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Abstract

Self-Sovereign Identity (SSI) empowers individuals and organizations with full control over their
data. Decentralized identifiers (DIDs) are at its center, where a DID contains a collection of public
keys associated with an entity, and further information to enable entities to engage via secure and
private messaging across different platforms. A crucial stepping stone is DIDComm, a cryptographic
communication layer that is in production with version 2. Due to its widespread and active deployment,
a formal study of DIDComm is highly overdue.

We present the first formal analysis of DIDComm’s cryptography, and formalize its goal of (sender-)
anonymity and authenticity. We follow a composable approach to capture its security over a generic
network, formulating the goal of DIDComm as a strong ideal communication resource. We prove that the
proposed encryption modes reach the expected level of privacy and authenticity, but leak beyond the
leakage induced by an underlying network (captured by a parameterizable resource).

We further use our formalism to propose enhancements and prove their security: first, we present
an optimized algorithm that achieves simultaneously anonymity and authenticity, conforming to the
DIDComm message format, and which outperforms the current DIDComm proposal in both ciphertext
size and computation time by almost a factor of 2. Second, we present a novel DIDComm mode that
fulfills the notion of anonymity preservation, in that it does never leak more than the leakage induced
by the network it is executed over. We finally show how to merge this new mode into our improved
algorithm, obtaining an efficient all-in-one mode for full anonymity and authenticity.
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1 Introduction

1.1 Background and Motivation

The Self-Sovereign Identity (SSI) ecosystem is mostly being designed around Decentralized Identifiers (DIDs),
which are now a recommendation within the W3C [W3C22]. Via DIDs, entities publish information for
running cryptographic protocols with them, like signing or key exchanges. However, the DID stack —and in
some sense its philosophy—deviates from previous PKI-based approaches, and new frameworks are being
proposed that implement cryptographic protocols leveraging the cryptographic material inside a DID. While
it could be argued that existing and well studied standards could be used for this, DID-based frameworks keep
gaining traction. DIDComm [Fou23] is one of such frameworks, aimed at establishing secure communication
across parties equipped with DIDs.

1.1.1 DIDComm.

DIDComm’s v1 was shaped as a set of RFCs for connectionless and secure communications within Hyperledger
Aries [Hyp19]. Via Hyperledger Aries, DIDComm v1 was adopted by the British Columbia government
[Gov23b, Gov23a], and by credit unions in the US [Tec23], among others. Currently, DIDComm v2 is
being incubated by the Decentralized Identity Foundation [Ide23]. While it is backwards incompatible with
DIDComm v1, several projects are building on top of it, like Veramo [Ver23] (used for example by the
Metamask plugin), or the Atala PRIM SSI solution [Inp23].

The main usage of DIDComm is in setting up a secure communication route between a sender and
one or more recipients. We depict the typical operation in Figure 1. Recipients first register their public
key information in shape of DIDs (step 0), usually containing information about how to reach them via (a
sequence of) chosen mediators. Senders fetch this information from the DID-based PKI (step 1), and build
the DIDComm envelope (step 2), an onion-like encrypted package with one encryption per mediator, so
that each decrypted layer reveals the next hop. The payload in each hop is symmetrically encrypted with a
random key that is further encrypted with keys derived from non-interactive key exchanges between sender
and recipients (or mediators, for intermediate hops). Mediators can not only decrypt and resend messages
but also, e.g., choose to add new hops, or change the transport medium. The DIDComm envelope is sent
via the chosen network (steps 3-5). Finally, the recipient receives the final layer of encryption, rederives the
negotiated keys, and decrypts the plaintext message (step 6).

Figure 1: Establishing a secure communication route with DIDComm.

1.1.2 Related Work.

Given DIDComm’s increasing adoption and future prospects, it is of highest importance to develop a formal
understanding of its security goals, and to propose secure improvements if needed. As we have learned with
other communication protocols, like TLS [PvdM16], formal foundations are a key enabler for benchmarking
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improvement proposals and to guarantee a sustainable development and well-founded discussions, as evidenced
by the impressive list of references in the RFC of TLS 1.3 [Res18].

Built on top of DIDs, DIDComm is best suited for Web3 settings. However, it is natural to ask about its
sensitivity to Web2 risks. We overview some of the main attacks suffered in the past by TLS, as a means to
illustrate whether or not they apply to DIDComm:

• Attacks to cryptographic algorithms, exploiting weak cryptography, or the incorrect use of cryptographic
modes (e.g., POODLE [M1̈4]). This risk also applies to DIDComm. As stated next, we identify a
subtle, easy to fix, attack of this type.

• Downgrade and renegotiation attacks (e.g., FREAK [BBD+15], Logjam [ABD+15] or DROWN [ASS+16]).
TLS is session-oriented, and begins by client and server (re-)negotiating parameters for cryptographic
operation. Due to this, a well-known type of attacks to TLS focuses on forcing the client/server to pick
a vulnerable set of parameters. Since DIDComm is not session-oriented and, in particular, does not
include negotiation of cryptographic parameters, these attacks do not apply.

• Implementation attacks, focusing on implementation flaws that may even depend on complex combina-
tions, like cookie data compression (e.g., CRIME [RD12]). These attacks can also affect DIDComm,
although it is out of the scope of this work.

Another prominent example of successful communications protocol with emphasis in security and privacy,
is Tor [AFNV19, DMS04], which counts with a vast literature on attacks and countermeasures – see e.g.
[ESG22, SFEB21, Syv17, SB16, JBHD12]. DIDComm shares with Tor its onion-like encryption approach,
and although strong anonymity is not a primary goal in DIDComm, so is to operate on top of arbitrary
communication networks, which may include anonymizing ones. However, there are also differences. First, Tor
is a session (circuit) oriented protocol, whereas DIDComm is message-oriented. Second, while both Tor and
DIDComm employ multiplexing techniques, they are applied at different levels: Tor allows wrapping multiple
circuits into one TLS connection, yet each circuit has its own data encryption key; whereas DIDComm uses a
single data encryption key, which then further wraps with keys exchanged with multiple recipients.

1.2 Contribution

Towards the formal understanding of the security of DIDComm messaging, focusing on its v2, we make the
following contributions.

