LLVM 20.0.0git
MachineFunction.cpp
Go to the documentation of this file.
1//===- MachineFunction.cpp ------------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// Collect native machine code information for a function. This allows
10// target-specific information about the generated code to be stored with each
11// function.
12//
13//===----------------------------------------------------------------------===//
14
16#include "llvm/ADT/BitVector.h"
17#include "llvm/ADT/DenseMap.h"
18#include "llvm/ADT/DenseSet.h"
19#include "llvm/ADT/STLExtras.h"
22#include "llvm/ADT/StringRef.h"
23#include "llvm/ADT/Twine.h"
43#include "llvm/Config/llvm-config.h"
44#include "llvm/IR/Attributes.h"
45#include "llvm/IR/BasicBlock.h"
46#include "llvm/IR/Constant.h"
47#include "llvm/IR/DataLayout.h"
50#include "llvm/IR/Function.h"
51#include "llvm/IR/GlobalValue.h"
52#include "llvm/IR/Instruction.h"
54#include "llvm/IR/Metadata.h"
55#include "llvm/IR/Module.h"
57#include "llvm/IR/Value.h"
58#include "llvm/MC/MCContext.h"
59#include "llvm/MC/MCSymbol.h"
60#include "llvm/MC/SectionKind.h"
69#include <algorithm>
70#include <cassert>
71#include <cstddef>
72#include <cstdint>
73#include <iterator>
74#include <string>
75#include <utility>
76#include <vector>
77
79
80using namespace llvm;
81
82#define DEBUG_TYPE "codegen"
83
85 "align-all-functions",
86 cl::desc("Force the alignment of all functions in log2 format (e.g. 4 "
87 "means align on 16B boundaries)."),
89
92
93 // clang-format off
94 switch(Prop) {
95 case P::FailedISel: return "FailedISel";
96 case P::IsSSA: return "IsSSA";
97 case P::Legalized: return "Legalized";
98 case P::NoPHIs: return "NoPHIs";
99 case P::NoVRegs: return "NoVRegs";
100 case P::RegBankSelected: return "RegBankSelected";
101 case P::Selected: return "Selected";
102 case P::TracksLiveness: return "TracksLiveness";
103 case P::TiedOpsRewritten: return "TiedOpsRewritten";
104 case P::FailsVerification: return "FailsVerification";
105 case P::FailedRegAlloc: return "FailedRegAlloc";
106 case P::TracksDebugUserValues: return "TracksDebugUserValues";
107 }
108 // clang-format on
109 llvm_unreachable("Invalid machine function property");
110}
111
113 if (!F.hasFnAttribute(Attribute::SafeStack))
114 return;
115
116 auto *Existing =
117 dyn_cast_or_null<MDTuple>(F.getMetadata(LLVMContext::MD_annotation));
118
119 if (!Existing || Existing->getNumOperands() != 2)
120 return;
121
122 auto *MetadataName = "unsafe-stack-size";
123 if (auto &N = Existing->getOperand(0)) {
124 if (N.equalsStr(MetadataName)) {
125 if (auto &Op = Existing->getOperand(1)) {
126 auto Val = mdconst::extract<ConstantInt>(Op)->getZExtValue();
127 FrameInfo.setUnsafeStackSize(Val);
128 }
129 }
130 }
131}
132
133// Pin the vtable to this file.
134void MachineFunction::Delegate::anchor() {}
135
137 const char *Separator = "";
138 for (BitVector::size_type I = 0; I < Properties.size(); ++I) {
139 if (!Properties[I])
140 continue;
141 OS << Separator << getPropertyName(static_cast<Property>(I));
142 Separator = ", ";
143 }
144}
145
146//===----------------------------------------------------------------------===//
147// MachineFunction implementation
148//===----------------------------------------------------------------------===//
149
150// Out-of-line virtual method.
152
155}
156
158 const Function &F) {
159 if (auto MA = F.getFnStackAlign())
160 return *MA;
161 return STI->getFrameLowering()->getStackAlign();
162}
163
165 const TargetSubtargetInfo &STI, MCContext &Ctx,
166 unsigned FunctionNum)
167 : F(F), Target(Target), STI(&STI), Ctx(Ctx) {
168 FunctionNumber = FunctionNum;
169 init();
170}
171
172void MachineFunction::handleInsertion(MachineInstr &MI) {
173 if (TheDelegate)
174 TheDelegate->MF_HandleInsertion(MI);
175}
176
177void MachineFunction::handleRemoval(MachineInstr &MI) {
178 if (TheDelegate)
179 TheDelegate->MF_HandleRemoval(MI);
180}
181
183 const MCInstrDesc &TID) {
184 if (TheDelegate)
185 TheDelegate->MF_HandleChangeDesc(MI, TID);
186}
187
188void MachineFunction::init() {
189 // Assume the function starts in SSA form with correct liveness.
192 if (STI->getRegisterInfo())
193 RegInfo = new (Allocator) MachineRegisterInfo(this);
194 else
195 RegInfo = nullptr;
196
197 MFInfo = nullptr;
198
199 // We can realign the stack if the target supports it and the user hasn't
200 // explicitly asked us not to.
201 bool CanRealignSP = STI->getFrameLowering()->isStackRealignable() &&
202 !F.hasFnAttribute("no-realign-stack");
203 bool ForceRealignSP = F.hasFnAttribute(Attribute::StackAlignment) ||
204 F.hasFnAttribute("stackrealign");
205 FrameInfo = new (Allocator) MachineFrameInfo(
206 getFnStackAlignment(STI, F), /*StackRealignable=*/CanRealignSP,
207 /*ForcedRealign=*/ForceRealignSP && CanRealignSP);
208
209 setUnsafeStackSize(F, *FrameInfo);
210
211 if (F.hasFnAttribute(Attribute::StackAlignment))
212 FrameInfo->ensureMaxAlignment(*F.getFnStackAlign());
213
215 Alignment = STI->getTargetLowering()->getMinFunctionAlignment();
216
217 // FIXME: Shouldn't use pref alignment if explicit alignment is set on F.
218 // FIXME: Use Function::hasOptSize().
219 if (!F.hasFnAttribute(Attribute::OptimizeForSize))
220 Alignment = std::max(Alignment,
222
223 // -fsanitize=function and -fsanitize=kcfi instrument indirect function calls
224 // to load a type hash before the function label. Ensure functions are aligned
225 // by a least 4 to avoid unaligned access, which is especially important for
226 // -mno-unaligned-access.
227 if (F.hasMetadata(LLVMContext::MD_func_sanitize) ||
228 F.getMetadata(LLVMContext::MD_kcfi_type))
229 Alignment = std::max(Alignment, Align(4));
230
232 Alignment = Align(1ULL << AlignAllFunctions);
233
234 JumpTableInfo = nullptr;
235
237 F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) {
238 WinEHInfo = new (Allocator) WinEHFuncInfo();
239 }
240
242 F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) {
243 WasmEHInfo = new (Allocator) WasmEHFuncInfo();
244 }
245
246 assert(Target.isCompatibleDataLayout(getDataLayout()) &&
247 "Can't create a MachineFunction using a Module with a "
248 "Target-incompatible DataLayout attached\n");
249
250 PSVManager = std::make_unique<PseudoSourceValueManager>(getTarget());
251}
252
254 const TargetSubtargetInfo &STI) {
255 assert(!MFInfo && "MachineFunctionInfo already set");
256 MFInfo = Target.createMachineFunctionInfo(Allocator, F, &STI);
257}
258
260 clear();
261}
262
263void MachineFunction::clear() {
264 Properties.reset();
265 // Don't call destructors on MachineInstr and MachineOperand. All of their
266 // memory comes from the BumpPtrAllocator which is about to be purged.
267 //
268 // Do call MachineBasicBlock destructors, it contains std::vectors.
269 for (iterator I = begin(), E = end(); I != E; I = BasicBlocks.erase(I))
270 I->Insts.clearAndLeakNodesUnsafely();
271 MBBNumbering.clear();
272
273 InstructionRecycler.clear(Allocator);
274 OperandRecycler.clear(Allocator);
275 BasicBlockRecycler.clear(Allocator);
276 CodeViewAnnotations.clear();
278 if (RegInfo) {
279 RegInfo->~MachineRegisterInfo();
280 Allocator.Deallocate(RegInfo);
281 }
282 if (MFInfo) {
283 MFInfo->~MachineFunctionInfo();
284 Allocator.Deallocate(MFInfo);
285 }
286
287 FrameInfo->~MachineFrameInfo();
288 Allocator.Deallocate(FrameInfo);
289
290 ConstantPool->~MachineConstantPool();
291 Allocator.Deallocate(ConstantPool);
292
293 if (JumpTableInfo) {
294 JumpTableInfo->~MachineJumpTableInfo();
295 Allocator.Deallocate(JumpTableInfo);
296 }
297
298 if (WinEHInfo) {
299 WinEHInfo->~WinEHFuncInfo();
300 Allocator.Deallocate(WinEHInfo);
301 }
302
303 if (WasmEHInfo) {
304 WasmEHInfo->~WasmEHFuncInfo();
305 Allocator.Deallocate(WasmEHInfo);
306 }
307}
308
310 return F.getDataLayout();
311}
312
313/// Get the JumpTableInfo for this function.
314/// If it does not already exist, allocate one.
316getOrCreateJumpTableInfo(unsigned EntryKind) {
317 if (JumpTableInfo) return JumpTableInfo;
318
319 JumpTableInfo = new (Allocator)
321 return JumpTableInfo;
322}
323
325 return F.getDenormalMode(FPType);
326}
327
328/// Should we be emitting segmented stack stuff for the function
330 return getFunction().hasFnAttribute("split-stack");
331}
332
333[[nodiscard]] unsigned
335 FrameInstructions.push_back(Inst);
336 return FrameInstructions.size() - 1;
337}
338
339/// This discards all of the MachineBasicBlock numbers and recomputes them.
340/// This guarantees that the MBB numbers are sequential, dense, and match the
341/// ordering of the blocks within the function. If a specific MachineBasicBlock
342/// is specified, only that block and those after it are renumbered.
344 if (empty()) { MBBNumbering.clear(); return; }
346 if (MBB == nullptr)
347 MBBI = begin();
348 else
349 MBBI = MBB->getIterator();
350
351 // Figure out the block number this should have.
352 unsigned BlockNo = 0;
353 if (MBBI != begin())
354 BlockNo = std::prev(MBBI)->getNumber() + 1;
355
356 for (; MBBI != E; ++MBBI, ++BlockNo) {
357 if (MBBI->getNumber() != (int)BlockNo) {
358 // Remove use of the old number.
