Матрица (математика)
У математици, матрица је правоугаона табела бројева, или општије, табела која се састоји од апстрактних објеката који се могу сабирати и множити.
Матрице се користе да опишу линеарне једначине, да се прате коефицијенти линеарних трансформација, као и за чување података који зависе од два параметра. Матрице се могу сабирати, множити, и разлагати на разне начине, што их чини кључним концептом у линеарној алгебри и теорији матрица.
Дефиниције и нотације
[уреди | уреди извор]Хоризонталне линије у матрици се називају врстама, а вертикалне колонама матрице.[1]
Пресликавање , такво да је поље и називамо матрицом типа над пољем F.
Матрица са m врста и n колона се назива m-са-n матрицом (каже се и записује да је формата m×n) а m и n су димензије матрице.
Члан матрице A, који се налази у i-тој врсти и у j-тој колони се назива (i,j)-ти члан матрице A. Ово се записује као Ai,j или A[i,j]. Увек се прво назначује врста, па колона.
Често се пише како би се дефинисала m × n матрица A чији се сваки члан, A[i,j] назива ai,j за све 1 ≤ i ≤ m и 1 ≤ j ≤ n. Међутим, конвенција да i и j почињу од 1 није универзална: неки програмски језици започињу од нуле, у ком случају имамо 0 ≤ i ≤ m − 1 и 0 ≤ j ≤ n − 1.
Матрицу чија је једна од димензија једнака јединици често називамо вектором, и интерпретирамо је као елемент реалног координатног простора. 1 × n матрица (једна врста и n колона) се назива вектор врста, а m × 1 матрица (једна колона и m врста) се назива вектор колона.
Пример
[уреди | уреди извор]Матрица
је 4×3 матрица. Елемент A[2,3] или a2,3 је 7.
Матрица
је 1×9 матрица, или вектор врста са 9 елемената.
Сабирање и множење матрица
[уреди | уреди извор]Нека су дате матрице и .
Сабирање
[уреди | уреди извор]Збир матрица А и В, у ознаци А+В је матрица за коју важи за свако .
Множење скаларом
[уреди | уреди извор]Ако узмемо матрицу A и број c, скаларни производ cA се рачуна множењем скаларом c сваког елемента A (т. ј. (cA)[i, j] = cA[i, j] ). На пример:
Операције сабирања и множења скаларом претварају скуп M(m, n, R) свих m-са-n матрица са реалним члановима у реални векторски простор димензије mn.
Међусобно множење матрица
[уреди | уреди извор]Множење две матрице је добро дефинисано само ако је број колона леве матрице једнак броју врста десне матрице. Ако је A матрица димензија m-са-n, а B је матрица димензија n-са-p, тада је њихов производ AB матрица димензија m-са-p (m врста, p колона) дат формулом:
за сваки пар i и j.
На пример:
Множење матрица има следећа својства:
- (AB)C = A(BC) за све k-са-m матрице A, m-са-n матрице B и n-са-p матрице C (асоцијативност).
- (A + B)C = AC + BC за све m-са-n матрице A и B и n-са-k матрице C (десна дистрибутивност).
- C(A + B) = CA + CB за све m-са-n матрице A и B и k-са-m матрице C (лева дистрибутивност).
Ваља знати да комутативност не важи у општем случају; ако су дате матрице A и B, чак и ако су оба производа дефинисана, у општем случају је AB ≠ BA.
Посебно, скуп M(n, R) свих квадратних матрица реда n јесте реална асоцијативна алгебра са јединицом, која је некомутативна за n ≥ 2.
Линеарне трансформације, ранг, транспонована матрица
[уреди | уреди извор]Матрице могу на згодан начин да представе линеарне трансформације јер множење матрица одговара слагању пресликавања, као што ће даље бити описано. Управо ово својство матрице чини моћном структуром података у вишим програмским језицима.
Овде и у наставку, посматрамо Rn као скуп колона или n-са-1 матрица. За свако линеарно пресликавање f : Rn → Rm постоји јединствена m-са-n матрица A, таква да f(x) = Ax за свако x у Rn. Кажемо да матрица A представља линеарно пресликавање f. Ако k-са-m матрица B представља друго линеарно пресликавање g : Rm → Rk, тада је њихова композиција g o f такође линеарно пресликавање Rm → Rn, и представљено је управо матрицом BA. Ово следи из горе поменуте асоцијативности множења матрица.
