A UPLC-ESI-MS/MS Method for Simultaneous Quantitation of Chlorogenic Acid, Scutellarin, and Scutellarein in Rat Plasma: Application to a Comparative Pharmacokinetic Study in Sham-Operated and MCAO Rats after Oral Administration of Erigeron breviscapus Extract
Abstract
:1. Introduction
2. Results
2.1. Method Validation
2.1.1. Specificity
2.1.2. Calibration Curves and Linearity
2.1.3. Accuracy and Precision
2.1.4. Extraction Efficiency and Matrix Effect
2.1.5. Stability
2.2. Pharmacokinetic Analysis
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Animals
4.3. UPLC-MS/MS Instrumentation and Conditions
4.4. Plasma Samples Preparation
4.5. Preparation of Standard and Quality Control Samples
4.6. Method Validation
4.6.1. Specificity
4.6.2. Calibration Curves and Linearity
4.6.3. Accuracy and Precision
4.6.4. Extraction Efficiency and Matrix Effect
4.6.5. Stability
4.7. Pharmacokinetic Study
4.8. Pharmacokinetic Data Processing
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chinese Pharmacopoeia Commission. Pharmacopoeia of People’s Republic of China; Chemical Industry Press: Beijing, China, 2015; p. 147. [Google Scholar]
- Zhang, Y.F.; Shi, P.Y.; Qu, H.B.; Cheng, Y.Y. Characterization of phenolic compounds in Erigeron breviscapus by liquid chromatography coupled to electrospray ionization mass spectrometry. Rapid Commun. Mass Spectrom. 2007, 21, 971–2984. [Google Scholar] [CrossRef] [PubMed]
- Liao, S.G.; Zhang, L.J.; Li, C.B.; Lan, Y.Y.; Wang, A.M.; Huang, Y.; Zhen, L.; Fu, X.Z.; Zhou, W.; Qi, X.L.; et al. Rapid screening and identification of caffeic acid and its esters in Erigeron breviscapus by ultra-performance liquid chromatography/tandem mass spectrometry. Rapid Commun. Mass. Spectrom. 2010, 24, 2533–2541. [Google Scholar] [CrossRef] [PubMed]
- Qu, J.; Wang, Y.M.; Luo, G.A.; Wu, Z.P. Identification and determination of glucuronides and their aglycones in Erigeron breviscapus by liquid chromatography–tandem mass spectrometry. J. Chromatogr. A 2001, 928, 155–162. [Google Scholar] [CrossRef]
- Yue, J.M.; Zhao, Q.S.; Lin, Z.W.; Sun, H.D. Phenolic compounds from Erigeron breviscapus (Compositae). Acta Bot. Sin. 2000, 42, 311–315. [Google Scholar]
- Liu, H.; Yang, X.L.; Ding, J.Y.; Feng, Y.D.; Xu, H.B. Antibacterial and antifungal activity of Erigeron breviscapus. Fitoterapia 2003, 74, 387–389. [Google Scholar] [CrossRef]
- Liu, H.; Yang, X.L.; Ren, T.; Feng, Y.D.; Xu, H.B. Effects of Erigeron breviscapus ethanol extract on neuronal oxidative injury induced by superoxide radical. Fitoterapia 2005, 76, 666–670. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yang, X.L.; Liu, H.; Tang, X.Q. Study on effects of Erigeron breviscapus extract on anticoagulation. J. Chin. Med. Mater. 2003, 26, 656–658. [Google Scholar]
