MS,LR,RI | 2-butyl-2-octenal* | A | 13019-16-4 | 0.23 ± 0.04 | 1.91 ± 0.58 | 0.007 | 1.226 |
25 | 1379 | 1385 | 20.288 | STD,MS,LR,RI | hexyl hexanoate* | J | 6378-65-0 | 0.37 ± 0.04 | 1.28 ± 0.18 | 0.010 | 1.285 |
26 | 1394 | 1396 | 20.423 | MS,RI | 7-tetradecene* | E | 10374-74-0 | 0.16 ± 0.03 | 2.16 ± 0.42 | 0.021 | 1.236 |
27 | 1403 | 1400 | 20.644 | STD,MS,LR,RI | tetradecane | E | 629-59-4 | 0.15 ± 0.02 | 1.77 ± 0.16 | 0.005 | 1.216 |
28 | 1415 | 1417 | 20.817 | MS,LR,RI | copaene* | H | 3856-25-5 | 1.62 ± 0.12 | 0.8 ± 0.25 | 0.017 | 1.233 |
29 | 1446 | 1461 | 20.871 | MS,RI | farnesene* | H | 502-61-4 | 0.14 ± 0.05 | 1.21 ± 0.31 | 0.013 | 1.093 |
30 | 1447 | 1432 | 21.185 | MS,RI | cedren* | H | 469-61-4 | 1.80 ± 0.17 | 0.65 ± 0.03 | 0.019 | 1.242 |
31 | 1448 | 1437 | 21.379 | STD,MS,LR,RI | β-caryophyllene | H | 87-44-5 | 2.54 ± 0.19 | 1.3 ± 0.57 | 0.008 | 1.190 |
32 | 1450 | 1440 | 21.752 | MS,RI | calarene* | H | 17334-55-3 | 0.13 ± 0.06 | 0.53 ± 0.09 | 0.022 | 0.944 |
33 | 1452 | 1446 | 22.238 | MS,LR,RI | aromadendrene | H | 489-39-4 | 4.80 ± 0.56 | 3.7 ± 0.15 | 0.001 | 0.814 |
34 | 1471 | 1473 | 22.454 | STD,MS,RI | 4-(4-methoxyphenyl)-2-butanone* | C | 104-20-1 | 1.91 ± 0.31 | 2.15 ± 0.33 | 0.034 | 0.591 |
35 | 1472 | 1472 | 22.731 | MS,RI | 2,6-di-tert-butylbenzoquinone* | I | 719-22-2 | 0.37 ± 0.08 | 0.43 ± 0.08 | 0.077 | 0.504 |
36 | 1489 | 1488 | 23.367 | STD,MS,RI | β-ionone | H | 14901-07-6 | 2.35 ± 0.11 | 1.37 ± 0.37 | 0.043 | 0.779 |
37 | 1492 | 1497 | 23.432 | MS,RI | β-humulene* | H | 116-04-1 | 2.05 ± 0.13 | 0.68 ± 0.19 | 0.018 | 1.230 |
38 | 1497 | 1500 | 23.697 | STD,MS,LR,RI | n-pentadecane | E | 629-62-9 | 1.02 ± 0.05 | 2.8 ± 0.15 | 0.019 | 1.117 |
39 | 1502 | Nr | 24.102 | STD,MS,LR,RI | tetradecanal* | A | 124-25-4 | 0.26 ± 0.06 | 0.33 ± 0.32 | 0.365 | 0.353 |
40 | 1507 | 1513 | 24.242 | STD,MS,LR,RI | 2,4-di-tert-butylphenol* | G | 96-76-4 | 1.38 ± 0.11 | 0.42 ± 0.08 | 0.023 | 1.289 |
41 | 1515 | 1519 | 24.674 | MS,LR,RI | β-bisabolene* | H | 495-61-4 | 1.54 ± 0.16 | 1.42 ± 0.45 | 0.119 | 0.445 |
42 | 1532 | 1534 | 24.934 | MS,RI | ledene* | H | 21747-46-6 | 5.48 ± 0.34 | 1.5 ± 0.28 | 0.027 | 1.288 |
43 | 1560 | 1562 | 26.252 | MS,RI | calacorene* | E | 21391-99-1 | 0.16 ± 0.03 | 0.87 ± 0.36 | 0.031 | 1.211 |
44 | 1592 | 1596 | 26.597 | STD,MS,LR,RI | β-asarone* | H | 5273-86-9 | 1.81 ± 0.12 | 0.78 ± 0.18 | 0.016 | 1.013 |
45 | 1596 | 1593 | 27.165 | STD,MS,LR,RI | 1-hexadecene* | E | 629-73-2 | 1.42 ± 0.13 | 2.26 ± 0.25 | 0.056 | 0.885 |
46 | 1605 | 1600 | 27.467 | STD,MS,LR,RI | n-hexadecane | E | 544-76-3 | 3.61 ± 0.43 | 3.19 ± 0.39 | 0.690 | 0.228 |
47 | 1609 | 1606 | 27.710 | STD,MS,LR,RI | cedrol | H | 77-53-2 | 4.66 ± 0.79 | 6.97 ± 0.18 | 0.009 | 1.216 |