Formal model for secure communication with DIDs. We give a faithful abstraction of the general
setting where DIDs are used over potentially any network – the model put forth by DIDComm in Figure 1
– where we cast the network as parameterizable so that it is possible to steer the anonymity it already
guarantees (as different networks give different guarantees and we want to prove one statement for all of
them). We cast the ideal guarantees that DIDComm messaging encryption modes aim to achieve by means
of a strong ideal communication resource. We put forth a composable treatment in Section 4. This simplifies
capturing privacy and anonymity guarantees as it is a simulation-based security notion, while also admits
a natural modular approach to protocol design. We not only abstract the network interface into its own
module such that our statement about the cryptographic layer holds for any underlying network, but also can
rely on the composition theorem to argue that higher-level applications can use the achieved communication
resource (e.g. to implement non-deniable authentication based on signatures of plaintexts) and be assured
that composition with the actual protocol retains all security guarantees. This composable approach paves
the way for analyzing higher-level protocols in the DIDComm framework. While we focus on DIDComm’s
encryption modes, the task of secure messaging with DIDs is just one module in larger infrastructures around
DIDs as we outline in Section 8.

The obtained communication resource exposes the ideal guarantees of the three core modes of DIDComm,
denoted by: anon, for sending anonymous, private, but unauthenticated messages to a set of recipients; auth,
for sending authenticated and private messages to a set of recipients; and a-auth, for sending anonymous,
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private, but authenticated messages to a set of recipients, which appears to be a central feature, hiding the
sender toward the network while authenticating the message to the recipients.

Security proof of DIDComm and extensions We introduce DIDComm’s main encryption modes via
pseudocode in Section 3, to facilitate subsequent understanding of the claimed security properties. This
pseudocode has been extracted via careful analysis of the DIDComm v2 spec [CLT22], the standards upon
which it is built [Jon15, Mad21], and the official code repository [sd21, Lab23]. Thus, we consider our
description to accurately capture DIDComm’s operation. This is further endorsed by our prototypical code
– upon which we report in Section 7 – which is built directly from DIDComm’s repositories, or from the
cryptographic libraries upon which DIDComm builds.

We formally cast DIDComm in Section 5 which allows us to reason about its provable security. We show
that the ideal communication resource is realized, and expose two subtleties. First, the combined a-auth mode
does not guarantee that ciphertexts are committed to a message, although authentication alone has it. This
might be easily overlooked in practice and become a possible source of confusion in connection with message
franking [GLR17]. We suggest to always use committing authenticated encryption to avoid such confusion,
and in this paper we always assume that this is the case. Second, since our theorems are very specific about
the leakage induced by the cryptographic layer, we observe that the current DIDComm modes leak substantial
information. Notably, the set of recipients. While not a primary design goal, it is desirable to avoid this
leakage, as otherwise using DIDComm with an anonymous network (e.g. a mixnet) is a clear mismatch as
the cryptographic scheme reveals information that the network wanted to hide.

In Section 6 we propose three extensions that we prove secure.

1. We show an optimized a-auth mode that combines authenticity and anonymity. Our proposal is much
more efficient—about a 2x improvement—for runtime and ciphertext size compared to DIDComm’s
original proposal. To avoid confusion, when needed we refer to the original combined mode as
naive-a-auth, and to our proposal as merge-a-auth. As we report below, the overhead incurred by
merge-a-auth is low, when compared to the basic auth mode.

2. We introduce the notion of sender-anonymous messages with receiver-anonymity – which we refer to
as ra-anon– a desirable property for complementing the cryptographic layer by a mode that does
not disclose the set of recipients to any nodes along the network path (in contrast to the current
implementation which does not intend to hide it). Such a protocol can achieve full anonymity when
used alongside private bulletin boards or Tor [AFNV19, DMS04]. In fact, we prove something stronger:
this mode is anonymity-preserving in that it does not add any more leakage than what is leaked by any
underlying network. Since ciphertexts do not leave a trace on the intended recipients, such a mode is
useful to achieve plausible deniability and reducing the attack vector against censorship. We give an
algorithm for this mode by borrowing techniques from fuzzy message detection.

3. We show how to incorporate receiver-anonymity into our optimized combined mode of operation, mode
to which we refer as ra-a-auth to again get an optimized all-in-one algorithm. This algorithm keeps
all sender and receiver identities hidden, still the sender can authenticate itself toward all recipients.
It is worth noting that even this all-in-one mode is still more efficient than the naive-a-auth mode
currently available in DIDComm, which shows that we can get more security with practical performance.

We emphasize that our proposed modes introducing receiver-anonymity can be highly desirable in real
world use cases. For instance, consider a user who buys online a ticket to some event. In order for the user
to receive the ticket, the vendor has to send it. But the user does not want their email provider (or other
intermediaries) to learn that they have transacted with the event vendor. With our receiver anonymity mode,
the user can specify a generic inbox shared by thousands of users, and periodically (and privately) check for
messages aimed at them. This type of interaction (i.e., delivering credentials) is actually a main use case of
DIDComm.
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Benchmarks We evaluate in Section 7 the computational, space, and memory costs of our proposal
by prototyping our extensions, using as reference the existing modes. merge-a-auth almost improves
computational and space costs by a factor of 2, compared with naive-a-auth. Space- and computationally-
wise, our new modes (ra-anon and ra-a-auth) do not induce too much overhead – and, concretely, are more
efficient than naive-a-auth. Memory-wise, our new modes add about 1.5% extra cost, which is negligible in
practice – and can be due to unoptimized coding.

Interest beyond DIDComm We observe that the auth and anon modes in DIDComm are direct
applications of existing RFCs in the domain of JSON Web Algorithms [Jon15, Mad21] (in auth, senders use
a well-known static key pair; in anon, they don’t). naive-a-auth simply applies them sequentially, but there
is no specific mode in [Jon15, Mad21] explicitly covering this combination. Thus, our merge-a-auth mode
is of independent interest, as it achieves “the best of both worlds” almost for free, that is, almost as fast
as authentication alone with ciphertexts of similar sizes. On the other hand, receiver anonymity introduces
a privacy enhancement not covered by the existing standards, although it can be made RFC-compliant by
leveraging headers defined in the RFCs. Given that –as we report– the overhead of adding this property is
low, we consider that this may also be of interest in privacy-demanding scenarios as described above.

