Antioxidant, Anti-Inflammatory, and Postulated Cytotoxic Activity of Phenolic and Anthocyanin-Rich Fractions from Polana Raspberry (Rubus idaeus L.) Fruit and Juice—In Vitro Study
Abstract
:1. Introduction
2. Results and Discussion
2.1. Phenolic Content
2.2. HPLC Identification of Phenolics and Anthocyanins
2.3. Antioxidant Potential
2.4. Anti-Inflammatory Activity
2.5. Analysis of Cell Viability In Vitro—A Pilot Study
3. Materials and Methods
3.1. Material
3.2. Isolation of Phenolic Compounds
3.3. Total Phenolic Content
HPLC Analysis of Phenolic Compounds
3.4. Flavonoid Content
3.5. Anthocyanin Content
HPLC Analysis of Anthocyanins
3.6. Antioxidant Activities
3.6.1. Free Radical Scavenging Assay
3.6.2. Chelating Power
3.6.3. Ferric Reducing Power (FRAP)
3.7. Anti-Inflammatory In Vitro Activity
3.7.1. LOX Inhibitory Activity
3.7.2. COX-2 Inhibitory Activity
3.7.3. Determination of the Type of LOX and COX-2 Inhibition
3.8. Cell Lines
- -
- HL-60—Human Caucasian promyelocytic leukemia (ECACC No. 98070106).
- -
- J45.01—Human acute T cell leukemia (ECACC No. 93031145). The cells at the density 0.5 × 106 cells/mL were incubated in an air atmosphere humidified with 5% CO2 for 24 h at 37 °C in an incubator (Cellstar, Cleveland, OH, USA). The growth medium consisted of RPMI 1640 medium (Sigma, St. Gallen, Switzerland), heat-inactivated fetal calf serum (20% for HL-60 and 10% for J.45), 2 mM L-glutamine and antibiotics: penicillin at a concentration of 100 U/mL, streptomycin at a concentration of 100 μM/mL, and amphotericin B at a concentration of 2.5 μg/mL (Sigma).
3.8.1. Preparation of Extracts for Cytotoxicity Assay
3.8.2. In Vitro Cytotoxicity Assay—A Pilot Study
3.9. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Skrovankova, S.; Sumczynski, D.; Mlcek, J.; Jurikova, T.; Sochor, J. Bioactive compounds and antioxidant activity in different types of berries. Int. J. Mol. Sci. 2015, 16, 24673–24706. [Google Scholar] [CrossRef] [PubMed]
- Kondakova, V.; Tsvetkov, I.; Batchvarova, R.; Badjakov, I.; Dzhambazova, T.; Slavov, S. Phenol compounds—Qualitative index in small fruits. Biotechnol. Biotechnol. Equip. 2009, 23, 1444–1448. [Google Scholar] [CrossRef]
- Kostecka-Gugała, A.; Ledwożyw-Smoleń, I.; Augustynowicz, J.; Wyżgolik, G.; Kruczek, M.; Kaszycki, P. Antioxidant properties of fruits of raspberry and blackberry grown in central Europe. Acta Hortic. 2016, 1133, 371–378. [Google Scholar] [CrossRef]
- Orzeł, A.; Król-Dyrek, K.; Kostecka-Gugała, A.; Bieniasz, M.; Augustynowicz, J.; Wyżgolik, G. Evaluation of vegetative growth and fruit chemistry of some raspberry and blackberry cultivars grown in southern Poland. Open Chem. 2015, 13, 1313–1325. [Google Scholar] [CrossRef]
- Beekwilder, J.; Hall, R.D.; De Ric Vos, C.H. Identification and dietary relevance of antioxidants from raspberry. BioFactors 2005, 23, 197–205. [Google Scholar] [CrossRef] [PubMed]
- Fu, L.; Xu, B.T.; Xu, X.R.; Gan, R.Y.; Zhang, Y.; Xia, E.Q.; Li, H.B. Antioxidant capacities and total phenolic content of 62 fruits. Food Chem. 2011, 129, 345–350. [Google Scholar] [CrossRef]
- Rathee, P.; Chaudhary, H.; Rathe, S.; Rathe, D.; Kumar, V.; Kohli, K. Mechanism of action of flavonoids as anti-inflammatory agents: A review. Inflamm. Allergy Drug Targets 2009, 8, 229–235. [Google Scholar] [CrossRef] [PubMed]
