Dates are inconsistent

Dates are inconsistent

1700 results sorted by ID

Possible spell-corrected query: provably security.
2024/1826 (PDF) Last updated: 2024-11-07
Cloning Games, Black Holes and Cryptography
Alexander Poremba, Seyoon Ragavan, Vinod Vaikuntanathan
Foundations

The no-cloning principle has played a foundational role in quantum information and cryptography. Following a long-standing tradition of studying quantum mechanical phenomena through the lens of interactive games, Broadbent and Lord (TQC 2020) formalized cloning games in order to quantitatively capture no-cloning in the context of unclonable encryption schemes. The conceptual contribution of this paper is the new, natural, notion of Haar cloning games together with two applications. In the...

2024/1809 (PDF) Last updated: 2024-11-05
Foundations of Adaptor Signatures
Paul Gerhart, Dominique Schröder, Pratik Soni, Sri AravindaKrishnan Thyagarajan
Applications

Adaptor signatures extend the functionality of regular signatures through the computation of pre-signatures on messages for statements of NP relations. Pre-signatures are publicly verifiable; they simultaneously hide and commit to a signature of an underlying signature scheme on that message. Anybody possessing a corresponding witness for the statement can adapt the pre-signature to obtain the "regular" signature. Adaptor signatures have found numerous applications for conditional payments...

2024/1769 (PDF) Last updated: 2024-10-30
A Closer Look at Falcon
Phillip Gajland, Jonas Janneck, Eike Kiltz
Public-key cryptography

Falcon is a winner of NIST's six-year post-quantum cryptography standardisation competition. Based on the celebrated full-domain-hash framework of Gentry, Peikert and Vaikuntanathan (GPV) (STOC'08), Falcon leverages NTRU lattices to achieve the most compact signatures among lattice-based schemes. Its security hinges on a Rényi divergence-based argument for Gaussian samplers, a core element of the scheme. However, the GPV proof, which uses statistical distance to argue closeness of...

2024/1723 (PDF) Last updated: 2024-10-21
Proving the Security of the Extended Summation-Truncation Hybrid
Avijit Dutta, Eik List
Secret-key cryptography

Since designing a dedicated secure symmetric PRF is difficult, various works studied optimally secure PRFs from the sum of independent permutations (SoP). At CRYPTO'20, Gunsing and Mennink proposed the Summation-Truncation Hybrid (STH). While based on SoP, STH releases additional $a \leq n$ bits of the permutation calls and sums $n-a$ bits of them. Thus, it produces $n+a$ bits at $O(n-a/2)$-bit PRF security. Both SoP or STH can be used directly in encryption schemes or MACs in place of...

2024/1674 (PDF) Last updated: 2024-10-15
Provable Security Analysis of Butterfly Key Mechanism Protocol in IEEE 1609.2.1 Standard
Alexandra Boldyreva, Virendra Kumar, Jiahao Sun
Cryptographic protocols

The paper provides the first provable security analysis of the Butterfly Key Mechanism (BKM) protocol from IEEE 1609.2.1 standard. The BKM protocol specifies a novel approach for efficiently requesting multiple certificates for use in vehicle-to-everything (V2X) communication. We define the main security goals of BKM, such as vehicle privacy and communication authenticity. We prove that the BKM protocol, with small modifications, meets those security goals. We also propose a way to...

2024/1662 (PDF) Last updated: 2024-10-14
Composability in Watermarking Schemes
Jiahui Liu, Mark Zhandry
Foundations

Software watermarking allows for embedding a mark into a piece of code, such that any attempt to remove the mark will render the code useless. Provably secure watermarking schemes currently seems limited to programs computing various cryptographic operations, such as evaluating pseudorandom functions (PRFs), signing messages, or decrypting ciphertexts (the latter often going by the name ``traitor tracing''). Moreover, each of these watermarking schemes has an ad-hoc construction of its...

2024/1655 (PDF) Last updated: 2024-10-14
Secure Stateful Aggregation: A Practical Protocol with Applications in Differentially-Private Federated Learning
Marshall Ball, James Bell-Clark, Adria Gascon, Peter Kairouz, Sewoong Oh, Zhiye Xie
Cryptographic protocols

Recent advances in differentially private federated learning (DPFL) algorithms have found that using correlated noise across the rounds of federated learning (DP-FTRL) yields provably and empirically better accuracy than using independent noise (DP-SGD). While DP-SGD is well-suited to federated learning with a single untrusted central server using lightweight secure aggregation protocols, secure aggregation is not conducive to implementing modern DP-FTRL techniques without assuming a trusted...

2024/1640 (PDF) Last updated: 2024-10-22
Maximizing the Utility of Cryptographic Setups: Secure PAKEs, with either functional RO or CRS
Yuting Xiao, Rui Zhang, Hong-Sheng Zhou
Cryptographic protocols

For Password-Based Authenticated Key Exchange (PAKE), an idealized setup such as random oracle (RO) or a trusted setup such as common reference string (CRS) is a must in the universal composability (UC) framework (Canetti, FOCS 2001). Given the potential failure of a CRS or RO setup, it is natural to consider distributing trust among the two setups, resulting a CRS-or-RO-setup (i.e., CoR-setup). However, the infeasibility highlighted by Katz et al. (PODC 2014) suggested that it is...

2024/1583 (PDF) Last updated: 2024-10-07
Efficient Pairing-Free Adaptable k-out-of-N Oblivious Transfer Protocols
Keykhosro Khosravani, Taraneh Eghlidos, Mohammad reza Aref
Cryptographic protocols

Oblivious Transfer (OT) is one of the fundamental building blocks in cryptography that enables various privacy-preserving applications. Constructing efficient OT schemes has been an active research area. This paper presents three efficient two-round pairing-free k-out-of-N oblivious transfer protocols with standard security. Our constructions follow the minimal communication pattern: the receiver sends k messages to the sender, who responds with n+k messages, achieving the lowest data...

2024/1576 (PDF) Last updated: 2024-10-06
Verifiable Value Added Tax
Victor Sint Nicolaas, Sascha Jafari
Applications

Value Added Tax (VAT) is a cornerstone of government rev- enue systems worldwide, yet its self-reported nature has historically been vulnerable to fraud. While transaction-level reporting requirements may tackle fraud, they raise concerns regarding data security and overreliance on tax authorities as fully trusted intermediaries. To address these issues, we propose Verifiable VAT, a protocol that enables confidential and verifiable VAT reporting. Our system allows companies to...

2024/1558 (PDF) Last updated: 2024-10-03
Understanding Leakage in Searchable Encryption: a Quantitative Approach
Alexandra Boldyreva, Zichen Gui, Bogdan Warinschi
Foundations

Searchable encryption, or more generally, structured encryption, permits search over encrypted data. It is an important cryptographic tool for securing cloud storage. The standard security notion for structured encryption mandates that a protocol leaks nothing about the data or queries, except for some allowed leakage, defined by the leakage function. This is due to the fact that some leakage is unavoidable for efficient schemes. Unfortunately, it was shown by numerous works that even...

2024/1557 (PDF) Last updated: 2024-10-03
Tightly Secure Threshold Signatures over Pairing-Free Groups
Renas Bacho, Benedikt Wagner
Cryptographic protocols

Threshold signatures have been drawing lots of attention in recent years. Of particular interest are threshold signatures that are proven secure under adaptive corruptions (NIST Call 2023). Sadly, existing constructions with provable adaptive security suffer from at least one of the following drawbacks: (i) strong idealizations such as the algebraic group model (AGM), (ii) an unnatural restriction on the corruption threshold being $t/2$ where $t$ is the signing threshold, or (iii)...