2 Preliminaries

2.1 Notation

For a scheme S defining some algorithm A, we sometimes use the notation S.A, and if X is a set representing
either the domain or the range of some algorithm defined by S, we sometimes use the notation S.X . In our
pseudocode, some functions receive ID arguments – which identify public keys – and then internally use pk ID

straight away. For readability, we introduce ID as a shorthand for (ID, pk ID). Note that, in a PKI setting
(like DIDs), knowing the identifier of a public key allows fetching that key from the PKI.

2.2 Key-Derivation Function (KDF)

We define KDF syntax and security following [Kra10]. Intuitively, a KDF is a function that takes as input
a sample σ from a source of keying material (e.g., the output gxy of a Diffie-Hellman key exchange) and a
length value L, and outputs a string of length L. The source of keying material Σ, or simply source, is a
two-valued probability distribution that outputs (σ, α), where α represents some auxiliary knowledge about σ
(or its distribution) that is available to the attacker (e.g., the public values gx and gy of a Diffie-Hellman key
exchange). We next provide a formal definition of a KDF, which also defines additional inputs, required for
example in key-exchange with identities. The security properties are provided in Appendix E.

Definition 1 A key-derivation function (KDF) is an efficiently computable algorithm KDF : {0, 1}+×N×{0,
1}∗ → {0, 1}+ that on input a non-empty bitstring σ sampled from a source, a length value L, and an optional
context value c, outputs a non-empty bitstring of length L, that is, KDF(σ, L, c) ∈ {0, 1}L.

2.3 AE with Associated Data (AEAD)

We follow [Rog02] in defining authenticated encryption with associated data (AEAD) which is compactly
committing [GLR17]. Note that we assume AEAD schemes where the ciphertext can be split into a core
ciphertext C and an authentication tag T . We state here the syntax and defer the security game to Appendix E.

Definition 2 For key space K, nonce space N , header space H, message spaceM, ciphertext space C, and
authentication tag space T , an authenticated encryption with associated data (AEAD) scheme is a tuple
AEAD = (G, E ,D) where:

• G is the uniform distribution over K;
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• E : K ×N ×H×M→ C × T is the deterministic encryption algorithm;

• D : K ×N ×H× C × T →M∪ {⊥} is the deterministic decryption algorithm.

For correctness, it is required that for any key K ∈ K, any nonce N ∈ N , any header H ∈ H, and any
message M ∈M, letting (C, T )← E(K,N,H,M), results in D(K,N,H,C, T ) = M . Moreover, we assume
that |C| = |M |, and |T | = τ , where τ is a constant defined by the scheme AEAD.1

2.4 Deterministic AE (DAE)

Since DIDComm uses key-wrapping, we need a tailored version of authenticated encryption, namely de-
terministic authenticated encryption (DAE) [RS06], which is suitable for encrypting (authentically) keying
material. Even though [RS06] defines DAE with associated data, since DIDComm does not take advantage
of this feature in the key-wrapping phase, we do not consider this in our formalism. We state here the syntax
and defer the security game to Appendix E.

Definition 3 For key space K, message spaceM, ciphertext space C, a deterministic authenticated encryption
(DAE) scheme is a tuple DAE = (G, E ,D) where:

• G is the uniform distribution over K;

• E : K ×M→ C is the deterministic encryption algorithm;

• D : K × C →M∪ {⊥} is the deterministic decryption algorithm.

For correctness, it is required that for any key K ∈ K and any message M ∈M, D(K, E(K,M)) = M .

3 Introduction to DIDComm’s Encryption Modes

DIDComm specifies two encryption modes [CLT22, Section 5.1]: anonymous sender encryption (AnonCrypt),
which aims at providing confidentiality and integrity without revealing the identity of the sender, and
authenticated sender encryption (AuthCrypt), which aims at additionally proving the identity of the sender,
but exclusively to the recipient. DIDComm also specifies sequentially composing AuthCrypt and AnonCrypt
in order to combine their properties.

We describe the two modes on a high level. Both AnonCrypt and AuthCrypt employ elliptic curve
Diffie-Hellman (ECDH) key agreement to protect a randomly generated content encryption key (CEK) using
key-wrapping [RS06]. In order to protect the CEK, a key encryption key (KEK) is obtained by applying a
key-derivation function (KDF). The CEK is then used for an authenticated encryption scheme with associated
data (AEAD) such as AES in Galois/Counter Mode (AES256-GCM) or CBC mode (AES256-CBC) with
HMAC with SHA512 (HMAC-SHA512) for authentication.

The reason for generating a fresh random key for encryption, rather than using the one derived from
ECDH, is to allow for more compact ciphertexts in the case of multiple receivers: rather than encrypting the
whole message with a distinct key generated for each receiver, encrypting the message with the same key for
each receiver and then encrypting (the shorter) key separately for each receiver, significantly reduces the
ciphertext size. DIDComm enforces this approach even in the case of a single receiver so as to support both
single and multi receiver flows, and has been motivated as a trade-off to reduce code paths [HC22].

The main difference between AuthCrypt and AnonCrypt is how the ECDH key agreement is defined:
AnonCrypt uses an ephemeral key-pair for the sender, and the receiver’s static key-pair to derive a shared
secret, while AuthCrypt derives an additional shared secret using both sender and receiver’s static key-pairs.
In addition, in AnonCrypt, only the identifiers of the recipients’ keys are fed to the KDF; whereas AuthCrypt
also feeds the KDF with the sender’s key identifier. Both AnonCrypt and Authcrypt rely on existing standards.
We overview them in Appendix A. We next revisit both methods, detailing their further differences, and
appropriately abstract them to analyze DIDComm’s claimed security guarantees.