359 if (MBBI->getNumber() != -1) {
360 assert(MBBNumbering[MBBI->getNumber()] == &*MBBI &&
361 "MBB number mismatch!");
362 MBBNumbering[MBBI->getNumber()] = nullptr;
363 }
364
365 // If BlockNo is already taken, set that block's number to -1.
366 if (MBBNumbering[BlockNo])
367 MBBNumbering[BlockNo]->setNumber(-1);
368
369 MBBNumbering[BlockNo] = &*MBBI;
370 MBBI->setNumber(BlockNo);
371 }
372 }
373
374 // Okay, all the blocks are renumbered. If we have compactified the block
375 // numbering, shrink MBBNumbering now.
376 assert(BlockNo <= MBBNumbering.size() && "Mismatch!");
377 MBBNumbering.resize(BlockNo);
378 MBBNumberingEpoch++;
379}
380
383 const Align FunctionAlignment = getAlignment();
385 /// Offset - Distance from the beginning of the function to the end
386 /// of the basic block.
387 int64_t Offset = 0;
388
389 for (; MBBI != E; ++MBBI) {
390 const Align Alignment = MBBI->getAlignment();
391 int64_t BlockSize = 0;
392
393 for (auto &MI : *MBBI) {
394 BlockSize += TII.getInstSizeInBytes(MI);
395 }
396
397 int64_t OffsetBB;
398 if (Alignment <= FunctionAlignment) {
399 OffsetBB = alignTo(Offset, Alignment);
400 } else {
401 // The alignment of this MBB is larger than the function's alignment, so
402 // we can't tell whether or not it will insert nops. Assume that it will.
403 OffsetBB = alignTo(Offset, Alignment) + Alignment.value() -
404 FunctionAlignment.value();
405 }
406 Offset = OffsetBB + BlockSize;
407 }
408
409 return Offset;
410}
411
412/// This method iterates over the basic blocks and assigns their IsBeginSection
413/// and IsEndSection fields. This must be called after MBB layout is finalized
414/// and the SectionID's are assigned to MBBs.
417 auto CurrentSectionID = front().getSectionID();
418 for (auto MBBI = std::next(begin()), E = end(); MBBI != E; ++MBBI) {
419 if (MBBI->getSectionID() == CurrentSectionID)
420 continue;
422 std::prev(MBBI)->setIsEndSection();
423 CurrentSectionID = MBBI->getSectionID();
424 }
426}
427
428/// Allocate a new MachineInstr. Use this instead of `new MachineInstr'.
430 DebugLoc DL,
431 bool NoImplicit) {
432 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator))
433 MachineInstr(*this, MCID, std::move(DL), NoImplicit);
434}
435
436/// Create a new MachineInstr which is a copy of the 'Orig' instruction,
437/// identical in all ways except the instruction has no parent, prev, or next.
440 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator))
441 MachineInstr(*this, *Orig);
442}
443
446 const MachineInstr &Orig) {
447 MachineInstr *FirstClone = nullptr;
449 while (true) {
450 MachineInstr *Cloned = CloneMachineInstr(&*I);
451 MBB.insert(InsertBefore, Cloned);
452 if (FirstClone == nullptr) {
453 FirstClone = Cloned;
454 } else {
455 Cloned->bundleWithPred();
456 }
457
458 if (!I->isBundledWithSucc())
459 break;
460 ++I;
461 }
462 // Copy over call info to the cloned instruction if needed. If Orig is in
463 // a bundle, copyAdditionalCallInfo takes care of finding the call instruction
464 // in the bundle.
466 copyAdditionalCallInfo(&Orig, FirstClone);
467 return *FirstClone;
468}
469
470/// Delete the given MachineInstr.
471///
472/// This function also serves as the MachineInstr destructor - the real
473/// ~MachineInstr() destructor must be empty.
475 // Verify that a call site info is at valid state. This assertion should
476 // be triggered during the implementation of support for the
477 // call site info of a new architecture. If the assertion is triggered,
478 // back trace will tell where to insert a call to updateCallSiteInfo().
479 assert((!MI->isCandidateForAdditionalCallInfo() ||
480 !CallSitesInfo.contains(MI)) &&
481 "Call site info was not updated!");
482 // Verify that the "called globals" info is in a valid state.
483 assert((!MI->isCandidateForAdditionalCallInfo() ||
484 !CalledGlobalsInfo.contains(MI)) &&
485 "Called globals info was not updated!");
486 // Strip it for parts. The operand array and the MI object itself are
487 // independently recyclable.
488 if (MI->Operands)
489 deallocateOperandArray(MI->CapOperands, MI->Operands);
490 // Don't call ~MachineInstr() which must be trivial anyway because
491 // ~MachineFunction drops whole lists of MachineInstrs wihout calling their
492 // destructors.
493 InstructionRecycler.Deallocate(Allocator, MI);
494}
495
496/// Allocate a new MachineBasicBlock. Use this instead of
497/// `new MachineBasicBlock'.
500 std::optional<UniqueBBID> BBID) {
502 new (BasicBlockRecycler.Allocate<MachineBasicBlock>(Allocator))
503 MachineBasicBlock(*this, BB);
504 // Set BBID for `-basic-block-sections=list` and `-basic-block-address-map` to
505 // allow robust mapping of profiles to basic blocks.
506 if (Target.Options.BBAddrMap ||
507 Target.getBBSectionsType() == BasicBlockSection::List)
508 MBB->setBBID(BBID.has_value() ? *BBID : UniqueBBID{NextBBID++, 0});
509 return MBB;
510}
511
512/// Delete the given MachineBasicBlock.
514 assert(MBB->getParent() == this && "MBB parent mismatch!");
515 // Clean up any references to MBB in jump tables before deleting it.
516 if (JumpTableInfo)
517 JumpTableInfo->RemoveMBBFromJumpTables(MBB);
518 MBB->~MachineBasicBlock();
519 BasicBlockRecycler.Deallocate(Allocator, MBB);
520}
521
524 Align BaseAlignment, const AAMDNodes &AAInfo, const MDNode *Ranges,
525 SyncScope::ID SSID, AtomicOrdering Ordering,
526 AtomicOrdering FailureOrdering) {
527 assert((!Size.hasValue() ||
528 Size.getValue().getKnownMinValue() != ~UINT64_C(0)) &&
529 "Unexpected an unknown size to be represented using "
530 "LocationSize::beforeOrAfter()");
531 return new (Allocator)
532 MachineMemOperand(PtrInfo, F, Size, BaseAlignment, AAInfo, Ranges, SSID,
533 Ordering, FailureOrdering);
534}
535
538 Align base_alignment, const AAMDNodes &AAInfo, const MDNode *Ranges,
539 SyncScope::ID SSID, AtomicOrdering Ordering,
540 AtomicOrdering FailureOrdering) {
541 return new (Allocator)
542 MachineMemOperand(PtrInfo, f, MemTy, base_alignment, AAInfo, Ranges, SSID,
543 Ordering, FailureOrdering);
544}
545
548 const MachinePointerInfo &PtrInfo,
550 assert((!Size.hasValue() ||
551 Size.getValue().getKnownMinValue() != ~UINT64_C(0)) &&
552 "Unexpected an unknown size to be represented using "
553 "LocationSize::beforeOrAfter()");
554 return new (Allocator)
555 MachineMemOperand(PtrInfo, MMO->getFlags(), Size, MMO->getBaseAlign(),
556 AAMDNodes(), nullptr, MMO->getSyncScopeID(),
558}
559
561 const MachineMemOperand *MMO, const MachinePointerInfo &PtrInfo, LLT Ty) {
562 return new (Allocator)
563 MachineMemOperand(PtrInfo, MMO->getFlags(), Ty, MMO->getBaseAlign(),
564 AAMDNodes(), nullptr, MMO->getSyncScopeID(),
566}
567
570 int64_t Offset, LLT Ty) {
571 const MachinePointerInfo &PtrInfo = MMO->getPointerInfo();
572
573 // If there is no pointer value, the offset isn't tracked so we need to adjust
574 // the base alignment.
575 Align Alignment = PtrInfo.V.isNull()
577 : MMO->getBaseAlign();
578
579 // Do not preserve ranges, since we don't necessarily know what the high bits
580 // are anymore.
581 return new (Allocator) MachineMemOperand(
582 PtrInfo.getWithOffset(Offset), MMO->getFlags(), Ty, Alignment,
583 MMO->getAAInfo(), nullptr, MMO->getSyncScopeID(),
585}
586
589 const AAMDNodes &AAInfo) {
590 MachinePointerInfo MPI = MMO->getValue() ?
591 MachinePointerInfo(MMO->getValue(), MMO->getOffset()) :
593
594 return new (Allocator) MachineMemOperand(
595 MPI, MMO->getFlags(), MMO->getSize(), MMO->getBaseAlign(), AAInfo,
596 MMO->getRanges(), MMO->getSyncScopeID(), MMO->getSuccessOrdering(),
597 MMO->getFailureOrdering());
598}
599
603 return new (Allocator) MachineMemOperand(
604 MMO->getPointerInfo(), Flags, MMO->getSize(), MMO->getBaseAlign(),
605 MMO->getAAInfo(), MMO->getRanges(), MMO->getSyncScopeID(),
607}
608
609MachineInstr::ExtraInfo *MachineFunction::createMIExtraInfo(
610 ArrayRef<MachineMemOperand *> MMOs, MCSymbol *PreInstrSymbol,
611 MCSymbol *PostInstrSymbol, MDNode *HeapAllocMarker, MDNode *PCSections,
612 uint32_t CFIType, MDNode *MMRAs) {
613 return MachineInstr::ExtraInfo::create(Allocator, MMOs, PreInstrSymbol,
614 PostInstrSymbol, HeapAllocMarker,
615 PCSections, CFIType, MMRAs);
616}
617
619 char *Dest = Allocator.Allocate<char>(Name.size() + 1);
620 llvm::copy(Name, Dest);
621 Dest[Name.size()] = 0;
622 return Dest;
623}
624
626 unsigned NumRegs = getSubtarget().getRegisterInfo()->getNumRegs();
627 unsigned Size = MachineOperand::getRegMaskSize(NumRegs);
628 uint32_t *Mask = Allocator.Allocate<uint32_t>(Size);
629 memset(Mask, 0, Size * sizeof(Mask[0]));
630 return Mask;
631}
632
634 int* AllocMask = Allocator.Allocate<int>(Mask.size());
635 copy(Mask, AllocMask);
636 return {AllocMask, Mask.size()};
637}
638
639#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
641 print(dbgs());
642}
643#endif
644
646 return getFunction().getName();
647}
648
649void MachineFunction::print(raw_ostream &OS, const SlotIndexes *Indexes) const {
650 OS << "# Machine code for function " << getName() << ": ";
652 OS << '\n';
653
654 // Print Frame Information
655 FrameInfo->print(*this, OS);
656
657 // Print JumpTable Information
658 if (JumpTableInfo)
659 JumpTableInfo->print(OS);
660
661 // Print Constant Pool
662 ConstantPool->print(OS);
663
665
666 if (RegInfo && !RegInfo->livein_empty()) {
667 OS << "Function Live Ins: ";
669 I = RegInfo->livein_begin(), E = RegInfo->livein_end(); I != E; ++I) {
670 OS << printReg(I->first, TRI);
671 if (I->second)
672 OS << " in " << printReg(I->second, TRI);
673 if (std::next(I) != E)
674 OS << ", ";
675 }
676 OS << '\n';
677 }
678
681 for (const auto &BB : *this) {
682 OS << '\n';
683 // If we print the whole function, print it at its most verbose level.