2024/1554 (PDF) Last updated: 2024-10-12
Breaking, Repairing and Enhancing XCBv2 into the Tweakable Enciphering Mode GEM
Amit Singh Bhati, Michiel Verbauwhede, Elena Andreeva
Secret-key cryptography

Tweakable enciphering modes (TEMs) provide security in a variety of storage and space-critical applications like disk and file-based encryption, and packet-based communication protocols, among others. XCB-AES (known as XCBv2) is specified in the IEEE 1619.2 standard for encryption of sector-oriented storage media and it comes with a proof of security for block-aligned input messages. In this work, we demonstrate the $\textit{first}$ and most efficient plaintext recovery attack on...

2024/1521 (PDF) Last updated: 2024-09-27
The SMAesH dataset
Gaëtan Cassiers, Charles Momin
Implementation

Datasets of side-channel leakage measurements are widely used in research to develop and benchmarking side-channel attack and evaluation methodologies. Compared to using custom and/or one-off datasets, widely-used and publicly available datasets improve research reproducibility and comparability. Further, performing high-quality measurements requires specific equipment and skills, while also taking a significant amount of time. Therefore, using publicly available datasets lowers the barriers...

2024/1512 Last updated: 2024-10-02
Improved Soundness Analysis of the FRI Protocol
Yiwen Gao, Haibin Kan, Yuan Li
Foundations

We enhance the provable soundness of FRI, an interactive oracle proof of proximity (IOPP) for Reed-Solomon codes introduced by Ben-Sasson et al. in ICALP 2018. More precisely, we prove the soundness error of FRI is less than $\max\left\{O\left(\frac{1}{\eta}\cdot \frac{n}{|\mathbb{F}_q|}\right), (1-\delta)^{t}\right\}$, where $\delta\le 1-\sqrt{\rho}-\eta$ is within the Johnson bound and $\mathbb{F}_q$ is a finite field with characteristic greater than $2$. Previously, the best-known...

2024/1474 (PDF) Last updated: 2024-09-20
Mystrium: Wide Block Encryption Efficient on Entry-Level Processors
Parisa Amiri Eliasi, Koustabh Ghosh, Joan Daemen
Secret-key cryptography

We present a tweakable wide block cipher called Mystrium and show it as the fastest such primitive on low-end processors that lack dedicated AES or other cryptographic instructions, such as ARM Cortex-A7. Mystrium is based on the provably secure double-decker mode, that requires a doubly extendable cryptographic keyed (deck) function and a universal hash function. We build a new deck function called Xymmer that for its compression part uses Multimixer-128, the fastest universal hash for...

2024/1444 (PDF) Last updated: 2024-10-26
Attestation Proof of Association – provability that attestation keys are bound to the same hardware and person
Eric Verheul
Implementation

We propose a wallet provider issued attestation called Wallet Trust Evidence (WTE) and three related specific instructions for the European Digital Identity (EUDI) Wallet cryptographic hardware, most notably the generation of a Proof of Association (PoA). These allow the EUDI Wallet providing verifiable assurance to third parties (issuers, relying parties) that attestation private keys are not only bound to conformant cryptographic hardware but also that they are bound to the same such...

2024/1421 (PDF) Last updated: 2024-09-19
Provable Security of Linux-DRBG in the Seedless Robustness Model
Woohyuk Chung, Hwigyeom Kim, Jooyoung Lee, Yeongmin Lee
Secret-key cryptography

This paper studies the provable security of the deterministic random bit generator~(DRBG) utilized in Linux 6.4.8, marking the first analysis of Linux-DRBG from a provable security perspective since its substantial structural changes in Linux 4 and Linux 5.17. Specifically, we prove its security up to $O(\min\{2^{\frac{n}{2}},2^{\frac{\lambda}{2}}\})$ queries in the seedless robustness model, where $n$ is the output size of the internal primitives and $\lambda$ is the min-entropy of the...

2024/1384 (PDF) Last updated: 2024-09-03
Password-Protected Key Retrieval with(out) HSM Protection
Sebastian Faller, Tobias Handirk, Julia Hesse, Máté Horváth, Anja Lehmann
Cryptographic protocols

Password-protected key retrieval (PPKR) enables users to store and retrieve high-entropy keys from a server securely. The process is bootstrapped from a human-memorizable password only, addressing the challenge of how end-users can manage cryptographic key material. The core security requirement is protection against a corrupt server, which should not be able to learn the key or offline- attack it through the password protection. PPKR is deployed at a large scale with the WhatsApp Backup...

2024/1369 (PDF) Last updated: 2024-08-30
AGATE: Augmented Global Attested Trusted Execution in the Universal Composability framework
Lorenzo Martinico, Markulf Kohlweiss
Foundations

A Trusted Execution Environment (TEE) is a new type of security technology, implemented by CPU manufacturers, which guarantees integrity and confidentiality on a restricted execution environment to any remote verifier. TEEs are deployed on various consumer and commercial hardwareplatforms, and have been widely adopted as a component in the design of cryptographic protocols both theoretical and practical. Within the provable security community, the use of TEEs as a setup assumption has...

2024/1361 (PDF) Last updated: 2024-08-29
What Did Come Out of It? Analysis and Improvements of DIDComm Messaging
Christian Badertscher, Fabio Banfi, Jesus Diaz
Cryptographic protocols

Self-Sovereign Identity (SSI) empowers individuals and organizations with full control over their data. Decentralized identifiers (DIDs) are at its center, where a DID contains a collection of public keys associated with an entity, and further information to enable entities to engage via secure and private messaging across different platforms. A crucial stepping stone is DIDComm, a cryptographic communication layer that is in production with version 2. Due to its widespread and active...

2024/1356 (PDF) Last updated: 2024-08-29
Leakage-Resilience of Circuit Garbling
Ruiyang Li, Yiteng Sun, Chun Guo, Francois-Xavier Standaert, Weijia Wang, Xiao Wang
Secret-key cryptography

Due to the ubiquitous requirements and performance leap in the past decade, it has become feasible to execute garbling and secure computations in settings sensitive to side-channel attacks, including smartphones, IoTs and dedicated hardwares, and the possibilities have been demonstrated by recent works. To maintain security in the presence of a moderate amount of leaked information about internal secrets, we investigate {\it leakage-resilient garbling}. We augment the classical privacy,...

2024/1346 (PDF) Last updated: 2024-08-30
Provably Secure Online Authenticated Encryption and Bidirectional Online Channels
Arghya Bhattacharjee, Ritam Bhaumik, Daniel Collins, Mridul Nandi
Secret-key cryptography

In this work, we examine online authenticated encryption with variable expansion. We follow a notion where both encryption and decryption are online, and security is ensured in the RUP (Release of Unverified Plaintext) setting. Then we propose a generic way of obtaining an online authenticated encryption mode from a tweakable online encryption mode based on the encode-then-encipher paradigm (Bellare and Rogaway, Asiacrypt 2000). To instantiate our generic scheme, we start with proposing a...

2024/1343 (PDF) Last updated: 2024-08-27
Generalized one-way function and its application
Hua-Lei Yin
Cryptographic protocols

One-way functions are fundamental to classical cryptography and their existence remains a longstanding problem in computational complexity theory. Recently, a provable quantum one-way function has been identified, which maintains its one-wayness even with unlimited computational resources. Here, we extend the mathematical definition of functions to construct a generalized one-way function by virtually measuring the qubit of provable quantum one-way function and randomly assigning the...

2024/1342 (PDF) Last updated: 2024-08-27
Unconditionally secure key distribution without quantum channel
Hua-Lei Yin
Cryptographic protocols

Key distribution plays a fundamental role in cryptography. Currently, the quantum scheme stands as the only known method for achieving unconditionally secure key distribution. This method has been demonstrated over distances of 508 and 1002 kilometers in the measurement-device-independent and twin-field configurations, respectively. However, quantum key distribution faces transmission distance issues and numerous side channel attacks since the basic physical picture requires the use of...