1 This is the case for the GCM and CBC-HMAC AEAD schemes used by DIDComm.
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E(sk ID, ID, (ID1, . . . , IDt),M)

// Content encryption

cek $← AEAD.K; N $← AEAD.N
H ← ID∥ID1∥ · · · ∥IDt

(C, T )← AEAD.E(cek , N,H,M)

// Ephem. key-pair for all receivers

(esk , epk)← DHKE.G

foreach i ∈ [t] do

// Key agreement

Ze,i ← (pk IDi
)esk ; Zs,i ← (pk IDi

)sk ID

Zi ← Ze,i∥Zs,i

// Key wrapping

kek i ← KDF(Zi, |DAE.K|, H∥T )
ek i ← DAE.E(kek i, cek)

// Finalization

ek ← (ek1, . . . , ek t)

return (H, (N,C, T, epk , ek))

D(sk ID′ , ID, H, (N,C, T, epk , ek))

// Key agreement

Ze ← epk sk ID′

Zs ← (pk ID)
sk ID′

Z ← Ze∥Zs

// Key unwrapping

kek ← KDF(Z, |DAE.K|, H∥T )
cek ← DAE.D(kek , ek)

// Content decryption

M ← AEAD.D(cek , N,H,C, T )

return M // ∈ AEAD.M ∪ {⊥}

Figure 2: Encryption and decryption algorithms of anon, and auth, with the additions to build auth from
anon highlighted in gray. ID denotes the sender identity, and ID′, ID1, . . . , IDt denote the identities of the
receivers. Recall that given ID, the key pk ID is always available. To distinguish the modes, we refer to the
algorithms by Eanon/Danon and Eauth/Dauth, respectively.

3.1 Abstracting AnonCrypt and AuthCrypt

We formally define both the (multi-receiver) scheme anon (AnonCrypt) and the (multi-receiver) scheme auth
(AuthCrypt) as the composition of three primitives: a key-derivation function scheme KDF, an AE scheme
AEAD with associated data, and a deterministic AE scheme DAE. Suppose a sender with identity ID wants
to send a message M to a list of receivers with identities ID1, . . . , IDt. First, both anon and auth algorithms
sample a fresh CEK cek and nonce N from the respective spaces defined by Definition 2. Then, they both
define the list of receiver identities ID1, . . . , IDt as the additional data H, and auth additionally includes the
sender identity ID to H. Encrypting M with AEAD.E results in ciphertext-tag pair (C, T ), which will be part
of the final ciphertext.

The next step is to encrypt the CEK for each receiver. For this, both anon and auth use the same ephemeral
public-key for each receiver [Mad21], which is motivated by a line of works such as [Kur02, BBS03, BBKS07].
More precisely, for both schemes, the sender first generates an ephemeral Diffie-Hellman key-pair (esk ,
epk)← DHKE.G, with epk = gesk , and then derives for each receiver with identity IDi an (ephemeral) shared
secret Ze,i = (pk IDi

)esk using the ephemeral secret key esk and receiver IDi’s public key pk IDi
. Then, only

if using auth, the sender derives an additional (static) shared secret Zs,i = (pk IDi
)sk ID using its own secret

key sk ID and the receiver IDi’s public key pk IDi
. If using anon, the sender sets Zi to Ze,i, while if using auth,

it sets Zi to Ze,i∥Zs,i. Next, according to Definition 1, the sender derives the KEK kek i by feeding Zi as
the source sample to KDF, specifying length L = |DAE.K|. In case of anon, the context value is set to H,
but in case of auth, it is set to H∥T . Note that setting the context to H∥T is crucial in order to achieve
authenticity as, otherwise, the encrypted content (the AEAD ciphertext, C) and the CEK are decoupled,
enabling an attack that replaces the message and this would break authenticity and the ideal resource we
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ftc, IDri

pkIDri

snd,mode,M, IDr1 , IDr2

mode

...

auth ... anon

(H,C) snd,

(mode, H,C),
IDr1 , IDr2

PKI

A− INS

...

ID1

ID2

pkIDr1
pkIDr2

ftc, IDs

pkIDs

Attacker learns:

Message

Buffer (mode, H, C)

Inbox

- Messages of the form (mode, H,C)
- Network leakage ℓnet(.)

Parameter ℓnet(.)

Attacker can:

rcvrcv
(mode, H, C) mode

...

auth ... anon

(IDs,M) M

IDs IDri

(IDs,M)/M

Protocol Converter π Protocol Converter π

Network

Public-Key Infrastructure

- Forward user messages
- Send any message it wants

reg, ftc

Figure 3: The direct modeling of the DIDComm setting of Figure 1 as resources and converters in Constructive
Cryptography. We depict only two honest parties (U) as a left and right interface for sender and receive,
respectively (but note that in the general protocol, a party play both roles), and the attacker’s interface E is
drawn at the bottom of the resources, where the attacker learns all information contained in the message
buffer and can steer delivery of messages.

Init()

P← []

Ui(reg; ID, pk) // ID is not registered yet

P[ID]← pk

Ui(ftc; ID)

return P[ID]

E(reg; ID, pk) // ID is not registered yet

P[ID]← pk

E(ftc; ID)

return P[ID]

Figure 4: Public-key infrastructure resource PKIn, for i ∈ [n] for maintaining a unique association P between
identities and keys.

introduce later could not be achieved.
Finally, the sender encrypts cek using a DAE scheme DAE according to Definition 3 with kek i as key,

obtaining the encrypted key ek i. The resulting ciphertext is defined to be (H, (N,C, T, epk , ek)), where
ek := (ek1, . . . , ek t), and decryption is the natural inversion of this process. We provide a formal description
of encryption and decryption of both auth and anon in Figure 2, where the corresponding functions are
denoted by Eanon/Danon and Eauth/Dauth.

For the combined mode a-auth, DIDComm puts forth the straightforward combination (H,C) ←
Ea-auth(ID, (ID1, . . . , IDt),M) := Eanon((ID1, . . . , IDt), (H

′, C ′)) with (H ′, C ′) ← Eauth(ID, (ID1, . . . , IDt),M).
And, tor the decryption counterpart, (ID,M) ← Da-auth((ID1, . . . , IDt), (H,C)) := Dauth(ID, (ID1, . . . , IDt),
(H ′, C ′)), where (H ′ = (ID∥ID1∥ . . . ∥IDt), C

′) := Danon((ID1, . . . , IDt), (H,C)). Note that we augment the
output of Da-auth with the identity of the sender, ID, even though this is not strictly part of the encrypted
plaintext. This slight abuse of notation is needed to explicitly capture that, in a-auth, from an a priori
sender-unauthenticated ciphertext, the recipient learns the sender’s identity.