- Zhao, J.; Yang, R.H.; Luo, W.X.; Zhang, Y.; Shen, Z.Q.; Chen, P. Experimental study on antioxidant activity of scutellarin in vitro. J. Kunming Med. Univ. 2015, 36, 1–4. [Google Scholar]
- Karamese, M.; Erol, H.S.; Albayrak, M.; Findik Guvend, G.; Aydin, E.; Aksak Karamese, S. Anti-oxidant and anti-inflammatory effects of apigenin in a rat model of sepsis: An immunological biochemical, and histopathological study. Immunopharmacol. Immunotoxicol. 2016, 38, 228–237. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.; Tang, Y.P.; Li, N.G.; Lin, H.; Li, W.X.; Shi, Q.P.; Zhang, W.; Zhang, P.X.; Dong, Z.X.; Shen, M.Z.; et al. Comparative metabolomic analysis of the neuroprotective effects of scutellarin and scutellarein against ischemic insult. PLoS ONE 2015, 10, e0131569. [Google Scholar]
- Fan, W.C.; Qian, S.H.; Qian, P.; Li, X.M. Antiviral activity of luteolin against Japanese encephalitis virus. Virus. Res. 2016, 220, 112–116. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.Y.; Liang, C.; Duan, X.T.; Ma, B.; Zhong, D.F. Pharmacokinetics and metabolism of the flavonoid scutellarin in humans after a single oral administration. Drug. Metab. Dispos. 2006, 34, 1345–1352. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Zhang, J.; Lan, Y.Y.; Li, Y.J.; Dong, L.; Huang, Y.; Wang, Y.L. Effect of Erigerontis Herba and Paeoniae radix rubra compound with different proportion and different routes of administration on brain damage in rat model of cerebral focal ischemia and reperfusion. Chin. J. Exp. Tradit. Med. Form. 2013, 19, 175–179. [Google Scholar]
- Zhao, J.; Liang, A.H. Application of Caco-2 cell model in the study of absorption and transportation of Chinese medicine. Chin. J. Exp. Tradit. Med. Form. 2009, 15, 79–83. [Google Scholar]
- Hu, J.; Hou, J.; Li, Y.T. Study on the absorption mechanism of 3 active components in Ebe in Caco-2 cell model. Chin. Pharmacol. Bull. 2016, 32, 373–377. [Google Scholar]
- Wang, Z.; Zhang, Y.; Zhao, Q.P. Preliminary study on time-effect relationship of Erigeron breviscapus in treatment of cerebral ischemia reperfusion injury. Pharmacol. Clin. Chin. Med. 2012, 28, 63–65. [Google Scholar]
- Yu, H.; Zhang, Z.L.; Chen, J.; Pei, A.; Hua, F.; Qian, X.; He, J.; Liu, C.F.; Xu, X. Carvacrol, a food-additive, provides neuroprotection on focal cerebral ischemia/reperfusion injury in mice. PLoS ONE 2012, 7, e33584. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wu, X.; Yu, S.; Lin, X.; Wu, J.; Li, L.; Zhao, J. Neuroprotection of Tanshinone II A against cerebral ischemia/reperfusion injury via anti-apoptosic pathway in rats. Biol. Pharm. Bull. 2012, 35, 163–170. [Google Scholar] [CrossRef]