Општије, линеарно пресликавање из n-димензионог векторског простора у m-димензиони векторски простор је представљено m-са-n матрицом, ако су изабране базе за сваки.
Ранг матрице A је димензија слике линеарног пресликавања представљеног са A; она је иста као димензија простора генерисаног врстама A, и такође је исте димензије као простор генерисан колонама A.
Транспонована матрица, матрице m-са-n, A је n-са-m матрица Atr (некад се записује и као AT или tA), која настаје претварањем врста у колоне, и колона у врсте, то јест Atr[i, j] = A[j, i] за свако i и j. Ако A представља линеарно пресликавање у односу на две базе, тада матрица Atr представља линеарно пресликавање у односу на дуалне базе (види дуални простор).
Важи (A + B)tr = Atr + Btr и (AB)tr = Btr Atr.
Види још
[уреди | уреди извор]Особине матрица
[уреди | уреди извор]Посебне матрице
[уреди | уреди извор]Референце
[уреди | уреди извор]Литература
[уреди | уреди извор]- Ayres, Frank, Schaum's Outline of Modern Abstract Algebra, McGraw-Hill; 1st edition (June 1, 1965). ISBN 0-07-002655-6.
- Anton, Howard (1987), Elementary Linear Algebra (5th изд.), New York: Wiley, ISBN 0-471-84819-0
- Arnold, Vladimir I.; Cooke, Roger (1992), Ordinary differential equations, Berlin, DE; New York, NY: Springer-Verlag, ISBN 978-3-540-54813-3
- Artin, Michael (1991), Algebra, Prentice Hall, ISBN 978-0-89871-510-1
- Association for Computing Machinery (1979), Computer Graphics, Tata McGraw–Hill, ISBN 978-0-07-059376-3
- Baker, Andrew J. (2003), Matrix Groups: An Introduction to Lie Group Theory, Berlin, DE; New York, NY: Springer-Verlag, ISBN 978-1-85233-470-3
- Bau III, David; Trefethen, Lloyd N. (1997), Numerical linear algebra, Philadelphia, PA: Society for Industrial and Applied Mathematics, ISBN 978-0-89871-361-9
- Beauregard, Raymond A.; Fraleigh, John B. (1973), A First Course In Linear Algebra: with Optional Introduction to Groups, Rings, and Fields, Boston: Houghton Mifflin Co., ISBN 0-395-14017-X
- Bretscher, Otto (2005), Linear Algebra with Applications (3rd изд.), Prentice Hall
- Bronson, Richard (1970), Matrix Methods: An Introduction, New York: Academic Press, LCCN 70097490
- Bronson, Richard (1989), Schaum's outline of theory and problems of matrix operations, New York: McGraw–Hill, ISBN 978-0-07-007978-6
- Brown, William C. (1991), Matrices and vector spaces, New York, NY: Marcel Dekker, ISBN 978-0-8247-8419-5
- Coburn, Nathaniel (1955), Vector and tensor analysis, New York, NY: Macmillan, OCLC 1029828
- Conrey, J. Brian (2007), Ranks of elliptic curves and random matrix theory, Cambridge University Press, ISBN 978-0-521-69964-8
- Fraleigh, John B. (1976), A First Course In Abstract Algebra (2nd изд.), Reading: Addison-Wesley, ISBN 0-201-01984-1
- Fudenberg, Drew; Tirole, Jean (1983), Game Theory, MIT Press
- Gilbarg, David; Trudinger, Neil S. (2001), Elliptic partial differential equations of second order (2nd изд.), Berlin, DE; New York, NY: Springer-Verlag, ISBN 978-3-540-41160-4
- Godsil, Chris; Royle, Gordon (2004), Algebraic Graph Theory, Graduate Texts in Mathematics, 207, Berlin, DE; New York, NY: Springer-Verlag, ISBN 978-0-387-95220-8
- Golub, Gene H.; Van Loan, Charles F. (1996), Matrix Computations (3rd изд.), Johns Hopkins, ISBN 978-0-8018-5414-9
- Greub, Werner Hildbert (1975), Linear algebra, Graduate Texts in Mathematics, Berlin, DE; New York, NY: Springer-Verlag, ISBN 978-0-387-90110-7
- Halmos, Paul Richard (1982), A Hilbert space problem book, Graduate Texts in Mathematics, 19 (2nd изд.), Berlin, DE; New York, NY: Springer-Verlag, ISBN 978-0-387-90685-0, MR 675952
- Horn, Roger A.; Johnson, Charles R. (1985), Matrix Analysis, Cambridge University Press, ISBN 978-0-521-38632-6
- Householder, Alston S. (1975), The theory of matrices in numerical analysis, New York, NY: Dover Publications, MR 0378371
- Kreyszig, Erwin (1972), Advanced Engineering Mathematics (3rd изд.), New York: Wiley, ISBN 0-471-50728-8.