4 Formalizing DIDComm’s Goals

We model DIDComm’s security in the constructive cryptography (CC) framework [MR11, Mau12] introduced
by Maurer and Renner. In Appendix D we provide an introduction to the framework. CC allows to define
the security of a cryptographic protocol as a statement capturing the construction of an ideal functionality
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Init()

I← []; M ← []

R← []; S ← ∅
ctr← 0

Ui(reg; ID) // ID is not registered yet

I[i]← ID

Ui(snd;M, (ID1, . . . , IDt)) // Ui ∈ H

ID← I[i]

S ∪← (ctr,M, ℓnet(ID, ID1, . . . , IDt))

M[ctr]← (M, ID1, . . . , IDt)

ctr
+← 1

Ui(snd;S) // Ui ∈ C

ID← I[i]; S ∪← (i, ID, S)

Ui(rcv)

ID← I[i]

O ← R[ID]

R[ID]← ∅
return O

E(rcv)

O ← S
S ← ∅
return O

E(snd;M, (ID1, . . . , IDt))

foreach j ∈ [t] do

R[IDj ]
∪←M

E(fwd; hnd)

if 0 ≤ hnd < c then

(M, ID1, . . . , IDt)←M[hnd]

foreach j ∈ [t] do

R[IDj ]
∪←M

Figure 5: Assumed anonymous insecure network resource A-INSn,ℓnet , for i ∈ [n]. The honest interface allows
to specify a message and a target set of recipients, where the final delivery is under the power of the network
adversary (interface E). Furthermore, a dishonest sender can formally insert any message it wants into the
sender buffer.

from a set of assumed functionalities, and such a notion of security is naturally composable. We model
functionalities (ideal and assumed) as resources, defined by their input-output behavior, and the protocol
interacting with the assumed resources as a list of converters. Rather than defining the explicit behavior,
resources and converters are described in words or pseudo-code. A resource specifies a set I of interfaces,
which should be thought of as being assigned to parties, and attaching a converter π to a resource R at a
particular party interface U ∈ I, denoted πUR, results in a new resource.

We use distinguishers to define the distance (in terms of behavior) between two resources R and S,
and write R ≈ε S to denote the fact that no efficient (i.e., polynomial-time) distinguisher can distinguish
between the two with advantage greater than ε when interacting through all available interfaces. In this
work we consider the setting with n ≥ 1 (potentially corrupted) party interfaces U := {U1, . . . ,Un} and an
adversary interface E. For a list of converters π := (π1, . . . , πn) (also called a protocol), a resource with
interface set I = {U1, . . . ,Un,E}, and a set of corrupted parties C ⊆ U and corresponding honest party set

H := U ∖ C := {Ui1 , . . . ,Uit}, for t ≤ n and ij ∈ [n], we use the notation πHR := π
Ui1
i1
· · ·πUit

it
R. We define

security of a protocol as follows.

Definition 4 For two resources R and S with interface set I = U ∪ {E}, for user set U = {U1, . . . ,Un}, and
a protocol π := (π1, . . . , πn), we say that π (securely) constructs S from R within ε, denoted R

π,ε−−→ S, if for
any corrupt set C ⊆ U and honest set H := U ∖ C, there exists a simulator σ such that πHR ≈ε σ

C∪{E}S.

The advantage of a composable security notion is that it guarantees that the ideal resource can be replaced
by the assumed resource with the protocol in any context: if π1 realizes S from R, and π2 realizes T from S,
then their composition π2π1 realizes T from R.
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4.1 What Should DIDComm Achieve?

We now give our formal model for DIDComm’s encryption modes, which, at the same time, is a general
model of communication in the DID space, whenever sender and receiver have only minimal cryptographic
setup available in the form of a public key and a lookup table (which we frame as a PKI, but it could also
be a blockchain) for finding the association. We use Constructive Cryptography to capture the topology
of Figure 1 directly into a corresponding formal model, as shown graphically in Figure 3. This modelling
captures in particular sender and receiver(s) of DIDComm messages, and will allow to precisely define expected
confidentiality, authenticity, and privacy properties via an ideal resource graphically depicted in Figure 6. This
being a complex task on its own, we leave out of scope capturing other capabilities of the larger framework,
such as routing via intermediate proxies. We also leave out of scope capturing the security achieved via
digital signatures, which DIDComm does support. Note however that DIDComm’s encryption modes are the
core component of the framework, as they are mandatory whenever any type of confidentiality and privacy is
needed and that the cryptographic guarantees we prove hold with respect to a very broad family of networks.
In fact the real network resource we introduce below is parameterized and can model completely insecure
networks (where all participants are fully identifiable), to a fully anonymous network. This means, as an
upside, that the guarantees we prove for the cryptographic protocols are very strong.

4.1.1 DIDComm’s Setup

We now describe the resources that we use to model the setup assumed by DIDComm: a public-key
infrastructure PKIn and an insecure network A-INSn,ℓnet with an explicit leakage function ℓnet that captures
how much information about the communication endpoints could be inferred by a network attacker due to
the users using this particular network. On a high level, PKIn allows any user Ui, for i ∈ [n], as well as the
adversary E, to register a public key pk under ID via the command reg, which is internally stored in table P.
Any user and the adversary can then fetch the public key pk registered under some ID via the command
ftc. The resource ensures a unique association, that is, an ID can only appear once in the table. We assume
implicitly that registering an already registered identity yields an observable error and require protocols to
check before registering an association. The formal description of PKIn is given in Figure 4.

