This site is supported by donations to The OEIS Foundation.
Index to OEIS: Section Ge
Index to OEIS: Section Ge
- This is a section of the Index to the OEIS®.
- For further information see the main Index to OEIS page.
- Please read Index: Instructions For Updating Index to OEIS before making changes to this page.
- If you did not find what you were looking for in this Index, you can always search the database for a particular word or phrase.
- Full list of sections:
[ Aa | Ab | Al | Am | Ap | Ar | Ba | Be | Bi | Bl | Bo | Br | Ca | Ce | Ch | Cl | Coa | Coi | Com | Con | Cor | Cu | Cy | Da | De | Di | Do | Ea | Ed | El | Eu | Fa | Fe | Fi | Fo | Fu | Ga | Ge | Go | Gra | Gre | Ha | He | Ho | Ia | In | J | K | La | Lc | Li | Lo | Lu | M | Mag | Map | Mat | Me | Mo | Mu | N | Na | Ne | Ni | No | Nu | O | Pac | Par | Pas | Pea | Per | Ph | Poi | Pol | Pos | Pow | Pra | Pri | Pro | Ps | Qua | Que | Ra | Rea | Rel | Res | Ro | Ru | Sa | Se | Si | Sk | So | Sp | Sq | St | Su | Sw | Ta | Te | Th | To | Tra | Tri | Tu | U | V | Wa | We | Wi | X | Y | Z | 1 | 2 | 3 | 4 ]
generalized Fermat primes: see primes, Fermat, generalized
generalized Fermat primes: see primes, generalized Fermat
generated by substitutions:: A001030, A007001, A006697, A006977, A006978
- generating functions of the form (1+x)/(1-kx) for k=1 to 12: A040000, A003945, A003946, A003947, A003948, A003949, A003950, A003951, A003952
- generating functions of the form (1+x)/(1-kx) for k=13 to 30: A170732, A170733, A170734, A170735, A170736, A170737, A170738, A170739, A170740, A170741, A170742, A170743, A170744, A170745, A170746, A170747, A170748
- generating functions of the form (1+x)/(1-kx) for k=31 to 50: A170749, A170750, A170751, A170752, A170753, A170754, A170755, A170756, A170757, A170758, A170759, A170760, A170761, A170762, A170763, A170764, A170765, A170766, A170767, A170768, A170769
- generating functions of the form 1/(1-kx+x^2) or x/(1-kx+x^2): A000027, A001906, A001353, A004254, A001109, A004187, A001090, A018913, A004189, A004190, A004191, A078362, A007655, A078364, A077412, A078366, etc.
- generating functions of the form Prod_{k>=0} (1+a*x^(b^k)) for the following values of (a,b): (1,2) A000012 and A000027, (1,3) A039966 and A005836, (1,4) A151666 and A000695, (1,5) A151667 and A033042, (2,2) A001316, (2,3) A151668, (2,4) A151669, (2,5) A151670, (3,2) A048883, (3,3) A117940, (3,4) A151665, (3,5) A151671, (4,2) A102376, (4,3) A151672, (4,4) A151673, (4,5) A151674
- generating functions of the form Prod_{k>=c} (1+a*x^(2^k-1)+b*x^2^k)) for the following values of (a,b,c): (1,1,0) A160573, (1,1,1) A151552, (1,1,2) A151692, (2,1,0) A151685, (2,1,1) A151691, (1,2,0) A151688 and A152980, (1,2,1) A151550, (2,2,0) A151693, (2,2,1) A151694
- generating functions, rational: see recurrences, linear
- generating functions satisfying a cubic: A001764, A007863, A036759, A036765, A078531, A088927, A067955, A102403, A120984, A120985, A128725, A128729, A128736
- generating functions satisfying equations of the form A(x)=1+zA(x)^k: A002293-A002296, A007556, A062994, A062744
- generating functions satisfying equations of the form r*A(x) = c + b*x + A(x)^n: A120588 - A120607
- generating functions, for definition see Wikipedia article
Genocchi medians: A005439
Genocchi numbers , sequences related to :
genus , sequences related to :
- genus, of modular group, A001617, A001767
- genus-1:: A006387, A006386, A006295, A006297, A006296
- genus:: A003639, A003638, A000933, A003636, A003637, A003171, A003644, A005527, A000934, A005431, A005525, A005526, A006298, A006299, A006301
geometrical configurations: see configurations
geometric sequences: see recurrences, linear, order 01
geometries , sequences related to :
- geometries : A002773*, A004069, A031501
- geometries, linear: A001200*, A001548* (connected), A005426
- geometries: see also matroids
Germain primes: see primes, Germain
German names of numbers , sequence related to :
- 1-, 2-, 3-, ... digit numbers in alphabetical order in German: A001061 .