- Skrzypczak-Jankun, E.; Chorostowska-Wynimko, J.; Selman, S.H.; Jankun, J. Lipoxygenases—A challenging problem in enzyme inhibition and drug development. Curr. Enz. Inhib. 2007, 3, 119–132. [Google Scholar] [CrossRef]
- Seeram, N.P. Berry fruits: Compositional elements, biochemical activities, and the impact of their intake on human health, performance, and disease. J. Agric. Food Chem. 2008, 6, 627–629. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.C.; Huang, H.P.; Hsu, J.D.; Yang, S.F.; Wang, C.J. Hibiscus anthocyanins rich extract-induced apoptotic cell death in human promyelocytic leukemia cells. Toxicol. Appl. Pharmacol. 2005, 205, 201–212. [Google Scholar] [CrossRef] [PubMed]
- Jeong, J.H.; Jung, H.; Lee, S.R.; Lee, H.J.; Hwang, K.T.; Kim, T.Y. Anti-oxidant, anti-proliferative and anti-inflammatory activities of the extracts from black raspberry fruits and wine. Food Chem. 2010, 123, 338–344. [Google Scholar] [CrossRef]
- Lala, G.; Malik, M.; Zhao, C.; Jian, H.; Kwon, Y.; Giusti, M.M.; Magnuson, B.A. Anthocyanin—Rich extracts inhibit multiple biomarkers of colon cancer in rats. Nutr. Cancer. 2006, 54, 84–93. [Google Scholar] [CrossRef] [PubMed]
- Thomasset, S.; Teller, N.M.; Cai, H.; Marko, D.; Berry, D.P.; Steward, W.P.; Gescher, A.J. Do anthocyanins and anthocyanidins, cancer chemopreventive pigments in the diet, merit development as potential drugs? Cancer Chemother. Pharmacol. 2009, 64, 201–211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bowen-Forbes, C.S.; Zhang, Y.; Nair, M.G. Anthocyanin content, antioxidant, anti-inflammatory and anticancer properties of blackberry and raspberry fruits. J. Food Compos. Anal. 2010, 23, 554–560. [Google Scholar] [CrossRef]
- Krauze-Baranowska, M.; Majdan, M.; Hałasa, R.; Głód, D.; Kula, M.; Fecka, I.; Orzeł, A. The antimicrobial activity of fruits from some cultivar varieties of Rubus idaeus and Rubus occidentalis. Food Funct. 2014, 5, 2536–2541. [Google Scholar] [CrossRef] [PubMed]
- Pavlović, A.V.; Dabić, D.Č.; Momirović, N.M.; Dojčinović, B.P.; Milojković-Opsenica, D.M.; Tepić, Ž.L.; Natić, M.M. Chemical composition of two different extracts of berries harvested in Serbia. J. Agric. Food Chem. 2013, 61, 4188–4194. [Google Scholar] [CrossRef] [PubMed]
- Stajčić, S.M.; Tepić, A.N.; Djilas, S.M.; Šumić, Z.M.; Čanadanović–Brunet, J.M.; Ćetković, G.S.; Vulić, J.J.; Tumbas, V.T. Chemical composition and antioxidant activity of berry fruits. APTEFF 2012, 43, 93–105. [Google Scholar] [CrossRef]
- Bobinaité, R.; Viškelis, P.; Venskutonis, P.R. Variation of total phenolics, anthocyanins, ellagic acid and radical scavenging capacity in various raspberry (Rubus spp.) cultivars. Food Chem. 2012, 132, 1495–1501. [Google Scholar] [CrossRef] [PubMed]
- Četojević-Simin, D.D.; Velićanski, A.S.; Cvetković, D.D.; Markov, S.L.; Ćetković, G.S.; Šaponjac, V.T.T.; Vulić, J.J.; Ĉanadanović-Brunet, J.M.; Djilas, S.M. Bioactivity of Meeker and Willamette raspberry (Rubus idaeus L.) pomace extracts. Food Chem. 2015, 166, 407–413. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Wang, L.; Wu, Z.; Yao, L.; Wu, Y.; Huang, L.; Liu, K.; Zhou, X.; Gou, D. Anthocyanin—Rich fractions from red raspberries attenuate inflammation in both RAW264.7 macrophages and a mouse model of colitis. Sci. Rep. 2014, 4, 6234. [Google Scholar] [CrossRef] [PubMed]
- Guiné, R.P.F.; Soutinho, S.M.A.; Gonçalves, F.J. Phenolic compounds and antioxidant activity in red fruits produced in organic farming. Croat. J. Food Sci. Technol. 2014, 6, 15–26. [Google Scholar] [CrossRef]