On a high level, A-INSn,ℓnet allows any user Ui, for i ∈ [n], who registered ID via the command reg to the
resource, to send a message M to a list of users with registered identities (ID1, . . . , IDt) via the command
snd. The message, along with the network leakage ℓnet(ID, ID1, . . . , IDt), is not directly sent, but stored in
buffer S for the adversary E to read via the command rcv. Each message is also associated with a unique
handle (counter) hnd, which the adversary can use to forward M to all users with identities ID1, . . . , IDt

via the command fwd. Rather than being delivered directly to the user with registered identity IDj , the
message is stored in buffer R[IDj ], for each j ∈ [t]. The adversary can also directly send a message M to a
list (ID1, . . . , IDt) via the command snd, which means M is also stored in R[IDj ], for each j ∈ [t]. Finally,
each user Ui, which registered ID, will be able to retrieve all messages in R[ID] via the command rcv. We
distinguish honest users H and dishonest or corrupted users C and usually make this explicit in the notation,
i.e., we write A-INSn,ℓnet,C to denote the resource where the interfaces specified in C are formally assigned to
dishonest users, and only omit the explicit parameter for sake of readability. Those users are modeled to
be able to freely communicate to E (concretely, by putting any value S in the send buffer via the command
snd) which models that all dishonest entities can be seen as a monolithic (and even more powerful) network
attacker controlling the network and corrupted users. The formal description is given in Figure 5.

On realizing DIDComm’s setup We now provide some justification as to why the ideal setup resources
we describe reasonably follow the setting in a typical DIDComm deployment. A more detailed analysis is an
interesting future research direction but outside the scope of this paper that focuses on the cryptographic
layer.

For the PKI, note that DIDComm builds on top of DIDs as a source of public key material. Indeed, it can
be argued that DIDs are a type of PKI. To see this, observe that, as per [W3C22], any compliant DID method
needs to define the operation that allows to associate an identifier – the DID string, e.g. did:example:id –
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to a (set of) public key(s). Conversely, given an identifier, any compliant DID method needs to define how to
fetch the associated (set of) public key(s). It is clear that the former corresponds to the reg operation in
PKIn, and the latter corresponds to the ftc operation of PKIn – both also available to adversarial users in the
DID setting. Finally, the typical use case is that id is the hash of a master public key of the DID, making
sure that no one else can claim and perform cryptographic operations using the same DID string.

For the network, our generic ideal resource A-INSn,ℓnet is also generic enough to capture a wide range of
communication networks. Indeed, in any networking system, any party must be able first join the network
and get some address or identifier to which others can send messages. This is captured by the reg interface.
Then, in any network, any party can send a message to a set of recipients, who must be able to receive them.
Both capabilities are captured by the snd and rcv interfaces. The network is subject to a network attacker,
who has far reaching capabilities as how to inject or read messages. The network is parameterized by a
leakage function ℓnet, which is made available to the adversary alongside any sent message, and can be set to
any desired function depending on the real network that we want to capture. For instance, in the case of a
strong anonymizing network, such as Tor [DMS04], the leakage function could be modeled as outputting the
empty string, whereas when modeling basic TCP/IP networks, one must assume that identifiers of sender
and recipient(s) can be inferred from network traffic.

4.1.2 DIDComm’s Goals as an Ideal Resource

In Figure 7 we define DIDCommPKIn
n,ℓrcv,C – the ideal resource for DIDComm’s encryption modes – with leakage

function ℓrcv and corrupt users set C, which functionally integrates the PKIn resource. This means that the
ideal resource can again be used as a PKI (in future constructions), in addition to the ideal communication
functionalities it offers. This is an important feature as it makes sure that the PKI is not consumed but
preserved by the construction. DIDCommPKIn

n,ℓrcv,C allows any honest user Ui /∈ C, for i ∈ [n], who registered ID
via command reg to the resource, to send a message M to a list of users with registered identities (ID1, . . . , IDt)
via command snd, additionally specifying a mode mode ∈ {anon, auth, a-auth}. As for A-INSn,ℓnet,C , a buffer
S models what is leaked to the adversary. Together with the leakage ℓrcv(ID, ID1, . . . , IDt), for each of the
honest receivers the length |M | of the message is leaked, while for every corrupt user the full message M is
leaked. Additionally, if mode = auth, also the ID of the sending user Ui is leaked. The adversary can read
buffer S via command rcv. Each message is associated with a unique handle hnd, which the adversary can use
to forward M to all users with identities ID1, . . . , IDt via command fwd. Rather than being delivered directly
to the user with registered identity IDj , the message is stored in buffer R[IDj ], for each j ∈ [t], together with
the sender’s ID in case mode = auth or mode = a-auth. The adversary can also specify an ID together with
the handle hnd when issuing the command fwd, in case it knows the associated ID. If ID is not specified
(ID = ⊥), the resource will find the receiver ID associated with this handle hnd, if such ID exists. This feature
is essential: consider the case of no leakage at all (as we achieve in our new modes). Then, messages can be
sent among honest users in the desired oblivious way, hiding content and communication endpoints.

The adversary can also directly send a message M , optionally associated to a sending ID, to two lists R,R′

of IDs via command snd. This means that M (or (ID,M)) is also stored in R[ID′], for each ID′ ∈ R. For each
ID′ ∈ R′, ⊥ is instead stored in R[ID′] – i.e., R′ models the set of recipients whose message the adversary
decides to tamper with. Also, the adversary can communicate directly to corrupt users via command inj.
Finally, each user Ui, which registered ID, can retrieve all messages in R[ID] via command rcv.

Remark 1 For brevity, we include in Figure 7 code (within dashed boxes) augmenting the DIDComm model
described above. The corresponding improvements are defined in Section 6.

5 Security of DIDComm

We next formalize DIDComm’s protocol as a CC converter in Figure 8. The protocol dispatches the message
(resp. the ciphertext) to the correct encryption (resp. decryption) algorithm for each mode. With this, we
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snd, Inp := (mode,M, IDr1 , IDr2)
mode

PKI

...

ID1

ID2

Protocol leakage to attacker about identities (leakage about M is just |M | for all modes).

Inbox

Ideal resource DIDcomm with leakage parameters ℓrcv, ℓra

...

rcv

by sender IDs at its interface

(IDs,M)/M

anon auth New modes

Receiver IDs

Sender and Receiver IDs

Only number of receivers

Attacker can forward, or send new messages
but never frame honest senders

Dispatch Inp into the right bucket

...