2024/1333 (PDF) Last updated: 2024-08-26
Efficient online and Non-Interactive Threshold Signatures with Identifiable Aborts for Identity-Based Signatures in the IEEE P1363 Standard
Yan Jiang, Youwen Zhu, Jian Wang, Yudi Zhang
Cryptographic protocols

Identity-based threshold signature (IDTS) enables the generation of valid signatures without revealing cryptographic keys in the signing process. While current protocols have achieved much progress in their efficiency, many schemes easily suffer from denial-of-service attacks in which misbehaving parties could keep from generating signatures without being caught. The identifiable abort property is designed to withstand such an attack in some recent IDTS protocols. However, all these schemes...

2024/1295 (PDF) Last updated: 2024-08-19
Identity-Based Encryption from Lattices with More Compactness in the Standard Model
Weidan Ji, Zhedong Wang, Haoxiang Jin, Qi Wang, Geng Wang, Dawu Gu
Public-key cryptography

Lattice-based identity-based encryption having both efficiency and provable security in the standard model is currently still a challenging task and has drawn much attention. In this work, we introduce a new IBE construction from NTRU lattices in the standard model, based on the framework proposed by Agrawal, Boneh, and Boyen (EUROCRYPT 2010). Particularly, by introducing the NTRU trapdoor and the RingLWE computational assumption, we remove a crux restriction of the column number and obtain...

2024/1245 (PDF) Last updated: 2024-08-11
Garuda and Pari: Faster and Smaller SNARKs via Equifficient Polynomial Commitments
Michel Dellepere, Pratyush Mishra, Alireza Shirzad
Cryptographic protocols

SNARKs are powerful cryptographic primitives that allow a prover to produce a succinct proof of a computation. Two key goals of SNARK research are to minimize the size of the proof and to minimize the time required to generate the proof. In this work, we present new SNARK constructions that push the frontier on both of these goals. Our first construction, Pari, is a SNARK that achieves the smallest proof size amongst *all* known SNARKs. Specifically, Pari achieves a proof size...

2024/1237 (PDF) Last updated: 2024-08-05
Efficient Variants of TNT with BBB Security
Ritam Bhaumik, Wonseok Choi, Avijit Dutta, Cuauhtemoc Mancillas López, Hrithik Nandi, Yaobin Shen
Secret-key cryptography

At EUROCRYPT'20, Bao et al. have shown that three-round cascading of $\textsf{LRW1}$ construction, which they dubbed as $\textsf{TNT}$, is a strong tweakable pseudorandom permutation that provably achieves $2n/3$-bit security bound. Jha et al. showed a birthday bound distinguishing attack on $\textsf{TNT}$ and invalidated the proven security bound and proved a tight birthday bound security on the $\textsf{TNT}$ construction in EUROCRYPT'24. In a recent work, Datta et al. have...

2024/1232 (PDF) Last updated: 2024-08-02
Efficient and Privacy-Preserving Collective Remote Attestation for NFV
Ghada Arfaoui, Thibaut Jacques, Cristina Onete
Cryptographic protocols

The virtualization of network functions is a promising technology, which can enable mobile network operators to provide more flexibility and better resilience for their infrastructure and services. Yet, virtualization comes with challenges, as 5G operators will require a means of verifying the state of the virtualized network components (e.g. Virtualized Network Functions (VNFs) or managing hypervisors) in order to fulfill security and privacy commitments. One such means is the use of...

2024/1231 (PDF) Last updated: 2024-09-30
A Composable View of Homomorphic Encryption and Authenticator
Ganyuan Cao
Public-key cryptography

Homomorphic Encryption (HE) is a cutting-edge cryptographic technique that enables computations on encrypted data to be mirrored on the original data. This has quickly attracted substantial interest from the research community due to its extensive practical applications, such as in cloud computing and privacy-preserving machine learning. In addition to confidentiality, the importance of authenticity has emerged to ensure data integrity during transmission and evaluation. To address...

2024/1219 (PDF) Last updated: 2024-07-30
Foldable, Recursive Proofs of Isogeny Computation with Reduced Time Complexity
Krystal Maughan, Joseph Near, Christelle Vincent
Cryptographic protocols

The security of certain post-quantum isogeny-based cryptographic schemes relies on the ability to provably and efficiently compute isogenies between supersingular elliptic curves without leaking information about the isogeny other than its domain and codomain. Earlier work in this direction give mathematical proofs of knowledge for the isogeny, and as a result when computing a chain of $n$ isogenies each proceeding node must verify the correctness of the proof of each preceding node, which...

2024/1187 (PDF) Last updated: 2024-07-23
STORM — Small Table Oriented Redundancy-based SCA Mitigation for AES
Yaacov Belenky, Hennadii Chernyshchyk, Oleg Karavaev, Oleh Maksymenko, Valery Teper, Daria Ryzhkova, Itamar Levi, Osnat Keren, Yury Kreimer
Attacks and cryptanalysis

Side-channel-analysis (SCA) resistance with cost optimization in AES hardware implementations remains a significant challenge. While traditional masking-based schemes offer provable security, they often incur substantial resource overheads (latency, area, randomness, performance, power consumption). Alternatively, the RAMBAM scheme introduced a redundancy-based approach to control the signal-to-noise ratio, and achieves exponential leakage reduction as redundancy increases. This method...

2024/1173 (PDF) Last updated: 2024-09-26
Cryptanalysis of Rank-2 Module-LIP with Symplectic Automorphisms
Hengyi Luo, Kaijie Jiang, Yanbin Pan, Anyu Wang
Attacks and cryptanalysis

At Eurocrypt'24, Mureau et al. formally defined the Lattice Isomorphism Problem for module lattices (module-LIP) in a number field $\mathbb{K}$, and proposed a heuristic randomized algorithm solving module-LIP for modules of rank 2 in $\mathbb{K}^2$ with a totally real number field $\mathbb{K}$, which runs in classical polynomial time for a large class of modules and a large class of totally real number field under some reasonable number theoretic assumptions. In this paper, by introducing a...

2024/1163 (PDF) Last updated: 2024-08-01
On the Number of Restricted Solutions to Constrained Systems and their Applications
Benoît Cogliati, Jordan Ethan, Ashwin Jha, Mridul Nandi, Abishanka Saha
Secret-key cryptography

In this paper, we formulate a special class of systems of linear equations over finite fields that appears naturally in the provable security analysis of several MAC and PRF modes of operation. We derive lower bounds on the number of solutions for such systems adhering to some predefined restrictions, and apply these lower bounds to derive tight PRF security for several constructions. We show security up to $2^{3n/4}$ queries for the single-keyed variant of the Double-block Hash-then-Sum...

2024/1161 (PDF) Last updated: 2024-07-17
On the Concrete Security of Non-interactive FRI
Alexander R. Block, Pratyush Ranjan Tiwari
Cryptographic protocols

FRI is a cryptographic protocol widely deployed today as a building block of many efficient SNARKs that help secure transactions of hundreds of millions of dollars per day. The Fiat-Shamir security of FRI—vital for understanding the security of FRI-based SNARKs—has only recently been formalized and established by Block et al. (ASIACRYPT ’23). In this work, we complement the result of Block et al. by providing a thorough concrete security analysis of non-interactive FRI under various...

2024/1158 (PDF) Last updated: 2024-07-17
A Note on `` Provably Secure and Lightweight Authentication Key Agreement Scheme for Smart Meters''
Zhengjun Cao, Lihua Liu
Attacks and cryptanalysis

We show that the authentication key agreement scheme [IEEE Trans. Smart Grid, 2023, 14(5), 3816-3827] is flawed due to its inconsistent computations. We also show that the scheme fails to keep anonymity, not as claimed.

2024/1081 (PDF) Last updated: 2024-07-07
Practical Non-interactive Multi-signatures, and a Multi-to-Aggregate Signatures Compiler
Matthieu Rambaud, Christophe Levrat
Public-key cryptography

In a fully non-interactive multi-signature, resp. aggregate-signature scheme (fNIM, resp. fNIA), signatures issued by many signers on the same message, resp. on different messages, can be succinctly ``combined'', resp. ``aggregated''. fNIMs are used in the Ethereum consensus protocol, to produce the certificates of validity of blocks which are to be verified by billions of clients. fNIAs are used in some PBFT-like consensus protocols, such as the production version of Diem by Aptos, to...