- Krzanowski, Wojtek J. (1988), Principles of multivariate analysis, Oxford Statistical Science Series, 3, The Clarendon Press Oxford University Press, ISBN 978-0-19-852211-9, MR 969370
- Itô, Kiyosi, ур. (1987), Encyclopedic dictionary of mathematics. Vol. I-IV (2nd изд.), MIT Press, ISBN 978-0-262-09026-1, MR 901762
- Lang, Serge (1969), Analysis II, Addison-Wesley
- Lang, Serge (1987a), Calculus of several variables (3rd изд.), Berlin, DE; New York, NY: Springer-Verlag, ISBN 978-0-387-96405-8
- Lang, Serge (1987b), Linear algebra, Berlin, DE; New York, NY: Springer-Verlag, ISBN 978-0-387-96412-6
- Lang, Serge (2002), Algebra, Graduate Texts in Mathematics, 211 (Revised third изд.), New York: Springer-Verlag, ISBN 978-0-387-95385-4, MR 1878556
- Latouche, Guy; Ramaswami, Vaidyanathan (1999), Introduction to matrix analytic methods in stochastic modeling (1st изд.), Philadelphia, PA: Society for Industrial and Applied Mathematics, ISBN 978-0-89871-425-8
- Manning, Christopher D.; Schütze, Hinrich (1999), Foundations of statistical natural language processing, MIT Press, ISBN 978-0-262-13360-9
- Mehata, K. M.; Srinivasan, S. K. (1978), Stochastic processes, New York, NY: McGraw–Hill, ISBN 978-0-07-096612-3
- Mirsky, Leonid (1990), An Introduction to Linear Algebra, Courier Dover Publications, ISBN 978-0-486-66434-7
- Nering, Evar D. (1970), Linear Algebra and Matrix Theory (2nd изд.), New York: Wiley, LCCN 76-91646
- Nocedal, Jorge; Wright, Stephen J. (2006), Numerical Optimization (2nd изд.), Berlin, DE; New York, NY: Springer-Verlag, стр. 449, ISBN 978-0-387-30303-1
- Oualline, Steve (2003), Practical C++ programming, O'Reilly, ISBN 978-0-596-00419-4
- Press, William H.; Flannery, Brian P.; Teukolsky, Saul A.; Vetterling, William T. (1992), „LU Decomposition and Its Applications” (PDF), Numerical Recipes in FORTRAN: The Art of Scientific Computing (2nd изд.), Cambridge University Press, стр. 34—42, Архивирано из оригинала 2009-09-06. г.