684 BB.print(OS, MST, Indexes, /*IsStandalone=*/true);
685 }
686
687 OS << "\n# End machine code for function " << getName() << ".\n\n";
688}
689
690/// True if this function needs frame moves for debug or exceptions.
692 // TODO: Ideally, what we'd like is to have a switch that allows emitting
693 // synchronous (precise at call-sites only) CFA into .eh_frame. However, even
694 // under this switch, we'd like .debug_frame to be precise when using -g. At
695 // this moment, there's no way to specify that some CFI directives go into
696 // .eh_frame only, while others go into .debug_frame only.
699 !F.getParent()->debug_compile_units().empty();
700}
701
702namespace llvm {
703
704 template<>
707
708 static std::string getGraphName(const MachineFunction *F) {
709 return ("CFG for '" + F->getName() + "' function").str();
710 }
711
712 std::string getNodeLabel(const MachineBasicBlock *Node,
713 const MachineFunction *Graph) {
714 std::string OutStr;
715 {
716 raw_string_ostream OSS(OutStr);
717
718 if (isSimple()) {
719 OSS << printMBBReference(*Node);
720 if (const BasicBlock *BB = Node->getBasicBlock())
721 OSS << ": " << BB->getName();
722 } else
723 Node->print(OSS);
724 }
725
726 if (OutStr[0] == '\n') OutStr.erase(OutStr.begin());
727
728 // Process string output to make it nicer...
729 for (unsigned i = 0; i != OutStr.length(); ++i)
730 if (OutStr[i] == '\n') { // Left justify
731 OutStr[i] = '\\';
732 OutStr.insert(OutStr.begin()+i+1, 'l');
733 }
734 return OutStr;
735 }
736 };
737
738} // end namespace llvm
739
741{
742#ifndef NDEBUG
743 ViewGraph(this, "mf" + getName());
744#else
745 errs() << "MachineFunction::viewCFG is only available in debug builds on "
746 << "systems with Graphviz or gv!\n";
747#endif // NDEBUG
748}
749
751{
752#ifndef NDEBUG
753 ViewGraph(this, "mf" + getName(), true);
754#else
755 errs() << "MachineFunction::viewCFGOnly is only available in debug builds on "
756 << "systems with Graphviz or gv!\n";
757#endif // NDEBUG
758}
759
760/// Add the specified physical register as a live-in value and
761/// create a corresponding virtual register for it.
763 const TargetRegisterClass *RC) {
765 Register VReg = MRI.getLiveInVirtReg(PReg);
766 if (VReg) {
767 const TargetRegisterClass *VRegRC = MRI.getRegClass(VReg);
768 (void)VRegRC;
769 // A physical register can be added several times.
770 // Between two calls, the register class of the related virtual register
771 // may have been constrained to match some operation constraints.
772 // In that case, check that the current register class includes the
773 // physical register and is a sub class of the specified RC.
774 assert((VRegRC == RC || (VRegRC->contains(PReg) &&
775 RC->hasSubClassEq(VRegRC))) &&
776 "Register class mismatch!");
777 return VReg;
778 }
779 VReg = MRI.createVirtualRegister(RC);
780 MRI.addLiveIn(PReg, VReg);
781 return VReg;
782}
783
784/// Return the MCSymbol for the specified non-empty jump table.
785/// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a
786/// normal 'L' label is returned.
788 bool isLinkerPrivate) const {
789 const DataLayout &DL = getDataLayout();
790 assert(JumpTableInfo && "No jump tables");
791 assert(JTI < JumpTableInfo->getJumpTables().size() && "Invalid JTI!");
792
793 StringRef Prefix = isLinkerPrivate ? DL.getLinkerPrivateGlobalPrefix()
794 : DL.getPrivateGlobalPrefix();
797 << Prefix << "JTI" << getFunctionNumber() << '_' << JTI;
798 return Ctx.getOrCreateSymbol(Name);
799}
800
801/// Return a function-local symbol to represent the PIC base.
803 const DataLayout &DL = getDataLayout();
804 return Ctx.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
805 Twine(getFunctionNumber()) + "$pb");
806}
807
808/// \name Exception Handling
809/// \{
810
813 unsigned N = LandingPads.size();
814 for (unsigned i = 0; i < N; ++i) {
815 LandingPadInfo &LP = LandingPads[i];
816 if (LP.LandingPadBlock == LandingPad)
817 return LP;
818 }
819
820 LandingPads.push_back(LandingPadInfo(LandingPad));
821 return LandingPads[N];
822}
823
825 MCSymbol *BeginLabel, MCSymbol *EndLabel) {
827 LP.BeginLabels.push_back(BeginLabel);
828 LP.EndLabels.push_back(EndLabel);
829}
830
832 MCSymbol *LandingPadLabel = Ctx.createTempSymbol();
834 LP.LandingPadLabel = LandingPadLabel;
835
837 LandingPad->getBasicBlock()->getFirstNonPHIIt();
838 if (const auto *LPI = dyn_cast<LandingPadInst>(FirstI)) {
839 // If there's no typeid list specified, then "cleanup" is implicit.
840 // Otherwise, id 0 is reserved for the cleanup action.
841 if (LPI->isCleanup() && LPI->getNumClauses() != 0)
842 LP.TypeIds.push_back(0);
843
844 // FIXME: New EH - Add the clauses in reverse order. This isn't 100%
845 // correct, but we need to do it this way because of how the DWARF EH
846 // emitter processes the clauses.
847 for (unsigned I = LPI->getNumClauses(); I != 0; --I) {
848 Value *Val = LPI->getClause(I - 1);
849 if (LPI->isCatch(I - 1)) {
850 LP.TypeIds.push_back(
851 getTypeIDFor(dyn_cast<GlobalValue>(Val->stripPointerCasts())));
852 } else {
853 // Add filters in a list.
854 auto *CVal = cast<Constant>(Val);
855 SmallVector<unsigned, 4> FilterList;
856 for (const Use &U : CVal->operands())
857 FilterList.push_back(
858 getTypeIDFor(cast<GlobalValue>(U->stripPointerCasts())));
859
860 LP.TypeIds.push_back(getFilterIDFor(FilterList));
861 }
862 }
863
864 } else if (const auto *CPI = dyn_cast<CatchPadInst>(FirstI)) {
865 for (unsigned I = CPI->arg_size(); I != 0; --I) {
866 auto *TypeInfo =
867 dyn_cast<GlobalValue>(CPI->getArgOperand(I - 1)->stripPointerCasts());
868 LP.TypeIds.push_back(getTypeIDFor(TypeInfo));
869 }
870
871 } else {
872 assert(isa<CleanupPadInst>(FirstI) && "Invalid landingpad!");
873 }
874
875 return LandingPadLabel;
876}
877
879 ArrayRef<unsigned> Sites) {
880 LPadToCallSiteMap[Sym].append(Sites.begin(), Sites.end());
881}
882
884 for (unsigned i = 0, N = TypeInfos.size(); i != N; ++i)
885 if (TypeInfos[i] == TI) return i + 1;
886
887 TypeInfos.push_back(TI);
888 return TypeInfos.size();
889}
890
892 // If the new filter coincides with the tail of an existing filter, then
893 // re-use the existing filter. Folding filters more than this requires
894 // re-ordering filters and/or their elements - probably not worth it.
895 for (unsigned i : FilterEnds) {
896 unsigned j = TyIds.size();
897
898 while (i && j)
899 if (FilterIds[--i] != TyIds[--j])
900 goto try_next;
901
902 if (!j)
903 // The new filter coincides with range [i, end) of the existing filter.
904 return -(1 + i);
905
906try_next:;
907 }
908
909 // Add the new filter.
910 int FilterID = -(1 + FilterIds.size());
911 FilterIds.reserve(FilterIds.size() + TyIds.size() + 1);
912 llvm::append_range(FilterIds, TyIds);
913 FilterEnds.push_back(FilterIds.size());
914 FilterIds.push_back(0); // terminator
915 return FilterID;
916}
917
919MachineFunction::getCallSiteInfo(const MachineInstr *MI) {
920 assert(MI->isCandidateForAdditionalCallInfo() &&
921 "Call site info refers only to call (MI) candidates");
922
923 if (!Target.Options.EmitCallSiteInfo)
924 return CallSitesInfo.end();
925 return CallSitesInfo.find(MI);
926}
927
928/// Return the call machine instruction or find a call within bundle.