2024/1068 (PDF) Last updated: 2024-07-01
From Interaction to Independence: zkSNARKs for Transparent and Non-Interactive Remote Attestation
Shahriar Ebrahimi, Parisa Hassanizadeh
Applications

Remote attestation (RA) protocols have been widely used to evaluate the integrity of software on remote devices. Currently, the state-of-the-art RA protocols lack a crucial feature: transparency. This means that the details of the final attestation verification are not openly accessible or verifiable by the public. Furthermore, the interactivity of these protocols often limits attestation to trusted parties who possess privileged access to confidential device data, such as pre-shared...

2024/1024 (PDF) Last updated: 2024-06-25
Attribute-Based Threshold Issuance Anonymous Counting Tokens and Its Application to Sybil-Resistant Self-Sovereign Identity
Reyhaneh Rabaninejad, Behzad Abdolmaleki, Sebastian Ramacher, Daniel Slamanig, Antonis Michalas
Cryptographic protocols

Self-sovereign identity (SSI) systems empower users to (anonymously) establish and verify their identity when accessing both digital and real-world resources, emerging as a promising privacy-preserving solution for user-centric identity management. Recent work by Maram et al. proposes the privacy-preserving Sybil-resistant decentralized SSI system CanDID (IEEE S&P 2021). While this is an important step, notable shortcomings undermine its efficacy. The two most significant among them being...

2024/989 (PDF) Last updated: 2024-06-19
A Formal Treatment of End-to-End Encrypted Cloud Storage
Matilda Backendal, Hannah Davis, Felix Günther, Miro Haller, Kenneth G. Paterson
Applications

Users increasingly store their data in the cloud, thereby benefiting from easy access, sharing, and redundancy. To additionally guarantee security of the outsourced data even against a server compromise, some service providers have started to offer end-to-end encrypted (E2EE) cloud storage. With this cryptographic protection, only legitimate owners can read or modify the data. However, recent attacks on the largest E2EE providers have highlighted the lack of solid foundations for this...

2024/987 (PDF) Last updated: 2024-07-17
CoGNN: Towards Secure and Efficient Collaborative Graph Learning
Zhenhua Zou, Zhuotao Liu, Jinyong Shan, Qi Li, Ke Xu, Mingwei Xu
Applications

Collaborative graph learning represents a learning paradigm where multiple parties jointly train a graph neural network (GNN) using their own proprietary graph data. To honor the data privacy of all parties, existing solutions for collaborative graph learning are either based on federated learning (FL) or secure machine learning (SML). Although promising in terms of efficiency and scalability due to their distributed training scheme, FL-based approaches fall short in providing provable...

2024/959 (PDF) Last updated: 2024-06-14
Flood and Submerse: Distributed Key Generation and Robust Threshold Signature from Lattices
Thomas Espitau, Guilhem Niot, Thomas Prest
Public-key cryptography

We propose a new framework based on random submersions — that is projection over a random subspace blinded by a small Gaussian noise — for constructing verifiable short secret sharing and showcase it to construct efficient threshold lattice-based signatures in the hash-and-sign paradigm, when based on noise flooding. This is, to our knowledge, the first hash-and-sign lattice-based threshold signature. Our threshold signature enjoys the very desirable property of robustness, including at key...

2024/953 (PDF) Last updated: 2024-06-14
MixBuy: Contingent Payment in the Presence of Coin Mixers
Diego Castejon-Molina, Dimitrios Vasilopoulos, Pedro Moreno-Sanchez
Applications

A contingent payment protocol involves two mutually distrustful parties, a buyer and a seller, operating on the same blockchain, and a digital product, whose ownership is not tracked on a blockchain (e.g. a digital book, but not a NFT). The buyer holds coins on the blockchain and transfers them to the seller in exchange for the product. However, if the blockchain does not hide transaction details, any observer can learn that a buyer purchased some product from a seller. In this work, we...

2024/946 (PDF) Last updated: 2024-06-12
Provably Secure Butterfly Key Expansion from the CRYSTALS Post-Quantum Schemes
Edward Eaton, Philippe Lamontagne, Peter Matsakis
Applications

This work presents the first provably secure protocol for Butterfly Key Expansion (BKE) -- a tripartite protocol for provisioning users with pseudonymous certificates -- based on post-quantum cryptographic schemes. Our work builds upon the CRYSTALS family of post-quantum algorithms that have been selected for standardization by NIST. We extend those schemes by imbuing them with the additional functionality of public key expansion: a process by which pseudonymous public keys can be derived by...

2024/929 (PDF) Last updated: 2024-06-10
Combining Outputs of a Random Permutation: New Constructions and Tight Security Bounds by Fourier Analysis
Itai Dinur
Secret-key cryptography

We consider constructions that combine outputs of a single permutation $\pi:\{0,1\}^n \rightarrow \{0,1\}^n$ using a public function. These are popular constructions for achieving security beyond the birthday bound when implementing a pseudorandom function using a block cipher (i.e., a pseudorandom permutation). One of the best-known constructions (denoted SXoP$[2,n]$) XORs the outputs of 2 domain-separated calls to $\pi$. Modeling $\pi$ as a uniformly chosen permutation, several previous...

2024/919 (PDF) Last updated: 2024-06-09
Multi-Input Functional Encryption for Unbounded Inner Products
Bishnu Charan Behera, Somindu C. Ramanna
Cryptographic protocols

In this work, we propose a construction for $ Multi~Input~Inner ~Product ~Encryption$ (MIPFE) that can handle vectors of variable length in different encryption slots. This construction is the first of its kind, as all existing MIPFE schemes allow only equal length vectors. The scheme is constructed in the private key setting, providing privacy for both message as well as the function, thereby achieving the so-called $full-hiding$ security. Our MIPFE scheme uses bilinear groups of prime...

2024/914 (PDF) Last updated: 2024-06-07
Compact Key Storage: A Modern Approach to Key Backup and Delegation
Yevgeniy Dodis, Daniel Jost, Antonio Marcedone
Cryptographic protocols

End-to-End (E2E) encrypted messaging, which prevents even the service provider from learning communication contents, is gaining popularity. Since users care about maintaining access to their data even if their devices are lost or broken or just replaced, these systems are often paired with cloud backup solutions: Typically, the user will encrypt their messages with a fixed key, and upload the ciphertexts to the server. Unfortunately, this naive solution has many drawbacks. First, it often...

2024/898 (PDF) Last updated: 2024-06-05
Edit Distance Robust Watermarks for Language Models
Noah Golowich, Ankur Moitra
Applications

Motivated by the problem of detecting AI-generated text, we consider the problem of watermarking the output of language models with provable guarantees. We aim for watermarks which satisfy: (a) undetectability, a cryptographic notion introduced by Christ, Gunn & Zamir (2024) which stipulates that it is computationally hard to distinguish watermarked language model outputs from the model's actual output distribution; and (b) robustness to channels which introduce a constant fraction of...

2024/891 (PDF) Last updated: 2024-06-08
Glitch-Stopping Circuits: Hardware Secure Masking without Registers
Zhenda Zhang, Svetla Nikova, Ventzislav Nikov
Implementation

Masking is one of the most popular countermeasures to protect implementations against power and electromagnetic side channel attacks, because it offers provable security. Masking has been shown secure against d-threshold probing adversaries by Ishai et al. at CRYPTO'03, but this adversary's model doesn't consider any physical hardware defaults and thus such masking schemes were shown to be still vulnerable when implemented as hardware circuits. To addressed these limitations glitch-extended...

