Базис (математика)
Ба́зисом (дав.-гр. βασις, основа) векторного простору називається впорядкований набір векторів , якщо кожний вектор із можна однозначно представити у вигляді лінійної комбінації:
Коефіцієнти кільця називаються координатами вектора відносно базису [1]. Ця рівність зазвичай записується скорочено:
. Тобто так само, як і для запису матриць.
Якщо та - деяке дійсне число, то
Таким чином, кожний вектор простору повністю визначається своїми координатами, тобто впорядкованою трійкою дійсних чисел,а операції над векторами простору зводяться до операцій над впорядкованими трійками дійсних чисел. Таким чином, з алгебричної точки зору вектори простору можна вважати впорядкованими трійками чисел[2].
Представлення вектора у вигляді лінійної комбінації базисних векторів називається розкладанням вектора по даному базису.
Кількість векторів базису не залежить від вибору базисних векторів і дорівнює розмірності простору і позначається Існують простори як із скінченним, так й нескінченним базисом. Наприклад, n-вимірний еквлідовий простір.
Вектори базису є лінійно незалежними.
Набір лінійно незалежних векторів можна неперервно перетворювати, тому ні у якій проміжній конфігурації об'єм не перетвориться на нуль, або до набору (правий базис), або до набору (лівий базис). Зокрема, перетворення здійснюється як поворот у площині, натягнутій на вектори на кут
Знак у формулі, наведеній під малюнком, визначається парністю перестановки.
Існує застереження щодо складання обертань: трьохвимірні обертання не комутують[3].
Вектори ei = (0, …, 1, …, 0), 1 ≤ i ≤ n утворюють базис в .
Цей розділ потребує доповнення. (грудень 2013) |
- ↑ А. И. Кострикин, Ю. И. Манин. Линейная алгебра и геометрия.
- ↑ Завало С. Т. (1974). Алгебра і теорія чисел. Київ: Вища школа. с. 399. (укр.)
- ↑ Moti Ben-Ari - A Tutorial on Euler Angles and Quaternions.
- Гельфанд И. М. Лекции по линейной алгебре. — 5-е. — Москва : Наука, 1998. — 320 с. — ISBN 5791300158.(рос.)
- Гантмахер Ф. Р. Теорія матриць. — 2024. — 400+ с.(укр.)
Це незавершена стаття з математики. Ви можете допомогти проєкту, виправивши або дописавши її. |