930 if (!MI->isBundle())
931 return MI;
932
933 for (const auto &BMI : make_range(getBundleStart(MI->getIterator()),
934 getBundleEnd(MI->getIterator())))
935 if (BMI.isCandidateForAdditionalCallInfo())
936 return &BMI;
937
938 llvm_unreachable("Unexpected bundle without a call site candidate");
939}
940
942 assert(MI->shouldUpdateAdditionalCallInfo() &&
943 "Call info refers only to call (MI) candidates or "
944 "candidates inside bundles");
945
946 const MachineInstr *CallMI = getCallInstr(MI);
947
948 CallSiteInfoMap::iterator CSIt = getCallSiteInfo(CallMI);
949 if (CSIt != CallSitesInfo.end())
950 CallSitesInfo.erase(CSIt);
951
952 CalledGlobalsMap::iterator CGIt = CalledGlobalsInfo.find(CallMI);
953 if (CGIt != CalledGlobalsInfo.end())
954 CalledGlobalsInfo.erase(CGIt);
955}
956
958 const MachineInstr *New) {
960 "Call info refers only to call (MI) candidates or "
961 "candidates inside bundles");
962
963 if (!New->isCandidateForAdditionalCallInfo())
964 return eraseAdditionalCallInfo(Old);
965
966 const MachineInstr *OldCallMI = getCallInstr(Old);
967 CallSiteInfoMap::iterator CSIt = getCallSiteInfo(OldCallMI);
968 if (CSIt != CallSitesInfo.end()) {
969 CallSiteInfo CSInfo = CSIt->second;
970 CallSitesInfo[New] = CSInfo;
971 }
972
973 CalledGlobalsMap::iterator CGIt = CalledGlobalsInfo.find(OldCallMI);
974 if (CGIt != CalledGlobalsInfo.end()) {
975 CalledGlobalInfo CGInfo = CGIt->second;
976 CalledGlobalsInfo[New] = CGInfo;
977 }
978}
979
981 const MachineInstr *New) {
983 "Call info refers only to call (MI) candidates or "
984 "candidates inside bundles");
985
986 if (!New->isCandidateForAdditionalCallInfo())
987 return eraseAdditionalCallInfo(Old);
988
989 const MachineInstr *OldCallMI = getCallInstr(Old);
990 CallSiteInfoMap::iterator CSIt = getCallSiteInfo(OldCallMI);
991 if (CSIt != CallSitesInfo.end()) {
992 CallSiteInfo CSInfo = std::move(CSIt->second);
993 CallSitesInfo.erase(CSIt);
994 CallSitesInfo[New] = CSInfo;
995 }
996
997 CalledGlobalsMap::iterator CGIt = CalledGlobalsInfo.find(OldCallMI);
998 if (CGIt != CalledGlobalsInfo.end()) {
999 CalledGlobalInfo CGInfo = std::move(CGIt->second);
1000 CalledGlobalsInfo.erase(CGIt);
1001 CalledGlobalsInfo[New] = CGInfo;
1002 }
1003}
1004
1007}
1008
1011 unsigned Subreg) {
1012 // Catch any accidental self-loops.
1013 assert(A.first != B.first);
1014 // Don't allow any substitutions _from_ the memory operand number.
1015 assert(A.second != DebugOperandMemNumber);
1016
1017 DebugValueSubstitutions.push_back({A, B, Subreg});
1018}
1019
1021 MachineInstr &New,
1022 unsigned MaxOperand) {
1023 // If the Old instruction wasn't tracked at all, there is no work to do.
1024 unsigned OldInstrNum = Old.peekDebugInstrNum();
1025 if (!OldInstrNum)
1026 return;
1027
1028 // Iterate over all operands looking for defs to create substitutions for.
1029 // Avoid creating new instr numbers unless we create a new substitution.
1030 // While this has no functional effect, it risks confusing someone reading
1031 // MIR output.
1032 // Examine all the operands, or the first N specified by the caller.
1033 MaxOperand = std::min(MaxOperand, Old.getNumOperands());
1034 for (unsigned int I = 0; I < MaxOperand; ++I) {
1035 const auto &OldMO = Old.getOperand(I);
1036 auto &NewMO = New.getOperand(I);
1037 (void)NewMO;
1038
1039 if (!OldMO.isReg() || !OldMO.isDef())
1040 continue;
1041 assert(NewMO.isDef());
1042
1043 unsigned NewInstrNum = New.getDebugInstrNum();
1044 makeDebugValueSubstitution(std::make_pair(OldInstrNum, I),
1045 std::make_pair(NewInstrNum, I));
1046 }
1047}
1048
1052 const TargetInstrInfo &TII = *getSubtarget().getInstrInfo();
1053
1054 // Check whether this copy-like instruction has already been salvaged into
1055 // an operand pair.
1056 Register Dest;
1057 if (auto CopyDstSrc = TII.isCopyInstr(MI)) {
1058 Dest = CopyDstSrc->Destination->getReg();
1059 } else {
1060 assert(MI.isSubregToReg());
1061 Dest = MI.getOperand(0).getReg();
1062 }
1063
1064 auto CacheIt = DbgPHICache.find(Dest);
1065 if (CacheIt != DbgPHICache.end())
1066 return CacheIt->second;
1067
1068 // Calculate the instruction number to use, or install a DBG_PHI.
1069 auto OperandPair = salvageCopySSAImpl(MI);
1070 DbgPHICache.insert({Dest, OperandPair});
1071 return OperandPair;
1072}
1073
1076 MachineRegisterInfo &MRI = getRegInfo();
1077 const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
1078 const TargetInstrInfo &TII = *getSubtarget().getInstrInfo();
1079
1080 // Chase the value read by a copy-like instruction back to the instruction
1081 // that ultimately _defines_ that value. This may pass:
1082 // * Through multiple intermediate copies, including subregister moves /
1083 // copies,
1084 // * Copies from physical registers that must then be traced back to the
1085 // defining instruction,
1086 // * Or, physical registers may be live-in to (only) the entry block, which
1087 // requires a DBG_PHI to be created.
1088 // We can pursue this problem in that order: trace back through copies,
1089 // optionally through a physical register, to a defining instruction. We
1090 // should never move from physreg to vreg. As we're still in SSA form, no need
1091 // to worry about partial definitions of registers.
1092
1093 // Helper lambda to interpret a copy-like instruction. Takes instruction,
1094 // returns the register read and any subregister identifying which part is
1095 // read.
1096 auto GetRegAndSubreg =
1097 [&](const MachineInstr &Cpy) -> std::pair<Register, unsigned> {
1098 Register NewReg, OldReg;
1099 unsigned SubReg;
1100 if (Cpy.isCopy()) {
1101 OldReg = Cpy.getOperand(0).getReg();
1102 NewReg = Cpy.getOperand(1).getReg();
1103 SubReg = Cpy.getOperand(1).getSubReg();
1104 } else if (Cpy.isSubregToReg()) {
1105 OldReg = Cpy.getOperand(0).getReg();
1106 NewReg = Cpy.getOperand(2).getReg();
1107 SubReg = Cpy.getOperand(3).getImm();
1108 } else {
1109 auto CopyDetails = *TII.isCopyInstr(Cpy);
1110 const MachineOperand &Src = *CopyDetails.Source;
1111 const MachineOperand &Dest = *CopyDetails.Destination;
1112 OldReg = Dest.getReg();
1113 NewReg = Src.getReg();
1114 SubReg = Src.getSubReg();
1115 }
1116
1117 return {NewReg, SubReg};
1118 };
1119
1120 // First seek either the defining instruction, or a copy from a physreg.
1121 // During search, the current state is the current copy instruction, and which
1122 // register we've read. Accumulate qualifying subregisters into SubregsSeen;
1123 // deal with those later.
1124 auto State = GetRegAndSubreg(MI);
1125 auto CurInst = MI.getIterator();
1126 SmallVector<unsigned, 4> SubregsSeen;
1127 while (true) {
1128 // If we've found a copy from a physreg, first portion of search is over.
1129 if (!State.first.isVirtual())
1130 break;
1131
1132 // Record any subregister qualifier.
1133 if (State.second)
1134 SubregsSeen.push_back(State.second);
1135
1136 assert(MRI.hasOneDef(State.first));
1137 MachineInstr &Inst = *MRI.def_begin(State.first)->getParent();
1138 CurInst = Inst.getIterator();
1139
1140 // Any non-copy instruction is the defining instruction we're seeking.
1141 if (!Inst.isCopyLike() && !TII.isCopyInstr(Inst))
1142 break;
1143 State = GetRegAndSubreg(Inst);
1144 };
1145
1146 // Helper lambda to apply additional subregister substitutions to a known
1147 // instruction/operand pair. Adds new (fake) substitutions so that we can
1148 // record the subregister. FIXME: this isn't very space efficient if multiple
1149 // values are tracked back through the same copies; cache something later.
1150 auto ApplySubregisters =
1152 for (unsigned Subreg : reverse(SubregsSeen)) {
1153 // Fetch a new instruction number, not attached to an actual instruction.
1154 unsigned NewInstrNumber = getNewDebugInstrNum();
1155 // Add a substitution from the "new" number to the known one, with a
1156 // qualifying subreg.
1157 makeDebugValueSubstitution({NewInstrNumber, 0}, P, Subreg);
1158 // Return the new number; to find the underlying value, consumers need to
1159 // deal with the qualifying subreg.
1160 P = {NewInstrNumber, 0};
1161 }
1162 return P;
1163 };
1164
1165 // If we managed to find the defining instruction after COPYs, return an
1166 // instruction / operand pair after adding subregister qualifiers.
1167 if (State.first.isVirtual()) {
1168 // Virtual register def -- we can just look up where this happens.
1169 MachineInstr *Inst = MRI.def_begin(State.first)->getParent();
1170 for (auto &MO : Inst->all_defs()) {
1171 if (MO.getReg() != State.first)
1172 continue;
1173 return ApplySubregisters({Inst->getDebugInstrNum(), MO.getOperandNo()});
1174 }
1175
1176 llvm_unreachable("Vreg def with no corresponding operand?");
1177 }
1178
1179 // Our search ended in a copy from a physreg: walk back up the function
1180 // looking for whatever defines the physreg.
1181 assert(CurInst->isCopyLike() || TII.isCopyInstr(*CurInst));
1182 State = GetRegAndSubreg(*CurInst);
1183 Register RegToSeek = State.first;
1184
1185 auto RMII = CurInst->getReverseIterator();
1186 auto PrevInstrs = make_range(RMII, CurInst->getParent()->instr_rend());
1187 for (auto &ToExamine : PrevInstrs) {
1188 for (auto &MO : ToExamine.all_defs()) {
1189 // Test for operand that defines something aliasing RegToSeek.
1190 if (!TRI.regsOverlap(RegToSeek, MO.getReg()))
1191 continue;
1192
1193 return ApplySubregisters(
1194 {ToExamine.getDebugInstrNum(), MO.getOperandNo()});
1195 }
1196 }
1197
1198 MachineBasicBlock &InsertBB = *CurInst->getParent();
1199
1200 // We reached the start of the block before finding a defining instruction.
1201 // There are numerous scenarios where this can happen:
1202 // * Constant physical registers,
1203 // * Several intrinsics that allow LLVM-IR to read arbitary registers,
1204 // * Arguments in the entry block,
1205 // * Exception handling landing pads.
1206 // Validating all of them is too difficult, so just insert a DBG_PHI reading
1207 // the variable value at this position, rather than checking it makes sense.
1208
1209 // Create DBG_PHI for specified physreg.