- Jakobek, L.; Seruga, M.; Novak, I.; Medvidović-Kosanović, M. Flavonols, phenolic acids and antioxidant activity of some red fruits. Dtsch. Lebensmitt Rundsch. 2007, 103, 369–378. [Google Scholar]
- Kula, M.; Majdan, M.; Głód, D.; Krauze-Baranowska, M. Phenolic composition of fruits from different cultivars of red and black raspberries grown in Poland. J. Food Compos. Anal. 2016, 52, 74–82. [Google Scholar] [CrossRef]
- Gülçin, I.; Topal, F.; Çakmakçi, R.; Bilsel, M.; Gören, A.C.; Erdogan, U. Pomological features, nutritional quality, polyphenol content analysis, and antioxidant properties of domesticated and 3 wild ecotype forms of raspberries (Rubus idaeus L.). J. Food Sci. 2011, 76, C585–C593. [Google Scholar] [CrossRef] [PubMed]
- Mattila, P.; Hellstram, J.; Tarranen, R. Phenolic acids in berries, fruits, and beverages. J Agric. Food Chem. 2006, 54, 7193–7199. [Google Scholar] [CrossRef] [PubMed]
- Soutinho, S.M.A.; Guiné, R.P.F.; Jordão, A.M.; Gonçalves, F.J. Phenolic compounds in red fruits produced in organic farming at maturation stage. WASET 2013, 79, 473–476. [Google Scholar] [CrossRef]
- Fang, Z.; Zhang, M.; Wang, L. HPLC-DAD–ESIMS analysis of phenolic compounds in bayberries (Myrica rubra Sieb. et Zucc.). Food Chem. 2007, 100, 845–852. [Google Scholar] [CrossRef]
- Sariburun, E.; Șahin, S.; Demir, C.; Türkben, C.; Uylaşer, V. Phenolic content and antioxidant activity of raspberry and blackberry cultivars. J. Food Sci. 2010, 75, C328–C335. [Google Scholar] [CrossRef] [PubMed]
- Knaup, B.; Oehme, A.; Valotis, A.; Schreier, P. Anthocyanins as lipoxygenase inhibitors. Mol. Nutr. Food Res. 2009, 53, 617–624. [Google Scholar] [CrossRef] [PubMed]
- Bräunlich, M.; Slimestad, R.; Wangensteen, H.; Brede, C.; Malterud, K.E.; Barsett, H. Extracts, anthocyanins and procyanidins from Aronia melanocarpa as radical scavengers and enzyme inhibitors. Nutrients 2013, 5, 663–678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wangensteen, H.; Bräunlich, M.; Nikolic, V.; Malterud, K.E.; Slimestad, R.; Barsett, H. Anthocyanins, proanthocyanidins and total phenolics in four cultivars of aronia: Antioxidant and enzyme inhibitory effects. J. Funct. Foods 2014, 7, 746–752. [Google Scholar] [CrossRef]
- Adhikari, D.P.; Francis, J.A.; Chandra, A.; Nair, M.G. Quantification and characterisation of cyclo-oxygenase and lipid peroxidation inhibitory anthocyanins in fruits of Amelanchier. Phytochem. Anal. 2005, 16(3), 175–180. [Google Scholar] [CrossRef] [PubMed]
- Rackova, L.; Oblozinsky, M.; Kostalova, D.; Kettmann, V.; Bezakova, L. Free radical scavenging activity and lipoxygenase inhibition of Mahonia aquifolium extract and isoquinoline alkaloids. J. Inflam. 2007, 4, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Bezáková, L.; Muèaji, P.; Eisenreichová, E.; Haladová, M.; Pauliková, I.; Obložinský, M. Effect of different compound from Lilium candidum L. on lipoxygenase activity. Eur. Pharm. J. Acta Facult. Pharm. Univ. Comenianae 2004, 51, 45–50. [Google Scholar]
- Kubo, I.; Ha, T.J.; Shimizu, K. Molecular design of soybean lipoxygenase inhibitors based on natural products. In A Comprehensive Survey of International Soybean Research—Genetics, Physiology, Agronomy and Nitrogen Relationships; InTech: Rijeka, Croatia, 2013; pp. 183–197. [Google Scholar]