- Lin, X.; Yu, S.; Chen, Y.; Wu, J.; Zhao, J.; Zhao, Y. Neuroprotective effects of diallyl sulfide against transient focal cerebral ischemia via anti-apoptosis in rats. Neurol. Res. 2012, 34, 32–37. [Google Scholar] [CrossRef] [PubMed]
- Gong, Z.P.; Chen, Y.; Zhang, R.J. Research Progress on PK of traditional Chinese medicine in disease state. Chin. J. Chin. Med. 2015, 40, 169–173. [Google Scholar]
- Meddings, J.B.; Swain, M.G. Environmental stress-induced gastrointestinal permeability is mediated by endogenous glucorlicoids in the rat. Gastroenterology 2000, 119, 1019–1028. [Google Scholar] [CrossRef] [PubMed]
- Ju, W.Z.; Chu, J.H.; Tan, R.X. The metabolites of scutellarin in the gastrointestinal tract were analyzed by UPLC-MS/MS. Chin. J. Clin. Pharmacol. Therape. 2006, 11, 292–295. [Google Scholar]
- Zhang, J.L.; Che, Q.M.; Li, S.Z.; Zhou, T.H. Study on metabolism of scutellarin in rats by HPLC-MS and HPLC-NMR. J. Asian Nat. Prod. Res. 2003, 5, 249–256. [Google Scholar] [CrossRef] [PubMed]
- Gao, C.Y.; Chen, X.Y.; Zhong, D.F. Absorption and disposition of scutellarin in rats: A pharmacokinetic explanation for the high exposure of its isomeric metabolite. Drug. Metab. Dispos. 2011, 39, 2034–2044. [Google Scholar] [CrossRef] [PubMed]
- Bing, Y.; Zhu, S.; Jiang, K.; Dong, G.; Li, J.; Yang, Z.; Yang, J.; Yue, J. Reduction of thyroid hormones triggers down-regulation of hepatic CYP2B through nuclear receptors CAR and TR in a rat model of acute stroke. Biochem. Pharmacol. 2014, 87, 636–649. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.F.; He, W.; Lu, W.H.; Zeng, F.D. Effects of scutellarin on liver function after brain ischemia/reperfusion in rats. Acta. Pharmacol. Sin. 2003, 24, 1118–1124. [Google Scholar] [PubMed]
- Wang, A.M.; Li, M.; Sun, J.; Li, Y.; Wu, L.L.; Hu, J.; Huang, Y.; Li, Y.T.; Gong, Z.P. Analysis of plasma migration ingredients of Erigeron breviscapus extract based on UHPLC-ESI-Q-TOF MS. J. Anhui. Agric. Sci. 2018, 46, 155–159. [Google Scholar]
Sample Availability: Samples of the compounds chlorogenic acid, scutellarin, and scutellarein are available from the authors. |
Analyte | Linear Regression Equation | R2 | Linear Ranges (μg/mL) | LOQ (μg/mL) | LOD (μg/mL) |
---|---|---|---|---|---|
Chlorogenic acid | Y = 0.333X + 0.0162 | 0.9988 | 0.0246–3.15 | 0.0246 | 0.0112 |