1210 auto Builder = BuildMI(InsertBB, InsertBB.getFirstNonPHI(), DebugLoc(),
1211 TII.get(TargetOpcode::DBG_PHI));
1212 Builder.addReg(State.first);
1213 unsigned NewNum = getNewDebugInstrNum();
1214 Builder.addImm(NewNum);
1215 return ApplySubregisters({NewNum, 0u});
1216}
1217
1219 auto *TII = getSubtarget().getInstrInfo();
1220
1221 auto MakeUndefDbgValue = [&](MachineInstr &MI) {
1222 const MCInstrDesc &RefII = TII->get(TargetOpcode::DBG_VALUE_LIST);
1223 MI.setDesc(RefII);
1224 MI.setDebugValueUndef();
1225 };
1226
1228 for (auto &MBB : *this) {
1229 for (auto &MI : MBB) {
1230 if (!MI.isDebugRef())
1231 continue;
1232
1233 bool IsValidRef = true;
1234
1235 for (MachineOperand &MO : MI.debug_operands()) {
1236 if (!MO.isReg())
1237 continue;
1238
1239 Register Reg = MO.getReg();
1240
1241 // Some vregs can be deleted as redundant in the meantime. Mark those
1242 // as DBG_VALUE $noreg. Additionally, some normal instructions are
1243 // quickly deleted, leaving dangling references to vregs with no def.
1244 if (Reg == 0 || !RegInfo->hasOneDef(Reg)) {
1245 IsValidRef = false;
1246 break;
1247 }
1248
1249 assert(Reg.isVirtual());
1250 MachineInstr &DefMI = *RegInfo->def_instr_begin(Reg);
1251
1252 // If we've found a copy-like instruction, follow it back to the
1253 // instruction that defines the source value, see salvageCopySSA docs
1254 // for why this is important.
1255 if (DefMI.isCopyLike() || TII->isCopyInstr(DefMI)) {
1256 auto Result = salvageCopySSA(DefMI, ArgDbgPHIs);
1257 MO.ChangeToDbgInstrRef(Result.first, Result.second);
1258 } else {
1259 // Otherwise, identify the operand number that the VReg refers to.
1260 unsigned OperandIdx = 0;
1261 for (const auto &DefMO : DefMI.operands()) {
1262 if (DefMO.isReg() && DefMO.isDef() && DefMO.getReg() == Reg)
1263 break;
1264 ++OperandIdx;
1265 }
1266 assert(OperandIdx < DefMI.getNumOperands());
1267
1268 // Morph this instr ref to point at the given instruction and operand.
1269 unsigned ID = DefMI.getDebugInstrNum();
1270 MO.ChangeToDbgInstrRef(ID, OperandIdx);
1271 }
1272 }
1273
1274 if (!IsValidRef)
1275 MakeUndefDbgValue(MI);
1276 }
1277 }
1278}
1279
1281 // Disable instr-ref at -O0: it's very slow (in compile time). We can still
1282 // have optimized code inlined into this unoptimized code, however with
1283 // fewer and less aggressive optimizations happening, coverage and accuracy
1284 // should not suffer.
1285 if (getTarget().getOptLevel() == CodeGenOptLevel::None)
1286 return false;
1287
1288 // Don't use instr-ref if this function is marked optnone.
1289 if (F.hasFnAttribute(Attribute::OptimizeNone))
1290 return false;
1291
1292 if (llvm::debuginfoShouldUseDebugInstrRef(getTarget().getTargetTriple()))
1293 return true;
1294
1295 return false;
1296}
1297
1299 return UseDebugInstrRef;
1300}
1301
1304}
1305
1306// Use one million as a high / reserved number.
1307const unsigned MachineFunction::DebugOperandMemNumber = 1000000;
1308
1309/// \}
1310
1311//===----------------------------------------------------------------------===//
1312// MachineJumpTableInfo implementation
1313//===----------------------------------------------------------------------===//
1314
1316 const std::vector<MachineBasicBlock *> &MBBs)
1317 : MBBs(MBBs), Hotness(MachineFunctionDataHotness::Unknown) {}
1318
1319/// Return the size of each entry in the jump table.
1321 // The size of a jump table entry is 4 bytes unless the entry is just the
1322 // address of a block, in which case it is the pointer size.
1323 switch (getEntryKind()) {
1325 return TD.getPointerSize();
1328 return 8;
1332 return 4;
1334 return 0;
1335 }
1336 llvm_unreachable("Unknown jump table encoding!");
1337}
1338
1339/// Return the alignment of each entry in the jump table.
1341 // The alignment of a jump table entry is the alignment of int32 unless the
1342 // entry is just the address of a block, in which case it is the pointer
1343 // alignment.
1344 switch (getEntryKind()) {
1346 return TD.getPointerABIAlignment(0).value();
1349 return TD.getABIIntegerTypeAlignment(64).value();
1353 return TD.getABIIntegerTypeAlignment(32).value();
1355 return 1;
1356 }
1357 llvm_unreachable("Unknown jump table encoding!");
1358}
1359
1360/// Create a new jump table entry in the jump table info.
1362 const std::vector<MachineBasicBlock*> &DestBBs) {
1363 assert(!DestBBs.empty() && "Cannot create an empty jump table!");
1364 JumpTables.push_back(MachineJumpTableEntry(DestBBs));
1365 return JumpTables.size()-1;
1366}
1367
1369 size_t JTI, MachineFunctionDataHotness Hotness) {
1370 assert(JTI < JumpTables.size() && "Invalid JTI!");
1371 // Record the largest hotness value.
1372 if (Hotness <= JumpTables[JTI].Hotness)
1373 return false;
1374
1375 JumpTables[JTI].Hotness = Hotness;
1376 return true;
1377}
1378
1379/// If Old is the target of any jump tables, update the jump tables to branch
1380/// to New instead.
1382 MachineBasicBlock *New) {
1383 assert(Old != New && "Not making a change?");
1384 bool MadeChange = false;
1385 for (size_t i = 0, e = JumpTables.size(); i != e; ++i)
1386 ReplaceMBBInJumpTable(i, Old, New);
1387 return MadeChange;
1388}
1389
1390/// If MBB is present in any jump tables, remove it.
1392 bool MadeChange = false;
1393 for (MachineJumpTableEntry &JTE : JumpTables) {
1394 auto removeBeginItr = std::remove(JTE.MBBs.begin(), JTE.MBBs.end(), MBB);
1395 MadeChange |= (removeBeginItr != JTE.MBBs.end());
1396 JTE.MBBs.erase(removeBeginItr, JTE.MBBs.end());
1397 }
1398 return MadeChange;
1399}
1400
1401/// If Old is a target of the jump tables, update the jump table to branch to
1402/// New instead.
1404 MachineBasicBlock *Old,
1405 MachineBasicBlock *New) {
1406 assert(Old != New && "Not making a change?");
1407 bool MadeChange = false;
1408 MachineJumpTableEntry &JTE = JumpTables[Idx];
1409 for (MachineBasicBlock *&MBB : JTE.MBBs)
1410 if (MBB == Old) {
1411 MBB = New;
1412 MadeChange = true;
1413 }
1414 return MadeChange;
1415}
1416
1418 if (JumpTables.empty()) return;
1419
1420 OS << "Jump Tables:\n";
1421
1422 for (unsigned i = 0, e = JumpTables.size(); i != e; ++i) {
1423 OS << printJumpTableEntryReference(i) << ':';
1424 for (const MachineBasicBlock *MBB : JumpTables[i].MBBs)
1425 OS << ' ' << printMBBReference(*MBB);
1426 if (i != e)
1427 OS << '\n';
1428 }
1429
1430 OS << '\n';
1431}
1432
1433#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1435#endif
1436
1438 return Printable([Idx](raw_ostream &OS) { OS << "%jump-table." << Idx; });
1439}
1440
1441//===----------------------------------------------------------------------===//
1442// MachineConstantPool implementation
1443//===----------------------------------------------------------------------===//
1444
1445void MachineConstantPoolValue::anchor() {}
1446
1448 return DL.getTypeAllocSize(Ty);
1449}
1450
1453 return Val.MachineCPVal->getSizeInBytes(DL);
1454 return DL.getTypeAllocSize(Val.ConstVal->getType());
1455}
1456
1459 return true;
1460 return Val.ConstVal->needsDynamicRelocation();
1461}
1462
1465 if (needsRelocation())
1467 switch (getSizeInBytes(*DL)) {
1468 case 4:
1470 case 8:
1472 case 16:
1474 case 32:
1476 default:
1477 return SectionKind::getReadOnly();
1478 }
1479}
1480
1482 // A constant may be a member of both Constants and MachineCPVsSharingEntries,
1483 // so keep track of which we've deleted to avoid double deletions.
1485 for (const MachineConstantPoolEntry &C : Constants)
1486 if (C.isMachineConstantPoolEntry()) {
1487 Deleted.insert(C.Val.MachineCPVal);
1488 delete C.Val.MachineCPVal;
1489 }
1490 for (MachineConstantPoolValue *CPV : MachineCPVsSharingEntries) {
1491 if (Deleted.count(CPV) == 0)
1492 delete CPV;
1493 }
1494}
1495
1496/// Test whether the given two constants can be allocated the same constant pool
1497/// entry referenced by \param A.
1498static bool CanShareConstantPoolEntry(const Constant *A, const Constant *B,
1499 const DataLayout &DL) {
1500 // Handle the trivial case quickly.
1501 if (A == B) return true;
1502
1503 // If they have the same type but weren't the same constant, quickly
1504 // reject them.
1505 if (A->getType() == B->getType()) return false;
1506
1507 // We can't handle structs or arrays.
1508 if (isa<StructType>(A->getType()) || isa<ArrayType>(A->getType()) ||
1509 isa<StructType>(B->getType()) || isa<ArrayType>(B->getType()))
1510 return false;
1511
1512 // For now, only support constants with the same size.
1513 uint64_t StoreSize = DL.getTypeStoreSize(A->getType());
1514 if (StoreSize != DL.getTypeStoreSize(B->getType()) || StoreSize > 128)
1515 return false;
1516
1517 bool ContainsUndefOrPoisonA = A->containsUndefOrPoisonElement();
1518
1519 Type *IntTy = IntegerType::get(A->getContext(), StoreSize*8);
1520
1521 // Try constant folding a bitcast of both instructions to an integer. If we
1522 // get two identical ConstantInt's, then we are good to share them. We use
1523 // the constant folding APIs to do this so that we get the benefit of
1524 // DataLayout.
1525 if (isa<PointerType>(A->getType()))
1526 A = ConstantFoldCastOperand(Instruction::PtrToInt,
1527 const_cast<Constant *>(A), IntTy, DL);
1528 else if (A->getType() != IntTy)
1529 A = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(A),
1530 IntTy, DL);
1531 if (isa<PointerType>(B->getType()))
1532 B = ConstantFoldCastOperand(Instruction::PtrToInt,
1533 const_cast<Constant *>(B), IntTy, DL);
1534 else if (B->getType() != IntTy)
1535 B = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(B),
1536 IntTy, DL);
1537
1538 if (A != B)
1539 return false;
1540
1541 // Constants only safely match if A doesn't contain undef/poison.