- Fimognaria, C.; Bertia, F.; Nüsseb, M.; Cantelli-Fortia, G.; Hrelia, P. Induction of apoptosis in two human leukemia cell lines as well as differentiation in human promyelocytic cells by cyanidin-3-O-b-glucopyranoside. Biochem. Pharmacol. 2004, 67, 2047–2056. [Google Scholar] [CrossRef] [PubMed]
- Och, M.; Och, A.; Cieśla, Ł.; Kubrak, T.; Pecio, Ł.; Stochmal, A.; Kocki, J.; Bogucka-Kocka, A. Study of cytotoxic activity, podophyllotoxin, and deoxypodophyllotoxin content in selected Juniperus species cultivated in Poland. Pharm. Biol. 2015, 53, 831–837. [Google Scholar] [CrossRef] [PubMed]
- Katsube, N.; Iwashita, K.; Tsushida, T.; Yamaki, K.; Kobori, M. Induction of apoptosis in cancer cells by bilberry (Vaccinium myrtillus) and the anthocyanins. J. Agric. Food Chem. 2003, 51, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Feng, R.; Ni, H.M.; Wang, S.Y.; Tourkova, I.L.; Shurin, M.R.; Harada, H.; Yin, X.M. Cyanidin-3-rutinoside, a natural polyphenol antioxidant, selectively kills leukemic cells by induction of oxidative stress. J. Biol. Chem. 2007, 282, 13468–13476. [Google Scholar] [CrossRef] [PubMed]
- Dai, J.; Patel, J.; Mumper, R.J. Characterization of blackberry extract and its antiproliferative and anti-inflammatory properties. J. Med. Food 2007, 10, 258–265. [Google Scholar] [CrossRef] [PubMed]
- Sharif, T.; Alhosin, M.; Auger, C.; Minker, C.; Kim, J.-H.; Selloum, N.E.; Bories, P.; Gronemeyer, H.; Lobstein, A.; Bronner, C.; et al. Aronia melanocarpa juice induces a redox-sensitive p73-related caspase 3-dependent apoptosis in human leukemia cells. PLoS ONE 2012, 7, e32526. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Saona, L.E.; Wrolstad, R.E. Extraction, isolation, and purification of anthocyanins. In Current Protocols in Food Analytical Chemistry; Wrolstad, R.E., Acree, T.E., An, H., Decker, E.A., Penner, M.H., Reid, D.S., Schwartz, S.J., Shoemaker, C.F., Sporns, P., Eds.; John Wiley & Sons: New York, NY, USA, 2001; pp. F1.1.1–F1.1.11. [Google Scholar]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventos, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol. 1974, 299, 152–178. [Google Scholar] [CrossRef]
- Świeca, M.; Baraniak, B. Nutritional and antioxidant potential of lentil sprouts affected by elicitation with temperature stress. J. Agric. Food Chem. 2014, 62, 3306–3313. [Google Scholar] [CrossRef] [PubMed]
- Lamaison, J.L.C.; Carnet, A. Teneurs en principaux flavonoids des fleurs de Crataegeus monogyna Jacq et de Crataegeus laevigata (Poiret D. C) en fonction de la vegetation. Pharm. Acta Helv. 1990, 65, 315–320. [Google Scholar]
- Giusti, M.M.; Wrolstad, R.E. Characterization and measurement of anthocyanins by UV-visible spectroscopy. In Current Protocols in Food Analytical Chemistry; Wrolstad, R.E., Acree, T.E., An, H., Decker, E.A., Penner, M.H., Reid, D.S., Schwartz, S.J., Shoemaker, C.F., Sporns, P., Eds.; John Wiley & Sons: New York, NY, USA, 2001; pp. F1.2.1–F1.2.13. [Google Scholar]
- Durst, R.W.; Wrolstad, R.E. Separation and characterization of anthocyanins by HPLC. In Current Protocols in Food Analytical Chemistry; Wrolstad, R.E., Acree, T.E., An, H., Decker, E.A., Penner, M.H., Reid, D.S., Schwartz, S.J., Shoemaker, C.F., Sporns, P., Eds.; John Wiley & Sons: New York, NY, USA, 2001; pp. F1.3.1–F1.3.13. [Google Scholar]