2024/885 (PDF) Last updated: 2024-06-03
Bruisable Onions: Anonymous Communication in the Asynchronous Model
Megumi Ando, Anna Lysyanskaya, Eli Upfal
Cryptographic protocols

In onion routing, a message travels through the network via a series of intermediaries, wrapped in layers of encryption to make it difficult to trace. Onion routing is an attractive approach to realizing anonymous channels because it is simple and fault tolerant. Onion routing protocols provably achieving anonymity in realistic adversary models are known for the synchronous model of communication so far. In this paper, we give the first onion routing protocol that achieves anonymity in...

2024/845 (PDF) Last updated: 2024-07-19
PathGES: An Efficient and Secure Graph Encryption Scheme for Shortest Path Queries
Francesca Falzon, Esha Ghosh, Kenneth G. Paterson, Roberto Tamassia
Applications

The increasing importance of graph databases and cloud storage services prompts the study of private queries on graphs. We propose PathGES, a graph encryption scheme (GES) for single-pair shortest path queries. PathGES is efficient and mitigates the state-of-the-art attack by Falzon and Paterson (2022) on the GES by Ghosh, Kamara, and Tamassia (2021), while only incurring an additional logarithmic factor in storage overhead. PathGES leverages a novel data structure that minimizes leakage and...

2024/843 (PDF) Last updated: 2024-05-29
Formally verifying Kyber Episode V: Machine-checked IND-CCA security and correctness of ML-KEM in EasyCrypt
José Bacelar Almeida, Santiago Arranz Olmos, Manuel Barbosa, Gilles Barthe, François Dupressoir, Benjamin Grégoire, Vincent Laporte, Jean-Christophe Léchenet, Cameron Low, Tiago Oliveira, Hugo Pacheco, Miguel Quaresma, Peter Schwabe, Pierre-Yves Strub
Public-key cryptography

We present a formally verified proof of the correctness and IND-CCA security of ML-KEM, the Kyber-based Key Encapsulation Mechanism (KEM) undergoing standardization by NIST. The proof is machine-checked in EasyCrypt and it includes: 1) A formalization of the correctness (decryption failure probability) and IND-CPA security of the Kyber base public-key encryption scheme, following Bos et al. at Euro S&P 2018; 2) A formalization of the relevant variant of the Fujisaki-Okamoto transform in...

2024/835 (PDF) Last updated: 2024-05-28
Provable security against decryption failure attacks from LWE
Christian Majenz, Fabrizio Sisinni
Public-key cryptography

In a recent work, Hövelmanns, Hülsing and Majenz introduced a new security proof for the Fujisaki-Okamoto transform in the quantum-accessible random oracle model (QROM) used in post-quantum key encapsulation mechanisms. While having a smaller security loss due to decryption failures present in many constructions, it requires two new security properties of the underlying public-key encryption scheme (PKE). In this work, we show that one of the properties, Find Failing Plaintexts - Non...

2024/826 (PDF) Last updated: 2024-06-19
Securing Lightning Channels against Rational Miners
Lukas Aumayr, Zeta Avarikioti, Matteo Maffei, Subhra Mazumdar
Cryptographic protocols

Payment channel networks (e.g., the Lightning Network in Bitcoin) constitute one of the most popular scalability solutions for blockchains. Their safety relies on parties being online to detect fraud attempts on-chain and being able to timely react by publishing certain transactions on-chain. However, a cheating party may bribe miners in order to censor those transactions, resulting in loss of funds for the cheated party: these attacks are known in the literature as timelock bribing attacks....

2024/799 (PDF) Last updated: 2024-05-23
Symmetric Signcryption and E2EE Group Messaging in Keybase
Joseph Jaeger, Akshaya Kumar, Igors Stepanovs
Cryptographic protocols

We introduce a new cryptographic primitive called symmetric signcryption, which differs from traditional signcryption because the sender and recipient share a secret key. We prove that a natural composition of symmetric encryption and signatures achieves strong notions of security against attackers that can learn and control many keys. We then identify that the core encryption algorithm of the Keybase encrypted messaging protocol can be modeled as a symmetric signcryption scheme. We prove...

2024/798 (PDF) Last updated: 2024-10-09
Incompressible Functional Encryption
Rishab Goyal, Venkata Koppula, Mahesh Sreekumar Rajasree, Aman Verma
Public-key cryptography

Incompressible encryption (Dziembowski, Crypto'06; Guan, Wichs, Zhandry, Eurocrypt'22) protects from attackers that learn the entire decryption key, but cannot store the full ciphertext. In incompressible encryption, the attacker must try to compress a ciphertext within pre-specified memory bound $S$ before receiving the secret key. In this work, we generalize the notion of incompressibility to functional encryption. In incompressible functional encryption, the adversary can corrupt...

2024/797 (PDF) Last updated: 2024-05-25
Nonadaptive One-Way to Hiding Implies Adaptive Quantum Reprogramming
Joseph Jaeger
Foundations

An important proof technique in the random oracle model involves reprogramming it on hard to predict inputs and arguing that an attacker cannot detect that this occurred. In the quantum setting, a particularly challenging version of this considers adaptive reprogramming wherein the points to be reprogrammed (or output values they should be programmed to) are dependent on choices made by the adversary. Frameworks for analyzing adaptive reprogramming were given by, e.g., by Unruh (CRYPTO...

2024/795 (PDF) Last updated: 2024-05-22
New Limits of Provable Security and Applications to ElGamal Encryption
Sven Schäge
Foundations

We provide new results showing that ElGamal encryption cannot be proven CCA1-secure – a long-standing open problem in cryptography. Our result follows from a very broad, meta-reduction-based impossibility result on random self-reducible relations with efficiently re-randomizable witnesses. The techniques that we develop allow, for the first time, to provide impossibility results for very weak security notions where the challenger outputs fresh challenge statements at the end of the security...

2024/760 (PDF) Last updated: 2024-05-17
SQIsign2D-West: The Fast, the Small, and the Safer
Andrea Basso, Luca De Feo, Pierrick Dartois, Antonin Leroux, Luciano Maino, Giacomo Pope, Damien Robert, Benjamin Wesolowski
Public-key cryptography

We introduce SQIsign2D-West, a variant of SQIsign using two-dimensional isogeny representations. SQIsignHD was the first variant of SQIsign to use higher dimensional isogeny representations. Its eight-dimensional variant is geared towards provable security but is deemed unpractical. Its four-dimensional variant is geared towards efficiency and has significantly faster signing times than SQIsign, but slower verification owing to the complexity of the four-dimensional representation. Its...

2024/727 (PDF) Last updated: 2024-05-12
Let Attackers Program Ideal Models: Modularity and Composability for Adaptive Compromise
Joseph Jaeger
Foundations

We show that the adaptive compromise security definitions of Jaeger and Tyagi (Crypto '20) cannot be applied in several natural use-cases. These include proving multi-user security from single-user security, the security of the cascade PRF, and the security of schemes sharing the same ideal primitive. We provide new variants of the definitions and show that they resolve these issues with composition. Extending these definitions to the asymmetric settings, we establish the security of the...

2024/725 (PDF) Last updated: 2024-05-12
Multi User Security of LightMAC and LightMAC_Plus
Nilanjan Datta, Shreya Dey, Avijit Dutta, Devdutto Kanungo
Secret-key cryptography

In FSE'16, Luykx et al. have proposed $\textsf{LightMAC}$ that provably achieves a query length independent PRF security bound. To be precise, the construction achieves security roughly in the order of $O(q^2/2^n)$, when instantiated with two independently keyed $n$-bit block ciphers and $q$ is the total number of queries made by the adversary. Subsequently, in ASIACRYPT'17, Naito proposed a beyond-birthday-bound variant of the $\textsf{LightMAC}$ construction, dubbed as...