1542 // As we'll be reusing A, it doesn't matter if B contain undef/poison.
1543 // TODO: Handle cases where A and B have the same undef/poison elements.
1544 // TODO: Merge A and B with mismatching undef/poison elements.
1545 return !ContainsUndefOrPoisonA;
1546}
1547
1548/// Create a new entry in the constant pool or return an existing one.
1549/// User must specify the log2 of the minimum required alignment for the object.
1551 Align Alignment) {
1552 if (Alignment > PoolAlignment) PoolAlignment = Alignment;
1553
1554 // Check to see if we already have this constant.
1555 //
1556 // FIXME, this could be made much more efficient for large constant pools.
1557 for (unsigned i = 0, e = Constants.size(); i != e; ++i)
1558 if (!Constants[i].isMachineConstantPoolEntry() &&
1559 CanShareConstantPoolEntry(Constants[i].Val.ConstVal, C, DL)) {
1560 if (Constants[i].getAlign() < Alignment)
1561 Constants[i].Alignment = Alignment;
1562 return i;
1563 }
1564
1565 Constants.push_back(MachineConstantPoolEntry(C, Alignment));
1566 return Constants.size()-1;
1567}
1568
1570 Align Alignment) {
1571 if (Alignment > PoolAlignment) PoolAlignment = Alignment;
1572
1573 // Check to see if we already have this constant.
1574 //
1575 // FIXME, this could be made much more efficient for large constant pools.
1576 int Idx = V->getExistingMachineCPValue(this, Alignment);
1577 if (Idx != -1) {
1578 MachineCPVsSharingEntries.insert(V);
1579 return (unsigned)Idx;
1580 }
1581
1582 Constants.push_back(MachineConstantPoolEntry(V, Alignment));
1583 return Constants.size()-1;
1584}
1585
1587 if (Constants.empty()) return;
1588
1589 OS << "Constant Pool:\n";
1590 for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
1591 OS << " cp#" << i << ": ";
1592 if (Constants[i].isMachineConstantPoolEntry())
1593 Constants[i].Val.MachineCPVal->print(OS);
1594 else
1595 Constants[i].Val.ConstVal->printAsOperand(OS, /*PrintType=*/false);
1596 OS << ", align=" << Constants[i].getAlign().value();
1597 OS << "\n";
1598 }
1599}
1600
1601//===----------------------------------------------------------------------===//
1602// Template specialization for MachineFunction implementation of
1603// ProfileSummaryInfo::getEntryCount().
1604//===----------------------------------------------------------------------===//
1605template <>
1606std::optional<Function::ProfileCount>
1607ProfileSummaryInfo::getEntryCount<llvm::MachineFunction>(
1608 const llvm::MachineFunction *F) const {
1609 return F->getFunction().getEntryCount();
1610}
1611
1612#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1614#endif
unsigned SubReg
unsigned const MachineRegisterInfo * MRI
MachineInstrBuilder MachineInstrBuilder & DefMI
aarch64 promote const
MachineBasicBlock & MBB
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
MachineBasicBlock MachineBasicBlock::iterator MBBI
This file contains the simple types necessary to represent the attributes associated with functions a...
static const Function * getParent(const Value *V)
This file implements the BitVector class.
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
#define LLVM_DUMP_METHOD
Mark debug helper function definitions like dump() that should not be stripped from debug builds.
Definition: Compiler.h:622
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
This file defines the DenseMap class.
This file defines the DenseSet and SmallDenseSet classes.
std::string Name
uint64_t Size
Symbol * Sym
Definition: ELF_riscv.cpp:479
const HexagonInstrInfo * TII
IRTranslator LLVM IR MI
Module.h This file contains the declarations for the Module class.
#define F(x, y, z)
Definition: MD5.cpp:55
#define I(x, y, z)
Definition: MD5.cpp:58
This file declares the MachineConstantPool class which is an abstract constant pool to keep track of ...
static Align getFnStackAlignment(const TargetSubtargetInfo *STI, const Function &F)
static cl::opt< unsigned > AlignAllFunctions("align-all-functions", cl::desc("Force the alignment of all functions in log2 format (e.g. 4 " "means align on 16B boundaries)."), cl::init(0), cl::Hidden)
static const MachineInstr * getCallInstr(const MachineInstr *MI)
Return the call machine instruction or find a call within bundle.
static bool CanShareConstantPoolEntry(const Constant *A, const Constant *B, const DataLayout &DL)
Test whether the given two constants can be allocated the same constant pool entry referenced by.
void setUnsafeStackSize(const Function &F, MachineFrameInfo &FrameInfo)
static const char * getPropertyName(MachineFunctionProperties::Property Prop)
unsigned const TargetRegisterInfo * TRI
unsigned Reg
This file contains the declarations for metadata subclasses.
#define P(N)
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
static bool isSimple(Instruction *I)
This file contains some templates that are useful if you are working with the STL at all.
raw_pwrite_stream & OS
This file defines the SmallString class.
This file defines the SmallVector class.
static const int BlockSize
Definition: TarWriter.cpp:33
This file describes how to lower LLVM code to machine code.
void clear(AllocatorType &Allocator)
Release all the tracked allocations to the allocator.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition: ArrayRef.h:41
iterator end() const
Definition: ArrayRef.h:157
size_t size() const
size - Get the array size.
Definition: ArrayRef.h:168
iterator begin() const
Definition: ArrayRef.h:156
LLVM Basic Block Representation.
Definition: BasicBlock.h:61
InstListType::const_iterator getFirstNonPHIIt() const
Iterator returning form of getFirstNonPHI.
Definition: BasicBlock.cpp:374
InstListType::const_iterator const_iterator
Definition: BasicBlock.h:178
LLVM_ATTRIBUTE_RETURNS_NONNULL void * Allocate(size_t Size, Align Alignment)
Allocate space at the specified alignment.
Definition: Allocator.h:148
void Deallocate(const void *Ptr, size_t Size, size_t)
Definition: Allocator.h:225
This is an important base class in LLVM.
Definition: Constant.h:42
This class represents an Operation in the Expression.
A parsed version of the target data layout string in and methods for querying it.
Definition: DataLayout.h:63
Align getABIIntegerTypeAlignment(unsigned BitWidth) const
Returns the minimum ABI-required alignment for an integer type of the specified bitwidth.
Definition: DataLayout.h:486
unsigned getPointerSize(unsigned AS=0) const
Layout pointer size in bytes, rounded up to a whole number of bytes.
Definition: DataLayout.cpp:739
Align getPointerABIAlignment(unsigned AS) const
Layout pointer alignment.
Definition: DataLayout.cpp:731
A debug info location.
Definition: DebugLoc.h:33
iterator find(const_arg_type_t< KeyT > Val)
Definition: DenseMap.h:156
bool erase(const KeyT &Val)
Definition: DenseMap.h:321
iterator end()
Definition: DenseMap.h:84
bool contains(const_arg_type_t< KeyT > Val) const
Return true if the specified key is in the map, false otherwise.
Definition: DenseMap.h:147
Implements a dense probed hash-table based set.
Definition: DenseSet.h:278
const DataLayout & getDataLayout() const
Get the data layout of the module this function belongs to.
Definition: Function.cpp:373
MaybeAlign getFnStackAlign() const
Return the stack alignment for the function.
Definition: Function.h:470
bool hasPersonalityFn() const
Check whether this function has a personality function.
Definition: Function.h:905
Constant * getPersonalityFn() const
Get the personality function associated with this function.
Definition: Function.cpp:1048
DenormalMode getDenormalMode(const fltSemantics &FPType) const
Returns the denormal handling type for the default rounding mode of the function.
Definition: Function.cpp:807
bool needsUnwindTableEntry() const
True if this function needs an unwind table.
Definition: Function.h:682
bool hasFnAttribute(Attribute::AttrKind Kind) const
Return true if the function has the attribute.
Definition: Function.cpp:731
bool hasMetadata() const
Return true if this value has any metadata attached to it.
Definition: Value.h:589
MDNode * getMetadata(unsigned KindID) const
Get the current metadata attachments for the given kind, if any.
Definition: Value.h:565
Module * getParent()
Get the module that this global value is contained inside of...
Definition: GlobalValue.h:657
static IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
Definition: Type.cpp:311
Context object for machine code objects.
Definition: MCContext.h:83
MCSymbol * createTempSymbol()
Create a temporary symbol with a unique name.
Definition: MCContext.cpp:345
MCSymbol * getOrCreateSymbol(const Twine &Name)
Lookup the symbol inside with the specified Name.
Definition: MCContext.cpp:212
Describe properties that are true of each instruction in the target description file.
Definition: MCInstrDesc.h:198
unsigned getNumRegs() const
Return the number of registers this target has (useful for sizing arrays holding per register informa...
Wrapper class representing physical registers. Should be passed by value.
Definition: MCRegister.h:33
MCSymbol - Instances of this class represent a symbol name in the MC file, and MCSymbols are created ...
Definition: MCSymbol.h:41
Metadata node.
Definition: Metadata.h:1073
void setBBID(const UniqueBBID &V)
Sets the fixed BBID of this basic block.
void setIsEndSection(bool V=true)
instr_iterator insert(instr_iterator I, MachineInstr *M)
Insert MI into the instruction list before I, possibly inside a bundle.
int getNumber() const
MachineBasicBlocks are uniquely numbered at the function level, unless they're not in a MachineFuncti...
const BasicBlock * getBasicBlock() const
Return the LLVM basic block that this instance corresponded to originally.
MBBSectionID getSectionID() const
Returns the section ID of this basic block.
iterator getFirstNonPHI()
Returns a pointer to the first instruction in this block that is not a PHINode instruction.
Instructions::const_iterator const_instr_iterator
const MachineFunction * getParent() const
Return the MachineFunction containing this basic block.
Align getAlignment() const
Return alignment of the basic block.
void setIsBeginSection(bool V=true)
This class is a data container for one entry in a MachineConstantPool.
bool needsRelocation() const
This method classifies the entry according to whether or not it may generate a relocation entry.
bool isMachineConstantPoolEntry() const
isMachineConstantPoolEntry - Return true if the MachineConstantPoolEntry is indeed a target specific ...
union llvm::MachineConstantPoolEntry::@204 Val
The constant itself.
unsigned getSizeInBytes(const DataLayout &DL) const
SectionKind getSectionKind(const DataLayout *DL) const
Abstract base class for all machine specific constantpool value subclasses.
virtual unsigned getSizeInBytes(const DataLayout &DL) const
The MachineConstantPool class keeps track of constants referenced by a function which must be spilled...
void dump() const
dump - Call print(cerr) to be called from the debugger.
void print(raw_ostream &OS) const
print - Used by the MachineFunction printer to print information about constant pool objects.
unsigned getConstantPoolIndex(const Constant *C, Align Alignment)
getConstantPoolIndex - Create a new entry in the constant pool or return an existing one.