Scutellarin | Y = 0.140X − 0.0046 | 0.9992 | 0.0116–5.94 | 0.0116 | 0.0042 |
Scutellarein | Y = 0.409X + 0.0435 | 0.9995 | 0.0192–3.94 | 0.0192 | 0.0075 |
Analyte | Concentration of Analyte (μg/mL) | Mean ± SD (μg/mL) | Accuracy (%) | Interday Precision RSD (%) | Intraday Precision RSD (%) |
---|---|---|---|---|---|
Chlorogenic acid | 0.025 | 0.025 ± 0.004 | 103.0 ± 16.7 | 16.2 | 17.1 |
0.79 | 0.79 ± 0.059 | 99.9 ± 7.5 | 7.5 | 5.3 | |
3.15 | 3.14 ± 0.136 | 99.6 ± 4.3 | 4.3 | 6.8 | |
Scutellarin | 0.012 | 0.014 ± 0.003 | 117.2 ± 21.9 | 18.6 | 14.5 |
0.37 | 0.37 ± 0.02 | 100.1 ± 5.3 | 5.3 | 3.9 | |
5.94 | 5.82 ± 0.278 | 98.0 ± 4.7 | 4.8 | 9 | |
Scutellarein | 0.019 | 0.013 ± 0.002 | 80.1 ± 10.2 | 15 | 13.3 |
0.246 | 0.243 ± 0.05 | 98.8 ± 2.0 | 2.1 | 7.9 | |
3.94 | 3.99 ± 1.179 | 101.3 ± 3.0 | 3 | 5.7 |
Analyte | Concentration of Analyte (μg/mL) | Extraction Recovery (%) | RSD (%) | Matrix Effect (%) | RSD (%) |
---|---|---|---|---|---|
Chlorogenic acid | 0.025 | 80.7 ± 10.0 | 12.4 | 86.8 ± 2.0 | 2.3 |
0.79 | 96.7 ± 12.9 | 13.3 | 91.4 ± 4.8 | 5.3 | |
3.15 | 80.9 ± 6.1 | 7.5 | 91.2 ± 3.5 | 3.8 | |
Scutellarin | 0.012 | 101.1 ± 4.0 | 4 | 93.0 ± 7.3 | 7.8 |
0.37 | 102.1 ± 16.6 | 16.3 | 90.6 ± 9.0 | 9.9 | |
5.94 | 85.8 ± 13.6 | 15.9 | 89.3 ± 1.6 | 1.8 | |
Scutellarein | 0.019 | 80.7 ± 14.8 | 18.3 | 98.9 ± 14.3 | 14.5 |
0.246 | 79.7 ± 5.9 | 7.4 | 88.6 ± 4.9 | 5.5 | |
3.94 | 80.3 ± 5.9 | 7.3 | 90.9 ± 1.6 | 1.8 |
Analyte | Concentration of Analyte (μg/mL) | Sampler 6 h | Three Freeze-Thaw | ||||
---|---|---|---|---|---|---|---|
Mean ± SD (μg/mL) | Accuracy (%) | Precision (RSD, %) | Mean ± SD (μg/mL) | Accuracy (%) | Precision (RSD, %) | ||
Chlorogenic acid | 0.025 | 0.025 ± 0.01 | 101 ± 14.8 | 14.5 | 0.021 ± 0.002 | 84.0 ± 7.7 | 9.1 |
0.79 | 0.76 ± 0.027 | 96.9 ± 3.4 | 3.5 | 0.73 ± 0.009 | 93.1 ± 1.1 | 1.2 | |
3.15 | 3.13 ± 0.131 | 99.5 ± 4.1 | 4.2 | 3.04 ± 0.070 | 96.5 ± 2.2 | 2.3 | |
Scutellarin | 0.012 | 0.011 ± 0.001 | 97.1 ± 5.9 | 6 | 0.01 ± 0.001 | 87.9 ± 3.1 | 3.5 |
0.37 | 0.37 ± 0.020 | 100 ± 5.3 | 5.2 | 0.34 ± 0.016 | 91.1 ± 4.2 | 4.6 | |
5.94 | 5.86 ± 0.222 | 98.6 ± 3.7 | 3.8 | 5.67 ± 0.217 | 95.5 ± 3.7 | 3.8 | |
Scutellarein | 0.019 | 0.018 ± 0.002 | 94.1 ± 2.1 | 2.2 | 0.015 ± 0.003 | 78.5 ± 9.8 | 17.6 |
0.246 | 0.246 ± 0.007 | 100 ± 3.1 | 3.1 | 0.24 ± 0.015 | 96.1 ± 0.6 | 0.6 | |
3.94 | 4.02 ± 0.165 | 102 ± 4.2 | 4.1 | 3.83 ± 0.025 | 97.3 ± 0.6 | 0.7 |
Pharmacokinetic Parameters | Unit | Chlorogenic Acid | |
---|---|---|---|
Control | MCAO | ||
AUC(0–t) | mg/L·h | 0.31 ± 0.14 | 0.92 ± 0.21 * |
AUC(0–∞) | mg/L·h | 0.31 ± 0.14 | 0.96 ± 0.28 * |
MRT(0–t) | h | 0.59 ± 0.19 | 0.66 ± 0.23 |
