login
A078364
A Chebyshev S-sequence with Diophantine property.
7
1, 15, 224, 3345, 49951, 745920, 11138849, 166336815, 2483913376, 37092363825, 553901543999, 8271430796160, 123517560398401, 1844491975179855, 27543862067299424, 411313439034311505
OFFSET
0,2
COMMENTS
a(n) gives the general (positive integer) solution of the Pell equation b^2 - 221*a^2 = +4 with companion sequence b(n)=A078365(n+1), n>=0.
This is the m=17 member of the m-family of sequences S(n,m-2) = S(2*n+1,sqrt(m))/sqrt(m). The m=4..16 (nonnegative) sequences are: A000027, A001906, A001353, A004254, A001109, A004187, A001090, A018913, A004189, A004190, A004191, A078362 and A007655. The m=1..3 (signed) sequences are A049347, A056594, A010892.
For positive n, a(n) equals the permanent of the n X n tridiagonal matrix with 15's along the main diagonal, and i's along the superdiagonal and the subdiagonal (i is the imaginary unit). - John M. Campbell, Jul 08 2011
For n>=2, a(n) equals the number of 01-avoiding words of length n-1 on alphabet {0,1,...,14}. - Milan Janjic, Jan 23 2015
LINKS
FORMULA
a(n) = 15*a(n-1) - a(n-2), n>= 1; a(-1)=0, a(0)=1.
a(n) = S(2*n+1, sqrt(17))/sqrt(17) = S(n, 15); S(n, x) := U(n, x/2), Chebyshev polynomials of the 2nd kind, A049310.
a(n) = (ap^(n+1) - am^(n+1))/(ap-am) with ap = (15+sqrt(221))/2 and am = (15-sqrt(221))/2.
G.f.: 1/(1 - 15*x + x^2). - Philippe Deléham, Nov 17 2008
a(n) = Sum_{k=0..n} A101950(n,k)*14^k. - Philippe Deléham, Feb 10 2012
Product {n >= 0} (1 + 1/a(n)) = 1/13*(13 + sqrt(221)). - Peter Bala, Dec 23 2012
Product {n >= 1} (1 - 1/a(n)) = 1/30*(13 + sqrt(221)). - Peter Bala, Dec 23 2012
For n>=1, a(n) = U(n-1,15/2), where U(k,x) is Chebyshev polynomial of the second kind. - Milan Janjic, Jan 23 2015
MATHEMATICA
LinearRecurrence[{15, -1}, {1, 15}, 30] (* Harvey P. Dale, Oct 16 2011 *)
PROG
(Sage) [lucas_number1(n, 15, 1) for n in range(1, 20)] # Zerinvary Lajos, Jun 25 2008
CROSSREFS
a(n) = sqrt((A078365(n+1)^2 - 4)/221), n>=0, (Pell equation d=221, +4).
Cf. A077428, A078355 (Pell +4 equations).
Sequence in context: A367863 A297669 A171320 * A209221 A207690 A207925
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Nov 29 2002
STATUS
approved