The MachineFrameInfo class represents an abstract stack frame until prolog/epilog code is inserted.
void ensureMaxAlignment(Align Alignment)
Make sure the function is at least Align bytes aligned.
void print(const MachineFunction &MF, raw_ostream &OS) const
Used by the MachineFunction printer to print information about stack objects.
void setUnsafeStackSize(uint64_t Size)
void print(raw_ostream &OS) const
Print the MachineFunctionProperties in human-readable form.
MachineFunctionProperties & set(Property P)
MachineFunctionProperties & reset(Property P)
virtual void MF_HandleChangeDesc(MachineInstr &MI, const MCInstrDesc &TID)
Callback before changing MCInstrDesc.
virtual void MF_HandleRemoval(MachineInstr &MI)=0
Callback before a removal. This should not modify the MI directly.
virtual void MF_HandleInsertion(MachineInstr &MI)=0
Callback after an insertion. This should not modify the MI directly.
MachineInstr::ExtraInfo * createMIExtraInfo(ArrayRef< MachineMemOperand * > MMOs, MCSymbol *PreInstrSymbol=nullptr, MCSymbol *PostInstrSymbol=nullptr, MDNode *HeapAllocMarker=nullptr, MDNode *PCSections=nullptr, uint32_t CFIType=0, MDNode *MMRAs=nullptr)
Allocate and construct an extra info structure for a MachineInstr.
int getFilterIDFor(ArrayRef< unsigned > TyIds)
Return the id of the filter encoded by TyIds. This is function wide.
bool UseDebugInstrRef
Flag for whether this function contains DBG_VALUEs (false) or DBG_INSTR_REF (true).
void moveAdditionalCallInfo(const MachineInstr *Old, const MachineInstr *New)
Move the call site info from Old to \New call site info.
std::pair< unsigned, unsigned > DebugInstrOperandPair
Pair of instruction number and operand number.
unsigned addFrameInst(const MCCFIInstruction &Inst)
bool useDebugInstrRef() const
Returns true if the function's variable locations are tracked with instruction referencing.
SmallVector< DebugSubstitution, 8 > DebugValueSubstitutions
Debug value substitutions: a collection of DebugSubstitution objects, recording changes in where a va...
unsigned getFunctionNumber() const
getFunctionNumber - Return a unique ID for the current function.
MCSymbol * getPICBaseSymbol() const
getPICBaseSymbol - Return a function-local symbol to represent the PIC base.
void viewCFGOnly() const
viewCFGOnly - This function is meant for use from the debugger.
ArrayRef< int > allocateShuffleMask(ArrayRef< int > Mask)
void substituteDebugValuesForInst(const MachineInstr &Old, MachineInstr &New, unsigned MaxOperand=UINT_MAX)
Create substitutions for any tracked values in Old, to point at New.
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
MachineInstr & cloneMachineInstrBundle(MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertBefore, const MachineInstr &Orig)
Clones instruction or the whole instruction bundle Orig and insert into MBB before InsertBefore.
MachineJumpTableInfo * getOrCreateJumpTableInfo(unsigned JTEntryKind)
getOrCreateJumpTableInfo - Get the JumpTableInfo for this function, if it does already exist,...
StringRef getName() const
getName - Return the name of the corresponding LLVM function.
void dump() const
dump - Print the current MachineFunction to cerr, useful for debugger use.
MachineInstr * CreateMachineInstr(const MCInstrDesc &MCID, DebugLoc DL, bool NoImplicit=false)
CreateMachineInstr - Allocate a new MachineInstr.
void makeDebugValueSubstitution(DebugInstrOperandPair, DebugInstrOperandPair, unsigned SubReg=0)
Create a substitution between one <instr,operand> value to a different, new value.
MachineMemOperand * getMachineMemOperand(MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, LLT MemTy, Align base_alignment, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr, SyncScope::ID SSID=SyncScope::System, AtomicOrdering Ordering=AtomicOrdering::NotAtomic, AtomicOrdering FailureOrdering=AtomicOrdering::NotAtomic)
getMachineMemOperand - Allocate a new MachineMemOperand.
MachineFunction(Function &F, const TargetMachine &Target, const TargetSubtargetInfo &STI, MCContext &Ctx, unsigned FunctionNum)
bool needsFrameMoves() const
True if this function needs frame moves for debug or exceptions.
unsigned getTypeIDFor(const GlobalValue *TI)
Return the type id for the specified typeinfo. This is function wide.
void finalizeDebugInstrRefs()
Finalise any partially emitted debug instructions.
void deallocateOperandArray(OperandCapacity Cap, MachineOperand *Array)
Dellocate an array of MachineOperands and recycle the memory.
DenormalMode getDenormalMode(const fltSemantics &FPType) const
Returns the denormal handling type for the default rounding mode of the function.
void deleteMachineInstr(MachineInstr *MI)
DeleteMachineInstr - Delete the given MachineInstr.
void initTargetMachineFunctionInfo(const TargetSubtargetInfo &STI)
Initialize the target specific MachineFunctionInfo.
const char * createExternalSymbolName(StringRef Name)
Allocate a string and populate it with the given external symbol name.
uint32_t * allocateRegMask()
Allocate and initialize a register mask with NumRegister bits.
MCSymbol * getJTISymbol(unsigned JTI, MCContext &Ctx, bool isLinkerPrivate=false) const
getJTISymbol - Return the MCSymbol for the specified non-empty jump table.
void setCallSiteLandingPad(MCSymbol *Sym, ArrayRef< unsigned > Sites)
Map the landing pad's EH symbol to the call site indexes.
void setUseDebugInstrRef(bool UseInstrRef)
Set whether this function will use instruction referencing or not.
LandingPadInfo & getOrCreateLandingPadInfo(MachineBasicBlock *LandingPad)
Find or create an LandingPadInfo for the specified MachineBasicBlock.
unsigned size() const
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
const DataLayout & getDataLayout() const
Return the DataLayout attached to the Module associated to this MF.
MCSymbol * addLandingPad(MachineBasicBlock *LandingPad)
Add a new panding pad, and extract the exception handling information from the landingpad instruction...
unsigned DebugInstrNumberingCount
A count of how many instructions in the function have had numbers assigned to them.
void deleteMachineBasicBlock(MachineBasicBlock *MBB)
DeleteMachineBasicBlock - Delete the given MachineBasicBlock.
Align getAlignment() const
getAlignment - Return the alignment of the function.
void handleChangeDesc(MachineInstr &MI, const MCInstrDesc &TID)
static const unsigned int DebugOperandMemNumber
A reserved operand number representing the instructions memory operand, for instructions that have a ...
Function & getFunction()
Return the LLVM function that this machine code represents.
DebugInstrOperandPair salvageCopySSAImpl(MachineInstr &MI)
const MachineBasicBlock & back() const
BasicBlockListType::iterator iterator
void setDebugInstrNumberingCount(unsigned Num)
Set value of DebugInstrNumberingCount field.
bool shouldSplitStack() const
Should we be emitting segmented stack stuff for the function.
void viewCFG() const
viewCFG - This function is meant for use from the debugger.
bool shouldUseDebugInstrRef() const
Determine whether, in the current machine configuration, we should use instruction referencing or not...
const MachineFunctionProperties & getProperties() const
Get the function properties.
void eraseAdditionalCallInfo(const MachineInstr *MI)
Following functions update call site info.
MachineInstr * CloneMachineInstr(const MachineInstr *Orig)
Create a new MachineInstr which is a copy of Orig, identical in all ways except the instruction has n...
void RenumberBlocks(MachineBasicBlock *MBBFrom=nullptr)
RenumberBlocks - This discards all of the MachineBasicBlock numbers and recomputes them.
const MachineBasicBlock & front() const
Register addLiveIn(MCRegister PReg, const TargetRegisterClass *RC)
addLiveIn - Add the specified physical register as a live-in value and create a corresponding virtual...
int64_t estimateFunctionSizeInBytes()
Return an estimate of the function's code size, taking into account block and function alignment.
void print(raw_ostream &OS, const SlotIndexes *=nullptr) const
print - Print out the MachineFunction in a format suitable for debugging to the specified stream.
void addInvoke(MachineBasicBlock *LandingPad, MCSymbol *BeginLabel, MCSymbol *EndLabel)
Provide the begin and end labels of an invoke style call and associate it with a try landing pad bloc...
MachineBasicBlock * CreateMachineBasicBlock(const BasicBlock *BB=nullptr, std::optional< UniqueBBID > BBID=std::nullopt)
CreateMachineBasicBlock - Allocate a new MachineBasicBlock.
void copyAdditionalCallInfo(const MachineInstr *Old, const MachineInstr *New)
Copy the call site info from Old to \ New.
VariableDbgInfoMapTy VariableDbgInfos
void assignBeginEndSections()
Assign IsBeginSection IsEndSection fields for basic blocks in this function.
const TargetMachine & getTarget() const
getTarget - Return the target machine this machine code is compiled with
DebugInstrOperandPair salvageCopySSA(MachineInstr &MI, DenseMap< Register, DebugInstrOperandPair > &DbgPHICache)
Find the underlying defining instruction / operand for a COPY instruction while in SSA form.
Representation of each machine instruction.
Definition: MachineInstr.h:71
void bundleWithPred()
Bundle this instruction with its predecessor.
bool isCopyLike() const
Return true if the instruction behaves like a copy.
unsigned getNumOperands() const
Retuns the total number of operands.
Definition: MachineInstr.h:580
unsigned peekDebugInstrNum() const
Examine the instruction number of this MachineInstr.
Definition: MachineInstr.h:548
unsigned getDebugInstrNum()
Fetch the instruction number of this MachineInstr.
const MachineOperand & getOperand(unsigned i) const
Definition: MachineInstr.h:587
bool shouldUpdateAdditionalCallInfo() const
Return true if copying, moving, or erasing this instruction requires updating additional call info (s...
iterator_range< filtered_mop_iterator > all_defs()
Returns an iterator range over all operands that are (explicit or implicit) register defs.
