Стала Планка
Значення h | Одиниці |
---|---|
6.62606957(29)×10−34 | Дж·с |
4.135667516(91)×10−15 | еВ·с |
6.62606957(29)×10−27 | ерг·с |
Значення ħ | Одиниці |
1.054571726(47)×10−34 | Дж·с |
6.58211928(15)×10−16 | еВ·с |
1.054571726(47)×10−27 | ерг·с |
Стала Планка — елементарний квант дії, фундаментальна фізична величина, яка відображає квантову природу Всесвіту. Загальний момент кількості руху фізичної системи може змінюватись лише кратно величині сталої Планка. Як наслідок у квантовій механіці фізичні величини виражаються через сталу Планка.
Стала Планка позначається латинською літерою h. Вона має розмірність енергії, помноженої на час.
Частіше використовується зведена стала Планка
- .
Крім того, що вона зручніша для використання в формулах квантової механіки, вона має особливе позначення, яке ні з чим не сплутаєш.
Числове значення
У системі СІ стала Планка має значення[1]:
Для розрахунків у квантовій фізиці зручніше використовувати значення зведеної сталої Планка, виражене через електронвольти:
Фізична суть
Історично стала Планка була запроваджена як коефіцієнт пропорційності між енергією кванта та частотою електромагнітної хвилі:
- ,
де — енергія, — лінійна, а — циклічна частота. Це співвідношення справедливе для будь-якого тіла в квантовій механіці — будь-яка квантова система описується хвилею, частота якої визначається енергією системи.
Аналогічно, імпульс пропорційний хвильовому вектору із тим же коефіцієнтом пропорційності:
- ,
де — імпульс, - його модуль, - хвильовий вектор, - довжина хвилі.
Оператор імпульсу в квантовій механіці визначається як , і через нього стала Планка входить в оператор енергії - гамільтоніан.
Стала Планка має розмірність дії, тобто ту ж розмірність, що й момент імпульсу, тому вона є природною одиницею вимірювання момента імпульсу в квантовій механіці. Завдяки квантуванню проекція орбітального моменту на вибрану вісь може приймати тільки цілі значення сталих Планка, а проекція спіну — цілі або напівцілі.
Принцип невизначеності
Стала Планка фігурує в формулюванні принципу невизначеності Гейзенберга, яким квантова механіка суттєво відрізняється від класичної. Добуток невизначеності координати та імпульсу частинки повинен принаймні перевищувати половину зведеної сталої Планка:
- .
Якщо для в класичній фізиці для характеристики частинки потрібно знати її положення та швидкість, то для характеристики частинки в квантовій механіці потрібно знати її хвильову функцію. Хвильова функція містить повну інформацію про частинку, але неможливо побудувати її так, щоб вона одночастно точно визначала положення і швидкість частинки.
Мірило квантовості
Порівняння характерної для даної фізичної системи величини з розмірністю дії часто виступає мірилом квантовості системи і визначає те, чи можна застосовувати класичний підхід. Наприклад, якщо момент кількості руху тіла набагато перевищує значення , то його обертанння не потребує квантвого розгляду. При виведенні квазікласичного наближення застосовується теорія збурень із розкладом по .
Історія
Макс Планк ввів свою сталу для пояснення спектру випромінювання абсолютно чорного тіла, припустивши, що тіло випромінює електромагнітні хвилі порціями (квантами) з енергією, пропорційною частоті (). У 1905 році Ейнштейн використав це припущення для того, щоб пояснити явище фотоефекту, постулювавши, що електромагнітні хвилі поглинаються порціями з енергією пропорційною частоті. Так зародилася квантова механіка, в справедливості якої обидва лауреати Нобелівської премії сумнівалися все життя.
Посилання
- Посилання NIST щодо констант, одиниць виміру, неточностей (CODATA 2010) (англ.)
- Історія уточнення сталої Планка (рос.)
Виноски
- ↑ P.J. Mohr, B.N. Taylor, and D.B. Newell (2011), "The 2010 CODATA Recommended Values of the Fundamental Physical Constants" (Web Version 6.0). This database was developed by J. Baker, M. Douma, and S. Kotochigova. Available: http://physics.nist.gov [Thursday, 02-Jun-2011 21:00:12 EDT]. National Institute of Standards and Technology, Gaithersburg, MD 20899.