- German money before the introduction of the Euro, Values in Pfennigs of : A082593 .
- Number of letters vowels, consonants in n, letters in n-th prime (in German): A007208, A037199, A037200, A164821
- Final digit sum of numerical values of German names of the nonnegative numbers: A119946.
- Sum of numerical values of German names of the nonnegative numbers: A119945
- Smallest positive integer containing the n-th letter of the alphabet (in German): A208934.
- First & second German version of A131744 (Angelini's 1995 puzzle): A133816, A133817.
GF(2)[X]-polynomials , sequences containing or operating on :
- GF(2)[X]-polynomials , sequences containing or operating on, (These sequences assume that the GF(2)[X]-polynomial is encoded in binary expansion of n like this: n=11, 1011 in binary, stands for polynomial x^3+x+1, n=25, 11001 in binary, stands for polynomial x^4+x^3+1)
- GF(2)[X]-polynomials, addition table, i.e. XOR(x,y), A003987
- GF(2)[X]-polynomials, bijections from/to natural numbers, preserving multiplicative structures, A091202-A091203, A091204-A091205
- GF(2)[X]-polynomials, factorizations, A256170
- GF(2)[X]-polynomials, GCD(x,y), table of, A091255
- GF(2)[X]-polynomials, irreducible and also prime in N, A091206
- GF(2)[X]-polynomials, irreducible and non-primitive, A091252
- GF(2)[X]-polynomials, irreducible and primitive, A091250*, A058947, A011260
- GF(2)[X]-polynomials, irreducible but composite in N, A091214
- GF(2)[X]-polynomials, irreducible, A014580*, A058943, A001037
- GF(2)[X]-polynomials, irreducible, characteristic function, A091225
- GF(2)[X]-polynomials, irreducible, order of each, A059478
- GF(2)[X]-polynomials, LCM(x,y), table of, A091256
- GF(2)[X]-polynomials, Matula-Goebel-tree analogues, A091238, A091239, A091240
- GF(2)[X]-polynomials, Moebius-analogue, A091219
- GF(2)[X]-polynomials, multiples of x+1, A048724
- GF(2)[X]-polynomials, multiples of x+1, shifted once right, A003188
- GF(2)[X]-polynomials, multiples of x^2+1, A048725, A353167
- GF(2)[X]-polynomials, multiples of x^2+x+1, A048727
- GF(2)[X]-polynomials, multiples of x^2+x, A048726
- GF(2)[X]-polynomials, multiplication table, A048720, A091257
- GF(2)[X]-polynomials, number of distinct irreducible divisors, A091221
- GF(2)[X]-polynomials, number of divisors, A091220
- GF(2)[X]-polynomials, number of irreducible divisors, A091222
- GF(2)[X]-polynomials, of the form x^n+1, A000051
- GF(2)[X]-polynomials, of the form x^n+1, number of distinct irreducible divisors, A000374
- GF(2)[X]-polynomials, of the form x^n+1, number of irreducible divisors, A091248
- GF(2)[X]-polynomials, powers of x+1, A001317
- GF(2)[X]-polynomials, powers of x^2+1, A038183
- GF(2)[X]-polynomials, powers of x^2+x+1, A038184
- GF(2)[X]-polynomials, powers, table of, A048723
- GF(2)[X]-polynomials, quasi-factorial analogue, A048631
- GF(2)[X]-polynomials, reducible and also composite in N, A091212
- GF(2)[X]-polynomials, reducible but prime in N, A091209
- GF(2)[X]-polynomials, reducible, A091242, A091254
- GF(2)[X]-polynomials, smallest m >= n, such that polynomial with code m is irreducible, A091228
- GF(2)[X]-polynomials, squares, A000695
- GF(2)[X]-polynomials: see also Trinomials over GF(2)
g.f.: see generating functions
- Gijswijt's sequence: A090822*
- Gijswijt's sequence: see also (1) A014221, A025829, A029285, A053633, A055773, A073724, A091407-A091413, A091579, A091586-A091588, A091787, A091799, A091840-A091845, A091970
- Gijswijt's sequence: see also (2) A093369, A093370, A094005, A093955-A093958, A094176, A094195, A094321, A094917, A095828, A156799, A157925, A187201, A217206
- Gijswijt's sequence: generalizations: A091975, A091976, A092331-A092335
- Gijswijt's sequence: generalizations: A094321 (greedy version of second-order sequence)
- Gijswijt's sequence: generalizations: A094781, A094782, A094839 (two-dim. version)
- Gijswijt's sequence: see also under curling number
- Gilbreath conjecture for primes: A036262*, A036261