Definition: MachineInstr.h:764
bool RemoveMBBFromJumpTables(MachineBasicBlock *MBB)
RemoveMBBFromJumpTables - If MBB is present in any jump tables, remove it.
bool ReplaceMBBInJumpTables(MachineBasicBlock *Old, MachineBasicBlock *New)
ReplaceMBBInJumpTables - If Old is the target of any jump tables, update the jump tables to branch to...
void print(raw_ostream &OS) const
print - Used by the MachineFunction printer to print information about jump tables.
unsigned getEntrySize(const DataLayout &TD) const
getEntrySize - Return the size of each entry in the jump table.
unsigned createJumpTableIndex(const std::vector< MachineBasicBlock * > &DestBBs)
createJumpTableIndex - Create a new jump table.
void dump() const
dump - Call to stderr.
bool ReplaceMBBInJumpTable(unsigned Idx, MachineBasicBlock *Old, MachineBasicBlock *New)
ReplaceMBBInJumpTable - If Old is a target of the jump tables, update the jump table to branch to New...
bool updateJumpTableEntryHotness(size_t JTI, MachineFunctionDataHotness Hotness)
JTEntryKind
JTEntryKind - This enum indicates how each entry of the jump table is represented and emitted.
@ EK_GPRel32BlockAddress
EK_GPRel32BlockAddress - Each entry is an address of block, encoded with a relocation as gp-relative,...
@ EK_Inline
EK_Inline - Jump table entries are emitted inline at their point of use.
@ EK_LabelDifference32
EK_LabelDifference32 - Each entry is the address of the block minus the address of the jump table.
@ EK_Custom32
EK_Custom32 - Each entry is a 32-bit value that is custom lowered by the TargetLowering::LowerCustomJ...
@ EK_LabelDifference64
EK_LabelDifference64 - Each entry is the address of the block minus the address of the jump table.
@ EK_BlockAddress
EK_BlockAddress - Each entry is a plain address of block, e.g.: .word LBB123.
@ EK_GPRel64BlockAddress
EK_GPRel64BlockAddress - Each entry is an address of block, encoded with a relocation as gp-relative,...
unsigned getEntryAlignment(const DataLayout &TD) const
getEntryAlignment - Return the alignment of each entry in the jump table.
JTEntryKind getEntryKind() const
A description of a memory reference used in the backend.
LocationSize getSize() const
Return the size in bytes of the memory reference.
AtomicOrdering getFailureOrdering() const
For cmpxchg atomic operations, return the atomic ordering requirements when store does not occur.
const PseudoSourceValue * getPseudoValue() const
const MDNode * getRanges() const
Return the range tag for the memory reference.
SyncScope::ID getSyncScopeID() const
Returns the synchronization scope ID for this memory operation.
Flags
Flags values. These may be or'd together.
AtomicOrdering getSuccessOrdering() const
Return the atomic ordering requirements for this memory operation.
const MachinePointerInfo & getPointerInfo() const
Flags getFlags() const
Return the raw flags of the source value,.
AAMDNodes getAAInfo() const
Return the AA tags for the memory reference.
const Value * getValue() const
Return the base address of the memory access.
Align getBaseAlign() const
Return the minimum known alignment in bytes of the base address, without the offset.
int64_t getOffset() const
For normal values, this is a byte offset added to the base address.
MachineOperand class - Representation of each machine instruction operand.
static unsigned getRegMaskSize(unsigned NumRegs)
Returns number of elements needed for a regmask array.
Register getReg() const
getReg - Returns the register number.
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
def_instr_iterator def_instr_begin(Register RegNo) const
std::vector< std::pair< MCRegister, Register > >::const_iterator livein_iterator
bool hasOneDef(Register RegNo) const
Return true if there is exactly one operand defining the specified register.
livein_iterator livein_end() const
livein_iterator livein_begin() const
Manage lifetime of a slot tracker for printing IR.
void incorporateFunction(const Function &F)
Incorporate the given function.
Definition: AsmWriter.cpp:904
iterator_range< debug_compile_units_iterator > debug_compile_units() const
Return an iterator for all DICompileUnits listed in this Module's llvm.dbg.cu named metadata node and...
Definition: Module.h:870
bool isNull() const
Test if the pointer held in the union is null, regardless of which type it is.
Definition: PointerUnion.h:142
Simple wrapper around std::function<void(raw_ostream&)>.
Definition: Printable.h:38
Wrapper class representing virtual and physical registers.
Definition: Register.h:19
SectionKind - This is a simple POD value that classifies the properties of a section.
Definition: SectionKind.h:22
static SectionKind getMergeableConst4()
Definition: SectionKind.h:202
static SectionKind getReadOnlyWithRel()
Definition: SectionKind.h:214
static SectionKind getMergeableConst8()
Definition: SectionKind.h:203
static SectionKind getMergeableConst16()
Definition: SectionKind.h:204
static SectionKind getReadOnly()
Definition: SectionKind.h:192
static SectionKind getMergeableConst32()
Definition: SectionKind.h:205
SlotIndexes pass.
Definition: SlotIndexes.h:297
SmallString - A SmallString is just a SmallVector with methods and accessors that make it work better...
Definition: SmallString.h:26
void push_back(const T &Elt)
Definition: SmallVector.h:413
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1196
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:51
bool isStackRealignable() const
isStackRealignable - This method returns whether the stack can be realigned.
Align getStackAlign() const
getStackAlignment - This method returns the number of bytes to which the stack pointer must be aligne...
TargetInstrInfo - Interface to description of machine instruction set.
Align getPrefFunctionAlignment() const
Return the preferred function alignment.
Align getMinFunctionAlignment() const
Return the minimum function alignment.
Primary interface to the complete machine description for the target machine.
Definition: TargetMachine.h:77
TargetOptions Options
unsigned ForceDwarfFrameSection
Emit DWARF debug frame section.
bool contains(Register Reg) const
Return true if the specified register is included in this register class.
bool hasSubClassEq(const TargetRegisterClass *RC) const
Returns true if RC is a sub-class of or equal to this class.
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
TargetSubtargetInfo - Generic base class for all target subtargets.
virtual const TargetRegisterInfo * getRegisterInfo() const
getRegisterInfo - If register information is available, return it.
virtual const TargetFrameLowering * getFrameLowering() const
virtual const TargetInstrInfo * getInstrInfo() const
virtual const TargetLowering * getTargetLowering() const
Target - Wrapper for Target specific information.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition: Twine.h:81
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
A Use represents the edge between a Value definition and its users.
Definition: Use.h:43
LLVM Value Representation.
Definition: Value.h:74
const Value * stripPointerCasts() const
Strip off pointer casts, all-zero GEPs and address space casts.
Definition: Value.cpp:694
StringRef getName() const
Return a constant reference to the value's name.
Definition: Value.cpp:309
self_iterator getIterator()
Definition: ilist_node.h:132
iterator erase(iterator where)
Definition: ilist.h:204
This class implements an extremely fast bulk output stream that can only output to a stream.
Definition: raw_ostream.h:52
A raw_ostream that writes to an std::string.
Definition: raw_ostream.h:661
A raw_ostream that writes to an SmallVector or SmallString.
Definition: raw_ostream.h:691
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ C
The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:443
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
@ Offset
Definition: DWP.cpp:480
MachineBasicBlock::instr_iterator getBundleStart(MachineBasicBlock::instr_iterator I)
Returns an iterator to the first instruction in the bundle containing I.
MachineInstrBuilder BuildMI(MachineFunction &MF, const MIMetadata &MIMD, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
Definition: STLExtras.h:2115
MaybeAlign getAlign(const Function &F, unsigned Index)
Printable printJumpTableEntryReference(unsigned Idx)
Prints a jump table entry reference.
bool isScopedEHPersonality(EHPersonality Pers)
Returns true if this personality uses scope-style EH IR instructions: catchswitch,...
MachineFunctionDataHotness
auto reverse(ContainerTy &&C)
Definition: STLExtras.h:420
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:163
MachineBasicBlock::instr_iterator getBundleEnd(MachineBasicBlock::instr_iterator I)
Returns an iterator pointing beyond the bundle containing I.
Constant * ConstantFoldCastOperand(unsigned Opcode, Constant *C, Type *DestTy, const DataLayout &DL)
Attempt to constant fold a cast with the specified operand.
EHPersonality classifyEHPersonality(const Value *Pers)
See if the given exception handling personality function is one that we understand.
raw_fd_ostream & errs()
This returns a reference to a raw_ostream for standard error.
AtomicOrdering
Atomic ordering for LLVM's memory model.
bool isFuncletEHPersonality(EHPersonality Pers)
Returns true if this is a personality function that invokes handler funclets (which must return to it...
uint64_t alignTo(uint64_t Size, Align A)
Returns a multiple of A needed to store Size bytes.
Definition: Alignment.h:155
void ViewGraph(const GraphType &G, const Twine &Name, bool ShortNames=false, const Twine &Title="", GraphProgram::Name Program=GraphProgram::DOT)
ViewGraph - Emit a dot graph, run 'dot', run gv on the postscript file, then cleanup.
Definition: GraphWriter.h:427
OutputIt copy(R &&Range, OutputIt Out)
Definition: STLExtras.h:1841
Align commonAlignment(Align A, uint64_t Offset)
Returns the alignment that satisfies both alignments.
Definition: Alignment.h:212
Printable printReg(Register Reg, const TargetRegisterInfo *TRI=nullptr, unsigned SubIdx=0, const MachineRegisterInfo *MRI=nullptr)
Prints virtual and physical registers with or without a TRI instance.
Printable printMBBReference(const MachineBasicBlock &MBB)
Prints a machine basic block reference.
bool debuginfoShouldUseDebugInstrRef(const Triple &T)
#define N
A collection of metadata nodes that might be associated with a memory access used by the alias-analys...
Definition: Metadata.h:764
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition: Alignment.h:39
uint64_t value() const
This is a hole in the type system and should not be abused.
Definition: Alignment.h:85
std::string getNodeLabel(const MachineBasicBlock *Node, const MachineFunction *Graph)
static std::string getGraphName(const MachineFunction *F)
DOTGraphTraits - Template class that can be specialized to customize how graphs are converted to 'dot...
DefaultDOTGraphTraits - This class provides the default implementations of all of the DOTGraphTraits ...
Represent subnormal handling kind for floating point instruction inputs and outputs.
This structure is used to retain landing pad info for the current function.
SmallVector< MCSymbol *, 1 > EndLabels
MachineBasicBlock * LandingPadBlock
SmallVector< MCSymbol *, 1 > BeginLabels
std::vector< int > TypeIds
MachineJumpTableEntry - One jump table in the jump table info.
MachineJumpTableEntry(const std::vector< MachineBasicBlock * > &M)
std::vector< MachineBasicBlock * > MBBs
MBBs - The vector of basic blocks from which to create the jump table.
This class contains a discriminated union of information about pointers in memory operands,...
PointerUnion< const Value *, const PseudoSourceValue * > V
This is the IR pointer value for the access, or it is null if unknown.
MachinePointerInfo getWithOffset(int64_t O) const
static void deleteNode(NodeTy *V)
Definition: ilist.h:42