login
A007700
Numbers n such that n, 2n+1, and 4n+3 all prime.
(Formerly M1406)
45
2, 5, 11, 41, 89, 179, 359, 509, 719, 1019, 1031, 1229, 1409, 1451, 1481, 1511, 1811, 1889, 1901, 1931, 2459, 2699, 2819, 3449, 3491, 3539, 3821, 3911, 5081, 5399, 5441, 5849, 6101, 6131, 6449, 7079, 7151, 7349, 7901, 8969, 9221, 10589, 10691, 10709, 11171
OFFSET
1,1
COMMENTS
The corresponding primes 2n+1 and 4n+3 respectively have n-1 and 2n primitive roots. - Lekraj Beedassy, Jan 07 2005
At n > 2, a(n) == {11,29} (mod 30). - Zak Seidov, Jan 31 2013
REFERENCES
T. Moreau, personal communication.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
L. Blum, M. Blum, and M. Shub, A simple unpredictable pseudorandom number generator, SIAM J. Comput. 15 (1986), no. 2, 364-383.
MAPLE
A007700 := proc(n) local p1, p2; p1 := 2*n+1; p2 := 2*p1+1; if isprime(n) = true and isprime(p1)=true and isprime(p2)=true then RETURN(n); fi; end;
MATHEMATICA
Select[Range[10^3*3], PrimeQ[ # ]&&PrimeQ[2*#+1]&&PrimeQ[4*#+3] &] (* Vladimir Joseph Stephan Orlovsky, Apr 29 2008 *)
Select[Prime[Range[1500]], AllTrue[{2#+1, 4#+3}, PrimeQ]&] (* Harvey P. Dale, Apr 12 2022 *)
PROG
(PARI) is(n)=isprime(n)&&isprime(2*n+1)&&isprime(4*n+3) \\ Charles R Greathouse IV, Mar 21 2013
CROSSREFS
Intersection of A005384 and A023213.
Sequence in context: A191029 A106886 A237814 * A071313 A172297 A128231
KEYWORD
nonn
STATUS
approved