- Gilbreath transforms of: Fibonacci numbers: A011655; Lucky numbers: A054978; partition numbers: A196251; primes p(n): A036261, A036262; A358691, A117069; semiprimes: A365939, A131749 sigma: A362451, A362456, A362457; sigma(n)-n: A362452; tau: A361897, A362450;
- Other Gilbreath-related sequences: there are many other related sequences in OEIS, search under "Gilbreath"
girth: see graphs, girth of
Giuga numbers: A007850*
Glaisher, sequences mentioned by:
- Glaisher's alpha(m): A225543*
- Glaisher's beta(m) and beta'(m): A322032, A225872*
- Glaisher's chi numbers: A002171*, A002172, A109506*; chi_4: A030212*; chi_8: A002607; chi_i (i=0..12) (this is a different definition also used by Glaisher): A228441, A109506, A321558, A321559, A321560, A321561, A321562, A321563, A321564, A321565, A321807, A321808, A321809
- Glaisher's Delta numbers: A000593*; Delta_i (i=0..12): A001227, A000593, A050999, A051000, A051001, A051002, A321810, A321811, A321812, A321813, A321814, A321815, A321816
- Glaisher's Delta'(n) numbers: A002131*; Delta'_i (i=0..12): A001227, A002131, A076577, A007331, A285989, A096960, A321817, A096961, A321818, A096962, A321819, A096963, A321820
- Glaisher's E numbers: A002654*, A213408; E_i (i=0..12): A002654, A050457, A002173, A050459, A050456, A321821, A321822, A321823, A321824, A321825, A321826, A321827, A321828
- Glaisher's G numbers: A002111*, A002609
- Glaisher's gamma(m): A225923*
- Glaisher's H numbers: A002112*
- Glaisher's H' numbers: A002114*, A002610
- Glaisher's I numbers: A047788*/A047789*
- Glaisher's J numbers: A002325*, A002613
- Glaisher's lambda numbers: A000729*
- Glaisher's Omega numbers: A000735*
- Glaisher's P numbers: A030211*
- Glaisher's Q numbers: A322031*
- Glaisher's rho: A004018*
- Glaisher's T numbers: A002608, A002439*, A002811
- Glaisher's T_1 numbers: A002615
- Glaisher's theta(n) numbers: A002614
- Glaisher's Theta(n) numbers: A002288*
- Glaisher's U numbers: A002611
- Glaisher's V numbers: A002611
- Glaisher's W numbers: A002470*, A002286, A002287
- Glaisher's zeta numbers: A002129*; zeta_i (i=0..12): A048272, A002129, A321543, A138503, A279395, A321544, A321545, A321546, A321547, A321548, A321549, A321550, A321551
- Glaisher, other numbers mentioned by: E'_i (i=0..12): A002654, A050469, A050470, A050471, A050468, A321829, A321830, A321831, A321832, A321833, A321834, A321835, A321836
- Glaisher, other numbers mentioned by: sigma_i (i=0..24): A000005, A000203, A001157, A001158, A001159, A001160, A013954, A013955, A013956, A013957, A013958, A013959, A013960, A013961, A013962, A013963, A013964, A013965, A013966, A013967, A013968, A013969, A013970, A013971, A013972
- Glaisher, other numbers mentioned by: zeta'_i (i=0..12): A048272, A000593, A078306, A078307, A284900, A284926, A284927, A321552, A321553, A321554, A321555, A321556, A321557
glass worms (or vers de verres): A151986, A151987, A176336, A176450, A177101
Gleason's theorem: A008621, A008620
gluons: A005415
glycols: A000634
- This is a section of the Index to the OEIS®.
- For further information see the main Index to OEIS page.
- Please read Index: Instructions For Updating Index to OEIS before making changes to this page.
- If you did not find what you were looking for in this Index, you can always search the database for a particular word or phrase.
- Full list of sections:
[ Aa | Ab | Al | Am | Ap | Ar | Ba | Be | Bi | Bl | Bo | Br | Ca | Ce | Ch | Cl | Coa | Coi | Com | Con | Cor | Cu | Cy | Da | De | Di | Do | Ea | Ed | El | Eu | Fa | Fe | Fi | Fo | Fu | Ga | Ge | Go | Gra | Gre | Ha | He | Ho | Ia | In | J | K | La | Lc | Li | Lo | Lu | M | Mag | Map | Mat | Me | Mo | Mu | N | Na | Ne | Ni | No | Nu | O | Pac | Par | Pas | Pea | Per | Ph | Poi | Pol | Pos | Pow | Pra | Pri | Pro | Ps | Qua | Que | Ra | Rea | Rel | Res | Ro | Ru | Sa | Se | Si | Sk | So | Sp | Sq | St | Su | Sw | Ta | Te | Th | To | Tra | Tri | Tu | U | V | Wa | We | Wi | X | Y | Z | 1 | 2 | 3 | 4 ]