- Brand-Williams, W.; Cuvelier, E.; Berset, C.M. Use of free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Guo, C.; Yang, J.; Wei, J.; Li, Y.; Xu, J.; Jiang, Y. Antioxidant activities of peel, pulp and seed fractions of common fruits as determined by FRAP assay. Nutr. Res. 2003, 23, 1719–1726. [Google Scholar] [CrossRef]
- Pulido, R.; Bravo, L.; Saura-Calixto, F. Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay. J. Agric. Food Chem. 2000, 48, 3396–3402. [Google Scholar] [CrossRef] [PubMed]
- Axelroad, B.; Cheesbrough, T.M.; Laakso, S. Lipoxygenase from soybeans: EC 1.13.11.12 Linoleate: Oxygen oxidoreductase. Methods Enzymol. 1981, 71, 441–451. [Google Scholar] [CrossRef]
- Gierse, J.K.; Koboldt, C.M. Cyclooxygenase Assays. In Current Protocols in Pharmacology; Enna, S.J., Williams, M., Ferkany, J.W., Kenakin, T., Porsolt, R.D., Sullivan, J.P., Eds.; John Wiley & Sons: New York, NY, USA, 2001; pp. 3.1.1–3.1.16. [Google Scholar]
Sample Availability: Samples of the compounds are not available from the authors. |
Sample | TPh (GAE mg/100 g) | TFd (QE mg/100 g) | TAc (CyGE mg/100 g) | TFd/TPh |
---|---|---|---|---|
RCE | 270 ± 17.9 b | 186.8 ± 1.18 b | 58.7 ± 3.5 b | 0.69 |
JCE | 192.04 ± 5.7 a | 127.07 ± 1.03 a | 42.9 ± 0.6 a | 0.66 |
Identified Compound | Concentration [µg/g FW] * | |
RARF | JARF | |
Cyanidin-3-O-sophoroside | 332.0 ± 16 | 296 ± 25.6 |
Cyanidin-3-O-glucosylrutinoside | 56.0 ± 2.7 | nd. |
Cyanidin-3-O-glucoside | 42.12 ± 2 | 66.6 ± 5.76 |
Cyanidin-3-O-rutinoside | 32.76 ± 1.6 | 5.55 ± 0.48 |
Pelargonidin-3-O-glucoside | 4.68 ± 0.23 | 2.96 ± 0.25 |
Identified compound | Concentration [µg/g FW] * | |
RPF | JPF | |
Ellagic acid | 66.96 ± 0.84 | 42.68 ± 0.53 |
Ellagic acid derivative | 75.12 ± 0.94 | 47.68 ± 0.59 |
Gallic acid | 9.63 ± 0.48 | 8.08 ± 0.404 |
Quercetin -based flavonol | 25.13 ± 0.71 | 13.7 ± 0.68 |
Kaempferol -based flavonol | 44.45 ± 2.22 | 19. 22 ± 0.96 |
(+) Catechin | 8.08 ± 0.404 | 9.63 ± 0.48 |
(−) Epicatechin | 61.18 ± 3.6 | 11.21 ± 0.36 |
Sample | DPPH µM TE/100 g FW | Chelating Power mg EDTA/100 g FW | Reducing Power µM TE/100 g FW |
---|---|---|---|
RCE | 588.9 ± 5.5 f | 16.9 ± 0.23 e | 1912.0 ± 1.78 f |
RPF | 363.0 ± 3.4 e | 10.9 ± 0.56 b,c | 623.0 ± 8.46 b |
RARF | 207.7 ± 4.4 d | 11.3 ± 0.28 c | 987.7 ± 5.52 d |
JCE | 183.0 ± 6.7 c | 13.8 ± 0.22 d | 1146.1 ± 0.82 e |
JPF | 166.3 ± 3.76 b | 5.9 ± 0.75 a | 664.8 ± 9.20 c |
JARF | 107.8 ± 1.5 a | 9.9 ± 0.10 b | 510.9 ± 5.80 a |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szymanowska, U.; Baraniak, B.; Bogucka-Kocka, A. Antioxidant, Anti-Inflammatory, and Postulated Cytotoxic Activity of Phenolic and Anthocyanin-Rich Fractions from Polana Raspberry (Rubus idaeus L.) Fruit and Juice—In Vitro Study. Molecules 2018, 23, 1812. https://doi.org/10.3390/molecules23071812
Szymanowska U, Baraniak B, Bogucka-Kocka A. Antioxidant, Anti-Inflammatory, and Postulated Cytotoxic Activity of Phenolic and Anthocyanin-Rich Fractions from Polana Raspberry (Rubus idaeus L.) Fruit and Juice—In Vitro Study. Molecules. 2018; 23(7):1812. https://doi.org/10.3390/molecules23071812
Chicago/Turabian StyleSzymanowska, Urszula, Barbara Baraniak, and Anna Bogucka-Kocka. 2018. "Antioxidant, Anti-Inflammatory, and Postulated Cytotoxic Activity of Phenolic and Anthocyanin-Rich Fractions from Polana Raspberry (Rubus idaeus L.) Fruit and Juice—In Vitro Study" Molecules 23, no. 7: 1812. https://doi.org/10.3390/molecules23071812