48 | 1611 | 1632 | 28.018 | MS,LR,RI | hinesol* | H | 23811-08-7 | 0.36 ± 0.06 | 0.98 ± 0.56 | 0.025 | 1.277 |
49 | 1639 | 1645 | 28.575 | STD,MS, RI | zingerone* | H | 122-48-5 | 5.84 ± 0.59 | 1.51 ± 0.41 | 0.012 | 1.291 |
50 | 1644 | Nr | 29.406 | STD,MS, RI | 1-chlorooctadecane* | E | 3386-33-2 | 0.55 ± 0.12 | 0.72 ± 0.21 | 0.879 | 0.790 |
51 | 1643 | 1649 | 30.698 | MS,LR,RI | t-muurolol* | H | 19912-62-0 | 1.68 ± 0.45 | 1.11 ± 0.15 | 0.002 | 0.234 |
52 | 1664 | 1666 | 30.914 | MS,LR,RI | α-cadinol* | H | 481-34-5 | 2.21 ± 0.16 | 1.15 ± 0.17 | 0.013 | 1.281 |
53 | 1691 | Nr | 31.940 | STD,MS,RI | diisobutyl phthalate* | J | 84-69-5 | 2.79 ± 0.34 | 0.82 ± 0.46 | 0.028 | 1.097 |
54 | 1701 | 1700 | 32.221 | STD,MS,LR,RI | n-heptadecane | E | 629-78-7 | 1.15 ± 0.15 | 0.81 ± 0.09 | 0.024 | 1.059 |
55 | 1706 | 1708 | 32.669 | MS, RI | 1,2-epoxyhexadecane* | E | 7320-37-8 | 1.27 ± 0.16 | 0.51 ± 0.04 | 0.035 | 1.134 |
56 | 1799 | 1800 | 36.164 | STD,MS,LR,RI | 1-octadecene | E | 112-88-9 | 1.27 ± 0.47 | 0.48 ± 0.35 | 0.016 | 1.266 |
57 | 1809 | 1810 | 36.641 | MS,LR,RI | phytane* | E | 638-36-8 | 1.89 ± 0.18 | 0.85 ± 0.31 | 0.008 | 1.026 |
58 | 1846 | 1847 | 37.812 | MS,RI,LR | phytone | C | 502-69-2 | 11.41 ± 1.2 | 5.44 ± 0.24 | 0.007 | 1.278 |
Compound Type | Numbers | Peak Areas Ratios (%) | |
---|---|---|---|
Zhejiang (n = 11) | Guizhou(n = 13) | ||
aldehyde | 11 | 11.27 ± 0.55 | 16.30 ± 0.57 |
alcohol | 3 | 0.53 ± 0.23 | 1.61 ± 0.13 |
ketone | 6 | 14.93 ± 0.68 | 11.61 ± 0.46 |
furan | 1 | 7.50 ± 0.52 | 5.48 ± 0.34 |
alkane | 11 | 12.65 ± 1.12 | 16.42 ± 0.67 |
ether | 1 | 0.31 ± 0.06 | 0.73 ± 0.16 |
phenol | 1 | 1.38 ± 0.12 | 0.42 ± 0.07 |
terpene | 20 | 45.00 ± 3.14 | 43.77 ± 2.16 |
aromatic | 1 | 0.37 ± 0.08 | 0.43 ± 0.07 |
ester | 3 | 3.29 ± 0.48 | 2.79 ± 0.24 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, X.-k.; Li, X.-f.; Zhang, J.-y.; Lei, J.; Li, W.-w.; Wang, G. Analysis of the Volatile Components in Selaginella doederleinii by Headspace Solid Phase Microextraction-Gas Chromatography-Mass Spectrometry. Molecules 2020, 25, 115. https://doi.org/10.3390/molecules25010115
Ma X-k, Li X-f, Zhang J-y, Lei J, Li W-w, Wang G. Analysis of the Volatile Components in Selaginella doederleinii by Headspace Solid Phase Microextraction-Gas Chromatography-Mass Spectrometry. Molecules. 2020; 25(1):115. https://doi.org/10.3390/molecules25010115
Chicago/Turabian StyleMa, Xian-kui, Xiao-fei Li, Jian-yong Zhang, Jie Lei, Wei-wei Li, and Gang Wang. 2020. "Analysis of the Volatile Components in Selaginella doederleinii by Headspace Solid Phase Microextraction-Gas Chromatography-Mass Spectrometry" Molecules 25, no. 1: 115. https://doi.org/10.3390/molecules25010115