...

reg,ftc reg,ftc

Figure 6: The ideal resource that the cryptographic protocols of DIDComm and our new modes achieve,
where we specifically focus on what the cryptographic layer inherently leaks about the involved identities
(bottom). Again, depict two honest parties on the left and right, respectively to illustrate the flow of the
messages from sender to receiver. The adversary does not learn the contents of the message buffers, only the
length of the message (privacy) and, depending on the mode, leakage about the involved identities. The ideal
resource further functionally integrates a PKI (top) whose operations are depicted in grey.

are ready to present our first main result, which states that the DIDComm protocol realizes the resource
DIDCommPKIn

n,ℓrcv,C from PKIn and A-INSn,ℓnet,C . Herein, the resulting leakage function

ℓrcv(ID, ID1, . . . , IDt) := (ℓnet(ID, ID1, . . . , IDt), (ID1, . . . , IDt))

is the one that leaks the set of recipients in addition to what the underlying network leaks. We generally
assume that t ≥ 1.

Theorem 1 For any n ≥ 1 and any assumed leakage function ℓnet, consider the real resources PKIn from
Figure 4 and A-INSn,ℓnet from Figure 5, the ideal resource DIDCommn,ℓrcv,C depicted in Figure 7 with the
leakage function ℓrcv defined above, and the DIDComm protocol πDIDComm := (π1, . . . , πn) from Figure 8. We
have that, for a negligible function ε, and assuming that the DDH assumption holds,

[PKIn,A-INSn,ℓnet,C ]
πDIDComm,ε−−−−−−→ DIDCommPKIn

n,ℓrcv,C . (1)

The proof is given in Appendix E, and builds on the security of the underlying KDF, DAE and AEAD
schemes, where, in the former, we assume that the DDH assumption holds, given our explicit adoption of
DDH-based sources of keying material for KDFs in Figure 2, following [Kra10]. We point out that due to
the similarity of the above statement with Theorem 2 in Section 6.1, where we replace the implementation of
mode a-auth by a more efficient version, we cover both variants in one security proof in Appendix E.4.

Remark 2 Recall that we assume throughout the paper that AEAD is compactly committing [GLR17].
Otherwise, the slightly weaker resource described in Appendix B, would be realized instead.

Remark 3 Throughout this paper, the parameter n denotes the total number of users in the system, and t
denotes the number of recipients of a message processed with some of the defined DIDComm modes. In the
real world, n is likely to be in the order of tens to hundreds of thousands and, while technically unrestricted,
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Init()

I,J,M,R← []; S ← ∅; ctr← 0

PKI.Init(); // The ideal resource functionally integrates a PKI.

Ui(reg; ID) // Ui ∈ H and ID not registered and PKI.Ui(ftc; ID) = ε

I[i]← ID; J[ID]← i; pk ← E(reg; i, ID)

PKI.Ui(reg; ID, pk)

Ui(snd; mode,M, (ID1, . . . , IDt)) // Ui ∈ H

ID← I[i]

foreach j ∈ [t] do

if J[IDj ] ̸= ⊥ then

if IDj ∈ C then lm ←M else lm ← |M |
lid ← ℓrcv(ID, ID1, . . . , IDt)

if mode = anon then

S ∪← (ctr, anon, lm, lid)

M[IDj ]
∪← (ctr,M)

elseif mode = auth then

S ∪← (ctr, auth, ID, lm, lid)

M[IDj ]
∪← (ctr, ID,M)

elseif mode = a-auth then

S ∪← (ctr, a-auth, lm, lid)

M[IDj ]
∪← (ctr, ID,M)

elseif mode = ra-anon then

lid ← ℓra(ID, ID1, . . . , IDt)

S ∪← (ctr, ra-anon, lm, lid)

M[IDj ]
∪← (ctr,M)

elseif mode = ra-a-auth then

lid ← ℓra(ID, ID1, . . . , IDt)

S ∪← (ctr, ra-a-auth, lm, lid)

M[IDj ]
∪← (ctr, ID,M)

ctr
+← 1

Ui(rcv)

ID← I[i]; O ← R[ID]; R[ID]← ∅; return O

E(snd; ID,M,R,R′)

if J[ID] = ⊥ ∨ UJ[ID] ∈ C then

foreach ID′ ∈ R do

if J[ID′] ̸= ⊥ then

if ID = ⊥ then R[ID′]
∪←M

else R[ID′]
∪← (ID,M)

foreach ID′ ∈ R′ do

if J[ID′] ̸= ⊥ then R[ID′]
∪← ⊥

E(fwd; ID, hnd) // ID can be ⊥

if ID ̸= ⊥ then

if ∃M : (hnd,M) ∈M[ID] then

R[ID]
∪←M

elseif ∃ ID′,M : (hnd, ID′,M) · · ·
· · · ∈M[ID] then

R[ID]
∪← (ID′,M)

elseif ID = ⊥ then

foreach i ∈ [n] do

ID′ ← I[i]

if ∃M : (hnd,M) ∈M[ID′] then

R[ID′]
∪←M

elseif ∃ ID′′,M : (hnd, ID′′,M) · · ·
· · · ∈M[ID′] then

R[ID′]
∪← (ID′′,M)

E(rcv)

O ← S; S ← ∅; return O

E(inj; ID,M)

j ← J[ID]; if Uj ∈ C then R[ID]
∪←M

Ui(snd;S) // Ui ∈ C

ID← I[i]; S ∪← (i, ID, S)

Ui(reg; ID) // Ui ∈ C and ID not registered yet

I[i]← ID; J[ID]← i

Figure 7: The basic ideal resource DIDCommPKIn
n,ℓrcv,C and augmented resource DIDCommPKIn

n,ℓrcv,ℓra,C which
includes the two new modes and leakage function in the dashed box. The set of corrupt users (interfaces) is
denoted by C. For readability, we only depict the DIDComm related commands and omit explicit commands
to the PKI that are also available at the parties’ interfaces.
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Init()

sk∗ ← ⊥
ID∗ ← ⊥

Ui(reg; ID) // ID not registered with PKI and A-INS

if ID∗ = ⊥ then

ID∗ ← ID

(sk∗, pk∗)← DHKE.G
PKIn.Ui(reg; ID

∗, pk∗)

A-INSn,ℓ.Ui(reg; ID
∗)

Ui(snd; mode,M, (ID1, . . . , IDt))