2024/718 (PDF) Last updated: 2024-10-18
PAC-Private Algorithms
Mayuri Sridhar, Hanshen Xiao, Srinivas Devadas
Applications

Provable privacy typically requires involved analysis and is often associated with unacceptable accuracy loss. While many empirical verification or approximation methods, such as Membership Inference Attacks (MIA) and Differential Privacy Auditing (DPA), have been proposed, these do not offer rigorous privacy guarantees. In this paper, we apply recently-proposed Probably Approximately Correct (PAC) Privacy to give formal, mechanized, simulation-based proofs for a range of practical,...

2024/692 (PDF) Last updated: 2024-05-06
Blink: An Optimal Proof of Proof-of-Work
Lukas Aumayr, Zeta Avarikioti, Matteo Maffei, Giulia Scaffino, Dionysis Zindros
Cryptographic protocols

Designing light clients for Proof-of-Work blockchains has been a foundational problem since Nakamoto's SPV construction in the Bitcoin paper. Over the years, communication was reduced from O(C) down to O(polylog(C)) in the system's lifetime C. We present Blink, the first provably secure O(1) light client that does not require a trusted setup.

2024/676 (PDF) Last updated: 2024-10-15
Composing Timed Cryptographic Protocols: Foundations and Applications
Karim Eldefrawy, Benjamin Terner, Moti Yung
Foundations

Time-lock puzzles are unique cryptographic primitives that use computational complexity to keep information secret for some period of time, after which security expires. Unfortunately, twenty-five years after their introduction, current analysis techniques of time-lock primitives provide no sound mechanism to build multi-party cryptographic protocols which use expiring security as a building block. As pointed out recently in the peer-reviewed literature, current attempts at this problem...

2024/609 (PDF) Last updated: 2024-04-20
New Security Proofs and Techniques for Hash-and-Sign with Retry Signature Schemes
Benoît Cogliati, Pierre-Alain Fouque, Louis Goubin, Brice Minaud
Public-key cryptography

Hash-and-Sign with Retry is a popular technique to design efficient signature schemes from code-based or multivariate assumptions. Contrary to Hash-and-Sign signatures based on preimage-sampleable functions as defined by Gentry, Peikert and Vaikuntanathan (STOC 2008), trapdoor functions in code-based and multivariate schemes are not surjective. Therefore, the standard approach uses random trials. Kosuge and Xagawa (PKC 2024) coined it the Hash-and-Sign with Retry paradigm. As many attacks...

2024/593 (PDF) Last updated: 2024-04-16
The Case of Small Prime Numbers Versus the Okamoto-Uchiyama Cryptosystem
George Teseleanu
Public-key cryptography

In this paper we study the effect of using small prime numbers within the Okamoto-Uchiyama public key encryption scheme. We introduce two novel versions and prove their security. Then we show how to choose the system's parameters such that the security results hold. Moreover, we provide a practical comparison between the cryptographic algorithms we introduced and the original Okamoto-Uchiyama cryptosystem.

2024/510 (PDF) Last updated: 2024-08-19
Snake-eye Resistance from LWE for Oblivious Message Retrieval and Robust Encryption
Zeyu Liu, Katerina Sotiraki, Eran Tromer, Yunhao Wang

Oblivious message retrieval (OMR) allows resource-limited recipients to outsource the message retrieval process without revealing which messages are pertinent to which recipient. Its realizations in recent works leave an open problem: can an OMR scheme be both practical and provably secure against spamming attacks from malicious senders (i.e., DoS-resistant) under standard assumptions? In this paper, we first prove that a prior construction $\mathsf{OMRp2}$ is DoS-resistant under a...

2024/494 (PDF) Last updated: 2024-03-28
HW-token-based Common Random String Setup
István Vajda
Applications

In the common random string model, the parties executing a protocol have access to a uniformly random bit string. It is known that under standard intractability assumptions, we can realize any ideal functionality with universally composable (UC) security if a trusted common random string (CrS) setup is available. It was always a question of where this CrS should come from since the parties provably could not compute it themselves. Trust assumptions are required, so minimizing the level of...

2024/424 (PDF) Last updated: 2024-08-06
Revisiting the Security of Approximate FHE with Noise-Flooding Countermeasures
Flavio Bergamaschi, Anamaria Costache, Dana Dachman-Soled, Hunter Kippen, Lucas LaBuff, Rui Tang
Attacks and cryptanalysis

Approximate fully homomorphic encryption (FHE) schemes, such as the CKKS scheme (Cheon, Kim, Kim, Song, ASIACRYPT '17), are among the leading schemes in terms of efficiency and are particularly suitable for Machine Learning (ML) tasks. Although efficient, approximate FHE schemes have some inherent risks: Li and Micciancio (EUROCRYPT '21) demonstrated that while these schemes achieved the standard notion of CPA-security, they failed against a variant, $\mathsf{IND}\mbox{-}\mathsf{CPA}^D$, in...

2024/405 (PDF) Last updated: 2024-08-12
Traceable Secret Sharing: Strong Security and Efficient Constructions
Dan Boneh, Aditi Partap, Lior Rotem
Secret-key cryptography

Suppose Alice uses a $t$-out-of-$n$ secret sharing to store her secret key on $n$ servers. Her secret key is protected as long as $t$ of them do not collude. However, what if a less-than-$t$ subset of the servers decides to offer the shares they have for sale? In this case, Alice should be able to hold them accountable, or else nothing prevents them from selling her shares. With this motivation in mind, Goyal, Song, and Srinivasan (CRYPTO 21) introduced the concept of {\em traceable secret...

2024/362 (PDF) Last updated: 2024-02-28
Integrating Causality in Messaging Channels
Shan Chen, Marc Fischlin
Cryptographic protocols

Causal reasoning plays an important role in the comprehension of communication, but it has been elusive so far how causality should be properly preserved by instant messaging services. To the best of our knowledge, causality preservation is not even treated as a desired security property by most (if not all) existing secure messaging protocols like Signal. This is probably due to the intuition that causality seems already preserved when all received messages are intact and displayed...

2024/336 (PDF) Last updated: 2024-03-02
RAMenPaSTA: Parallelizable Scalable Transparent Arguments of Knowledge for RAM Programs
Khai Hanh Tang, Minh Pham, Chan Nam Ngo
Cryptographic protocols

Incremental Verifiable Computation (IVC) allows a prover to prove to a verifier the correct execution of a sequential computation. Recent works focus on improving the universality and efficiency of IVC Schemes, which can be categorized into Accumulation and Folding-based IVCs with Folding-based ones being more efficient (due to their deferred proof generation until the final step). Unfortunately, both approaches satisfy only heuristic security as they model the Random Oracle (RO) as a...

2024/317 (PDF) Last updated: 2024-05-24
Closing the Efficiency Gap between Synchronous and Network-Agnostic Consensus
Giovanni Deligios, Mose Mizrahi Erbes
Cryptographic protocols

In the consensus problem, $n$ parties want to agree on a common value, even if some of them are corrupt and arbitrarily misbehave. If the parties have a common input $m$, then they must agree on $m$. Protocols solving consensus assume either a synchronous communication network, where messages are delivered within a known time, or an asynchronous network with arbitrary delays. Asynchronous protocols only tolerate $t_a < n/3$ corrupt parties. Synchronous ones can tolerate $t_s < n/2$...

2024/287 (PDF) Last updated: 2024-02-20
CAPABARA: A Combined Attack on CAPA
Dilara Toprakhisar, Svetla Nikova, Ventzislav Nikov
Attacks and cryptanalysis

Physical attacks pose a substantial threat to the secure implementation of cryptographic algorithms. While considerable research efforts are dedicated to protecting against passive physical attacks (e.g., side-channel analysis (SCA)), the landscape of protection against other types of physical attacks remains a challenge. Fault attacks (FA), though attracting growing attention in research, still lack the prevalence of provably secure designs when compared to SCA. The realm of combined...