MRT(0–∞) | h | 0.60 ± 0.28 | 0.77 ± 0.28 |
t1/2z | h | 0.48 ± 0.15 | 0.63 ± 0.14 |
Tmax | h | 0.17 ± 0.07 | 0.19 ± 0.04 |
CLZ/F | L/h/kg | 48.68 ± 2.77 | 18.69 ± 2.06 * |
VZ/F | L/kg | 32.07 ± 5.36 | 11.98 ± 4.45 * |
Cmax | mg/L | 0.90 ± 0.18 | 1.72 ± 0.33 * |
Pharmacokinetic Parameters | Unit | Scutellarein | |
---|---|---|---|
Control | MCAO | ||
AUC(0–t) | mg/L·h | 4.63 ± 1.55 | 12.93 ± 3.14 ** |
AUC(0–∞) | mg/L·h | 4.69 ± 1.67 | 13.89 ± 3.48 ** |
MRT(0–t) | h | 7.29 ± 2.12 | 9.77 ± 2.55 |
MRT(0–∞) | h | 7.63 ± 2.31 | 10.57 ± 3.09 |
t1/2z | h | 4.23 ± 1.37 | 5.75 ± 1.57 |
Tmax | h | 0.14 ± 0.04 | 8.67 ± 2.73 ** |
CLZ/F | L/h/kg | 2.94 ± 1.02 | 0.96 ± 0.28 ** |
VZ/F | L/kg | 16.79 ± 4.51 | 9.66 ± 3.55 * |
Cmax | mg/L | 1.24 ± 0.57 | 1.13 ± 0.66 |
Pharmacokinetic Parameters | Unit | Scutellarein | |
---|---|---|---|
Control | MCAO | ||
AUC(0–t) | mg/L*h | 4.56 ± 1.39 | 8.1 ± 2.29 * |
AUC(0–∞) | mg/L*h | 5.58 ± 1.81 | 8.49 ± 3.17 * |
MRT(0–t) | h | 6.7 ± 1.86 | 8.51 ± 2.48 |
MRT(0–∞) | h | 7.99 ± 2.78 | 9.49 ± 3.66 |
t1/2z | h | 4.18 ± 1.01 | 11.47 ± 2.83 * |
Tmax | h | 2.11 ± 4.85 | 8 ± 2.19 * |
CLZ/F | L/h/kg | 2.6 ± 1.61 | 0.88 ± 0.48 * |
VZ/F | L/kg | 16.09 ± 9.47 | 9.85 ± 5.56 |
Cmax | mg/L | 0.94 ± 0.47 | 1.04 ± 0.67 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S.; Li, M.; Li, Y.; Hu, H.; Li, Y.; Huang, Y.; Zheng, L.; Lu, Y.; Hu, J.; Lan, Y.; et al. A UPLC-ESI-MS/MS Method for Simultaneous Quantitation of Chlorogenic Acid, Scutellarin, and Scutellarein in Rat Plasma: Application to a Comparative Pharmacokinetic Study in Sham-Operated and MCAO Rats after Oral Administration of Erigeron breviscapus Extract. Molecules 2018, 23, 1808. https://doi.org/10.3390/molecules23071808
Chen S, Li M, Li Y, Hu H, Li Y, Huang Y, Zheng L, Lu Y, Hu J, Lan Y, et al. A UPLC-ESI-MS/MS Method for Simultaneous Quantitation of Chlorogenic Acid, Scutellarin, and Scutellarein in Rat Plasma: Application to a Comparative Pharmacokinetic Study in Sham-Operated and MCAO Rats after Oral Administration of Erigeron breviscapus Extract. Molecules. 2018; 23(7):1808. https://doi.org/10.3390/molecules23071808
Chicago/Turabian StyleChen, Siying, Mei Li, Yueting Li, Hejia Hu, Ying Li, Yong Huang, Lin Zheng, Yuan Lu, Jie Hu, Yanyu Lan, and et al. 2018. "A UPLC-ESI-MS/MS Method for Simultaneous Quantitation of Chlorogenic Acid, Scutellarin, and Scutellarein in Rat Plasma: Application to a Comparative Pharmacokinetic Study in Sham-Operated and MCAO Rats after Oral Administration of Erigeron breviscapus Extract" Molecules 23, no. 7: 1808. https://doi.org/10.3390/molecules23071808