- Protter, Murray H.; Morrey, Jr., Charles B. (1970), College Calculus with Analytic Geometry (2nd изд.), Reading: Addison-Wesley, LCCN 76087042
- Punnen, Abraham P.; Gutin, Gregory (2002), The traveling salesman problem and its variations, Boston, MA: Kluwer Academic Publishers, ISBN 978-1-4020-0664-7
- Reichl, Linda E. (2004), The transition to chaos: conservative classical systems and quantum manifestations, Berlin, DE; New York, NY: Springer-Verlag, ISBN 978-0-387-98788-0
- Rowen, Louis Halle (2008), Graduate Algebra: noncommutative view, Providence, RI: American Mathematical Society, ISBN 978-0-8218-4153-2
- Šolin, Pavel (2005), Partial Differential Equations and the Finite Element Method, Wiley-Interscience, ISBN 978-0-471-76409-0
- Stinson, Douglas R. (2005), Cryptography, Discrete Mathematics and its Applications, Chapman & Hall/CRC, ISBN 978-1-58488-508-5
- Stoer, Josef; Bulirsch, Roland (2002), Introduction to Numerical Analysis (3rd изд.), Berlin, DE; New York, NY: Springer-Verlag, ISBN 978-0-387-95452-3
- Ward, J. P. (1997), Quaternions and Cayley numbers, Mathematics and its Applications, 403, Dordrecht, NL: Kluwer Academic Publishers Group, ISBN 978-0-7923-4513-8, MR 1458894, doi:10.1007/978-94-011-5768-1
- Wolfram, Stephen (2003), The Mathematica Book (5th изд.), Champaign, IL: Wolfram Media, ISBN 978-1-57955-022-6
- Bohm, Arno (2001), Quantum Mechanics: Foundations and Applications, Springer, ISBN 0-387-95330-2
- Burgess, Cliff; Moore, Guy (2007), The Standard Model. A Primer, Cambridge University Press, ISBN 978-0-521-86036-9
- Guenther, Robert D. (1990), Modern Optics, John Wiley, ISBN 0-471-60538-7
- Itzykson, Claude; Zuber, Jean-Bernard (1980), Quantum Field Theory, McGraw–Hill, ISBN 0-07-032071-3
- Riley, Kenneth F.; Hobson, Michael P.; Bence, Stephen J. (1997), Mathematical methods for physics and engineering, Cambridge University Press, ISBN 0-521-55506-X
- Schiff, Leonard I. (1968), Quantum Mechanics (3rd изд.), McGraw–Hill
- Weinberg, Steven (1995), The Quantum Theory of Fields. Volume I: Foundations, Cambridge University Press, ISBN 0-521-55001-7
- Wherrett, Brian S. (1987), Group Theory for Atoms, Molecules and Solids, Prentice–Hall International, ISBN 0-13-365461-3
- Zabrodin, Anton; Brezin, Édouard; Kazakov, Vladimir; Serban, Didina; Wiegmann, Paul (2006), Applications of Random Matrices in Physics (NATO Science Series II: Mathematics, Physics and Chemistry), Berlin, DE; New York, NY: Springer-Verlag, ISBN 978-1-4020-4530-1
- A. Cayley A memoir on the theory of matrices. Phil. Trans. 148 1858 17-37; Math. Papers II 475-496
- Bôcher, Maxime (2004), Introduction to higher algebra, New York, NY: Dover Publications, ISBN 978-0-486-49570-5, reprint of the 1907 original edition
- Cayley, Arthur (1889), The collected mathematical papers of Arthur Cayley, I (1841–1853), Cambridge University Press, стр. 123—126
- Dieudonné, Jean, ур. (1978), Abrégé d'histoire des mathématiques 1700-1900, Paris, FR: Hermann
- Hawkins, Thomas (1975), „Cauchy and the spectral theory of matrices”, Historia Mathematica, 2: 1—29, ISSN 0315-0860, MR 0469635, doi:10.1016/0315-0860(75)90032-4
- Knobloch, Eberhard (1994), „From Gauss to Weierstrass: determinant theory and its historical evaluations”, The intersection of history and mathematics, Science Networks Historical Studies, 15, Basel, Boston, Berlin: Birkhäuser, стр. 51—66, MR 1308079
- Kronecker, Leopold (1897), Hensel, Kurt, ур., Leopold Kronecker's Werke, Teubner
- Mehra, Jagdish; Rechenberg, Helmut (1987), The Historical Development of Quantum Theory (1st изд.), Berlin, DE; New York, NY: Springer-Verlag, ISBN 978-0-387-96284-9
- Shen, Kangshen; Crossley, John N.; Lun, Anthony Wah-Cheung (1999), Nine Chapters of the Mathematical Art, Companion and Commentary (2nd изд.), Oxford University Press, ISBN 978-0-19-853936-0
- Weierstrass, Karl (1915), Collected works, 3
- Hazewinkel, Michiel, ур. (2001) [1994], „Matrix”, Encyclopedia of Mathematics, Springer Science+Business Media B.V. / Kluwer Academic Publishers, ISBN 978-1-55608-010-4
- Kaw, Autar K. (септембар 2008), Introduction to Matrix Algebra, ISBN 978-0-615-25126-4
- The Matrix Cookbook (PDF), Приступљено 24. 3. 2014
- Brookes, Mike (2005), The Matrix Reference Manual, London: Imperial College, Приступљено 10. 12. 2008