2024/282 (PDF) Last updated: 2024-02-19
A Concrete Analysis of Wagner's $k$-List Algorithm over $\mathbb{Z}_p$
Antoine Joux, Hunter Kippen, Julian Loss
Attacks and cryptanalysis

Since its introduction by Wagner (CRYPTO `02), the $k$-list algorithm has found significant utility in cryptanalysis. One important application thereof is in computing forgeries on several interactive signature schemes that implicitly rely on the hardness of the ROS problem formulated by Schnorr (ICICS `01). The current best attack strategy for these schemes relies the conjectured runtime of the $k$-list algorithm over $\mathbb{Z}_p$. The tightest known analysis of Wagner's algorithm over...

2024/252 (PDF) Last updated: 2024-08-30
Faster Signatures from MPC-in-the-Head
Dung Bui, Eliana Carozza, Geoffroy Couteau, Dahmun Goudarzi, Antoine Joux
Cryptographic protocols

We revisit the construction of signature schemes using the MPC-in-the-head paradigm. We obtain two main contributions: – We observe that previous signatures in the MPC-in-the-head paradigm must rely on a salted version of the GGM puncturable pseudorandom function (PPRF) to avoid collision attacks. We design a new efficient PPRF construction that is provably secure in the multi-instance setting. The security analysis of our PPRF, in the ideal cipher model, is quite involved and forms a...

2024/246 (PDF) Last updated: 2024-02-15
OCash: Fully Anonymous Payments between Blockchain Light Clients
Adam Blatchley Hansen, Jesper Buus Nielsen, Mark Simkin
Cryptographic protocols

We study blockchain-based provably anonymous payment systems between light clients. Such clients interact with the blockchain through full nodes, who can see what the light clients read and write. The goal of our work is to enable light clients to perform anonymous payments, while maintaining privacy even against the full nodes through which they interact with the blockchain. We formalize the problem in the universal composability model and present a provably secure solution to it. In...

2024/235 (PDF) Last updated: 2024-06-18
Pseudorandom Error-Correcting Codes
Miranda Christ, Sam Gunn
Foundations

We construct pseudorandom error-correcting codes (or simply pseudorandom codes), which are error-correcting codes with the property that any polynomial number of codewords are pseudorandom to any computationally-bounded adversary. Efficient decoding of corrupted codewords is possible with the help of a decoding key. We build pseudorandom codes that are robust to substitution and deletion errors, where pseudorandomness rests on standard cryptographic assumptions. Specifically,...

2024/234 (PDF) Last updated: 2024-05-30
Bare PAKE: Universally Composable Key Exchange from just Passwords
Manuel Barbosa, Kai Gellert, Julia Hesse, Stanislaw Jarecki
Cryptographic protocols

In the past three decades, an impressive body of knowledge has been built around secure and private password authentication. In particular, secure password-authenticated key exchange (PAKE) protocols require only minimal overhead over a classical Diffie-Hellman key exchange. PAKEs are also known to fulfill strong composable security guarantees that capture many password-specific concerns such as password correlations or password mistyping, to name only a few. However, to enjoy both...

2024/199 (PDF) Last updated: 2024-05-31
Formal Security Proofs via Doeblin Coefficients: Optimal Side-channel Factorization from Noisy Leakage to Random Probing
Julien Béguinot, Wei Cheng, Sylvain Guilley, Olivier Rioul
Implementation

Masking is one of the most popular countermeasures to side- channel attacks, because it can offer provable security. However, depend- ing on the adversary’s model, useful security guarantees can be hard to provide. At first, masking has been shown secure against t-threshold probing adversaries by Ishai et al. at Crypto’03. It has then been shown secure in the more generic random probing model by Duc et al. at Euro- crypt’14. Prouff and Rivain have introduced the noisy leakage model...

2024/183 (PDF) Last updated: 2024-09-21
On Security Proofs of Existing Equivalence Class Signature Schemes
Balthazar Bauer, Georg Fuchsbauer, Fabian Regen
Public-key cryptography

Equivalence class signatures (EQS; Asiacrypt '14), sign vectors of elements from a bilinear group. Anyone can transform a signature on a vector to a signature on any multiple of that vector; signatures thus authenticate equivalence classes. A transformed signature/message pair is indistinguishable from a random signature on a random message. EQS have been used to efficiently instantiate (delegatable) anonymous credentials, (round-optimal) blind signatures, ring and group signatures,...

2024/162 (PDF) Last updated: 2024-07-22
Zero-Knowledge Proofs of Training for Deep Neural Networks
Kasra Abbaszadeh, Christodoulos Pappas, Jonathan Katz, Dimitrios Papadopoulos
Cryptographic protocols

A zero-knowledge proof of training (zkPoT) enables a party to prove that they have correctly trained a committed model based on a committed dataset without revealing any additional information about the model or the dataset. An ideal zkPoT should offer provable security and privacy guarantees, succinct proof size and verifier runtime, and practical prover efficiency. In this work, we present \name, a zkPoT targeted for deep neural networks (DNNs) that achieves all these goals at once. Our...

2024/140 (PDF) Last updated: 2024-02-01
Efficient ECDSA-based Adaptor Signature for Batched Atomic Swaps
Binbin Tu, Min Zhang, Yu Chen
Public-key cryptography

Adaptor signature is a novel cryptographic primitive which ties together the signature and the leakage of a secret value. It has become an important tool for solving the scalability and interoperability problems in the blockchain. Aumayr et al. (Asiacrypt 2021) recently provide the formalization of the adaptor signature and present a provably secure ECDSA-based adaptor signature, which requires zero-knowledge proof in the pre-signing phase to ensure the signer works correctly. However, the...

2024/077 (PDF) Last updated: 2024-07-27
OBSCURE: Versatile Software Obfuscation from a Lightweight Secure Element
Darius Mercadier, Viet Sang Nguyen, Matthieu Rivain, Aleksei Udovenko
Applications

Software obfuscation is a powerful tool to protect the intellectual property or secret keys inside programs. Strong software obfuscation is crucial in the context of untrusted execution environments (e.g., subject to malware infection) or to face potentially malicious users trying to reverse-engineer a sensitive program. Unfortunately, the state-of-the-art of pure software-based obfuscation (including white-box cryptography) is either insecure or infeasible in practice. This work...

2024/047 (PDF) Last updated: 2024-07-08
On Efficient and Secure Compression Modes for Arithmetization-Oriented Hashing
Elena Andreeva, Rishiraj Bhattacharyya, Arnab Roy, Stefano Trevisani
Secret-key cryptography

ZK-SNARKs, a fundamental component of privacy-oriented payment systems, identity protocols, or anonymous voting systems, are advanced cryptographic protocols for verifiable computation: modern SNARKs allow to encode the invariants of a program, expressed as an arithmetic circuit, in an appropriate constraint language from which short, zero-knowledge proofs for correct computations can be constructed. One of the most important computations that is run through SNARK systems is the...

2024/046 (PDF) Last updated: 2024-01-11
Quantum-Secure Hybrid Communication for Aviation Infrastructure
Benjamin Dowling, Bhagya Wimalasiri
Cryptographic protocols

The rapid digitization of aviation communication and its dependent critical operations demand secure protocols that address domain-specific security requirements within the unique functional constraints of the aviation industry. These secure protocols must provide sufficient security against current and possible future attackers, given the inherent nature of the aviation community, that is highly complex and averse to frequent upgrades as well as its high safety and cost considerations. In...

2024/030 (PDF) Last updated: 2024-05-14
Quantum Oblivious LWE Sampling and Insecurity of Standard Model Lattice-Based SNARKs
Thomas Debris-Alazard, Pouria Fallahpour, Damien Stehlé
Attacks and cryptanalysis

The Learning With Errors ($\mathsf{LWE}$) problem asks to find $\mathbf{s}$ from an input of the form $(\mathbf{A}, \mathbf{b} = \mathbf{A}\mathbf{s}+\mathbf{e}) \in (\mathbb{Z}/q\mathbb{Z})^{m \times n} \times (\mathbb{Z}/q\mathbb{Z})^{m}$, for a vector $\mathbf{e}$ that has small-magnitude entries. In this work, we do not focus on solving $\mathsf{LWE}$ but on the task of sampling instances. As these are extremely sparse in their range, it may seem plausible that the only way to proceed...

2024/020 (PDF) Last updated: 2024-01-05
EROR: Efficient Repliable Onion Routing with Strong Provable Privacy
Michael Klooß, Andy Rupp, Daniel Schadt, Thorsten Strufe, Christiane Weis
Cryptographic protocols

To provide users with anonymous access to the Internet, onion routing and mix networks were developed. Assuming a stronger adversary than Tor, Sphinx is a popular packet format choice for such networks due to its efficiency and strong protection. However, it was recently shown that Sphinx is susceptible to a tagging attack on the payload in some settings. The only known packet formats which prevent this attack rely on advanced cryptographic primitives and are highly inefficient, both in...

2023/1894 (PDF) Last updated: 2024-05-12
Hardness of Range Avoidance and Remote Point for Restricted Circuits via Cryptography
Yilei Chen, Jiatu Li
Foundations

A recent line of research has introduced a systematic approach to explore the complexity of explicit construction problems through the use of meta problems, namely, the range avoidance problem (abbrev. $\textsf{Avoid}$) and the remote point problem (abbrev. $\textsf{RPP}$). The upper and lower bounds for these meta problems provide a unified perspective on the complexity of specific explicit construction problems that were previously studied independently. An interesting question largely...

2023/1869 (PDF) Last updated: 2023-12-05
Accountable Bulletin Boards: Definition and Provably Secure Implementation
Mike Graf, Ralf Küsters, Daniel Rausch, Simon Egger, Marvin Bechtold, Marcel Flinspach
Foundations

Bulletin boards (BB) are important cryptographic building blocks that, at their core, provide a broadcast channel with memory. BBs are widely used within many security protocols, including secure multi-party computation protocols, e-voting systems, and electronic auctions. Even though the security of protocols crucially depends on the underlying BB, as also highlighted by recent works, the literature on constructing secure BBs is sparse. The so-far only provably secure BBs require trusted...

2023/1856 (PDF) Last updated: 2023-12-03
Optimizing AES Threshold Implementation under the Glitch-Extended Probing Model
Fu Yao, Hua Chen, Yongzhuang Wei, Enes Pasalic, Feng Zhou, Limin Fan
Implementation

Threshold Implementation (TI) is a well-known Boolean masking technique that provides provable security against side-channel attacks. In the presence of glitches, the probing model was replaced by the so-called glitch-extended probing model which specifies a broader security framework. In CHES 2021, Shahmirzadi et al. introduced a general search method for finding first-order 2-share TI schemes without fresh randomness (under the presence of glitches) for a given encryption algorithm....

2023/1834 (PDF) Last updated: 2024-10-07
BBB PRP Security of the Lai-Massey Mode
Ritam Bhaumik, Mohammad Amin Raeisi
Secret-key cryptography

In spite of being a popular technique for designing block ciphers, Lai-Massey networks have received considerably less attention from a security analysis point-of-view than Feistel networks and Substitution-Permutation networks. In this paper we study the beyond-birthday-bound (BBB) security of Lai-Massey networks with independent random round functions against chosen-plaintext adversaries. Concretely, we show that five rounds are necessary and sufficient to achieve BBB security.

2023/1778 (PDF) Last updated: 2023-11-16
Immunizing Backdoored PRGs
Marshall Ball, Yevgeniy Dodis, Eli Goldin
Secret-key cryptography

A backdoored Pseudorandom Generator (PRG) is a PRG which looks pseudorandom to the outside world, but a saboteur can break PRG security by planting a backdoor into a seemingly honest choice of public parameters, $pk$, for the system. Backdoored PRGs became increasingly important due to revelations about NIST’s backdoored Dual EC PRG, and later results about its practical exploitability. Motivated by this, at Eurocrypt'15 Dodis et al. [21] initiated the question of immunizing backdoored...

2023/1758 (PDF) Last updated: 2024-09-19
Pulsar: Secure Steganography for Diffusion Models
Tushar M. Jois, Gabrielle Beck, Gabriel Kaptchuk
Applications

Widespread efforts to subvert access to strong cryptography has renewed interest in steganography, the practice of embedding sensitive messages in mundane cover messages. Recent efforts at provably secure steganography have focused on text-based generative models and cannot support other types of models, such as diffusion models, which are used for high-quality image synthesis. In this work, we study securely embedding steganographic messages into the output of image diffusion models. We...

2023/1754 (PDF) Last updated: 2024-06-05
That’s not my Signature! Fail-Stop Signatures for a Post-Quantum World
Cecilia Boschini, Hila Dahari, Moni Naor, Eyal Ronen
Public-key cryptography

The Snowden's revelations kick-started a community-wide effort to develop cryptographic tools against mass surveillance. In this work, we propose to add another primitive to that toolbox: Fail-Stop Signatures (FSS) [EC'89]. FSS are digital signatures enhanced with a forgery-detection mechanism that can protect a PPT signer from more powerful attackers. Despite the fascinating concept, research in this area stalled after the '90s. However, the ongoing transition to post-quantum...

2023/1732 (PDF) Last updated: 2023-11-08
On the Masking-Friendly Designs for Post-Quantum Cryptography
Suparna Kundu, Angshuman Karmakar, Ingrid Verbauwhede
Implementation

Masking is a well-known and provably secure countermeasure against side-channel attacks. However, due to additional redundant computations, integrating masking schemes is expensive in terms of performance. The performance overhead of integrating masking countermeasures is heavily influenced by the design choices of a cryptographic algorithm and is often not considered during the design phase. In this work, we deliberate on the effect of design choices on integrating masking techniques into...

2023/1704 (PDF) Last updated: 2024-03-02
On Overidealizing Ideal Worlds: Xor of Two Permutations and its Applications
Wonseok Choi, Minki Hhan, Yu Wei, Vassilis Zikas
Secret-key cryptography

Security proofs of symmetric-key primitives typically consider an idealized world with access to a (uniformly) random function. The starting point of our work is the observation that such an ideal world can lead to underestimating the actual security of certain primitives. As a demonstrating example, $\mathsf{XoP2}$, which relies on two independent random permutations, has been proven to exhibit superior concrete security compared to $\mathsf{XoP}$, which employs a single permutation with...

2023/1661 (PDF) Last updated: 2024-05-16
Publicly-Detectable Watermarking for Language Models
Jaiden Fairoze, Sanjam Garg, Somesh Jha, Saeed Mahloujifar, Mohammad Mahmoody, Mingyuan Wang
Applications

We present a highly detectable, trustless watermarking scheme for LLMs: the detection algorithm contains no secret information, and it is executable by anyone. We embed a publicly-verifiable cryptographic signature into LLM output using rejection sampling. We prove that our scheme is cryptographically correct, sound, and distortion-free. We make novel uses of error-correction techniques to overcome periods of low entropy, a barrier for all prior watermarking schemes. We implement our scheme...

2023/1640 (PDF) Last updated: 2024-03-05
Quantum Key Leasing for PKE and FHE with a Classical Lessor
Orestis Chardouvelis, Vipul Goyal, Aayush Jain, Jiahui Liu
Foundations

In this work, we consider the problem of secure key leasing, also known as revocable cryptography (Agarwal et. al. Eurocrypt' 23, Ananth et. al. TCC' 23), as a strengthened security notion of its predecessor put forward in Ananth et. al. Eurocrypt' 21. This problem aims to leverage unclonable nature of quantum information to allow a lessor to lease a quantum key with reusability for evaluating a classical functionality. Later, the lessor can request the lessee to provably delete the key and...

Note: In order to protect the privacy of readers, eprint.iacr.org does not use cookies or embedded third party content.