ID← (ID1, . . . , IDt)

if mode = anon then

(H,C)← Eanon(ID,M)

elseif mode = auth then

(H,C)← Eauth(sk∗, ID∗, ID,M)

elseif mode = a-auth then

(H,C)← Ea-auth(sk∗, ID∗, ID,M)

elseif mode = ra-anon then

(H,C)← Era-anon(ID,M)

elseif mode = ra-a-auth then

(H,C)← Era-a-auth(sk∗, ID∗, ID,M)

// C = (N,C, T, epk , ek)

A-INSn,ℓ.Ui(snd; (mode, H,C), ID)

Ui(rcv)

O ← A-INSn,ℓ.Ui(rcv); O′ ← ∅
foreach (mode, H,C) ∈ O do

(N,C, T,H, epk , ek)← C

(ek1, . . . , ek t) ← ek

(ID, ID1, · · · , IDt)← Parse(H)

j∗ ← 0

foreach j ∈ [t]

if IDj = ID∗ then j∗ ← j

c← (N,C, T, epk , ek j∗)

if mode = anon then

M ← Danon(sk
∗, H, c)

O′ ∪←M

elseif mode = auth then

M ← Dauth(sk
∗, ID, H, c)

O′ ∪← (ID,M)

elseif mode = a-auth then

(ID,M)← Da-auth(sk
∗, H, c)

O′ ∪← (ID,M)

elseif mode = ra-anon then

M ← Dra-anon(sk
∗, H, c)

O′ ∪←M

elseif mode = ra-a-auth then

M ← Dra-a-auth(sk
∗, H, c)

O′ ∪← (ID,M)

return O′

Figure 8: DIDComm’s protocol converter πi for interface Ui, for i ∈ [n]. Parse(H) returns (ID, ID1, . . . , IDt)
if H = ID∥ID1∥ · · · ∥IDt and (⊥, ID1, . . . , IDt) if H = ID1∥ · · · ∥IDt or H = a-auth∥ID1∥ · · · ∥IDt, for valid IDs
ID, ID1, . . . , IDt. The code within dashed boxes augments the basic converter with the receiver anonymity
modes.

t will probably be smaller than 10, as the most prominent use-case for t > 1 is when sending a message
to several devices of the recipient. In this regard, efficiency-wise, n is not relevant, whereas the larger t is,
the more gain can be achieved via the defined modes, compared with running the same mode independently
towards t recipients. Privacy-wise, n defines the size of the maximum possible anonymity set (but does not
influence encryption/decryption times in any way) and t does not play a crucial role as there is no receiver
anonymity anyway in the basic DIDComm modes analyzed above. When we move to the new modes with
receiver anonymity in the next section, note that in general, the number t is the only leakage admitted by the
new modes, and we give a very simple and effective trick how to conceal that leakage in practice.
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6 Improving DIDComm

6.1 Combining Authcrypt and Anoncrypt - Efficiently

We describe a highly optimized encryption and decryption process for a-auth in Figure 9. If needed for
disambiguation and comparison, we refer to this mode of operation by merge-a-auth, in contrast to the
naive variant, which we refer by naive-a-auth. Recall that in naive-a-auth, the whole output of authcrypt
(the tuple (N,C, T,H, ek , epk), cf. Figure 2) is serialized and fed to anoncrypt, which again encodes the
recipients’ identifiers as well as additional metadata – which can require many hundreds of bytes in some
DID schemes – and performs fresh new key exchanges, re-encrypting the output by authcrypt. Our merged
mode, merge-a-auth, avoids duplicating the key exchanges, and simply adds an extra key-encryption layer
that hides the sender’s identity. Upon receiving the message, a legitimate recipient “peels off” this extra
key-encryption layer, revealing the sender’s identity, which is then used to derive the final key-encryption key.
We obtain the following theorem, whose proof is covered in Appendix E, as explained in Section 5.

Theorem 2 The construction from Theorem 1 is still achieved when using the algorithms in Figure 9 for
the combined mode a-auth in converter πi from Figure 8.

Ea-auth(sk ID, ID, (ID1, . . . , IDt),M)

// Content encryption

cek $← AEAD.K; N $← AEAD.N
H ← a-auth∥ID1∥ · · · ∥IDt

(C, T )← AEAD.E(cek , N,H,M)

// Ephem. key-pair for all receivers

(esk , epk)← DHKE.G

foreach i ∈ [t] do

// Key agreement

Ze,i ← (pk IDi
)esk ; Zs,i ← (pk IDi

)sk ID

Zi ← Ze,i∥Zs,i

// Key wrapping

kek ′
i ← KDF(Zi, |DAE.K|, H∥T )

ci ← DAE.E(kek ′
i, cek)

kek i ← KDF(Ze,i, |DAE.K|, H)

ek i ← DAE.E(kek i, a-auth∥ID∥ci)

// Finalization

ek ← (ek1, . . . , ek t)

return (H, (N,C, T, epk , ek))

Da-auth(sk ID′ , H, (N,C, T, epk , ek))

// Key agreement and first layer unwrapping

Ze ← epk sk ID′

kek ← KDF(Ze, |DAE.K|, H)

m← DAE.D(kek , ek)
if Parse(m) = ⊥ then return ⊥
(ID, c)← Parse(m)

Zs ← (pk ID)
sk ID′

Z ← Ze∥Zs

// Content-key unwrapping

kek ′ ← KDF(Z, |DAE.K|, H∥T )
cek ← DAE.D(kek ′, c)

if cek = ⊥ then return ⊥

// Content decryption

M ← AEAD.D(cek , N,H,C, T )

if M ̸= ⊥ then return (ID,M)

else return ⊥

Figure 9: Merging anoncrypt and authcrypt efficiently, with the major additions/differences to/from auth

and anon highlighted in gray. Parse(m) returns (ID, c) if m = a-auth∥ID∥c, with ID a valid identity and c a
valid ciphertext for DAE, and ⊥ otherwise.
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6.2 Receiver Anonymity

The goal is to achieve an ideal DIDComm resource where the leakage function associated to the snd command
of interface Ui is ℓra(ID, ID1, . . . , IDt) = t. Thus, our proposal starts with the (mild) assumption that it is
reasonable to leak the number of devices a receiver has (similar to leaking the length of the message). Similar
to message’s privacy, concealing additionally the number of devices can be achieved analogously: we note
that DIDComm builds on top of (publicly accessible) DIDs, making it possible to estimate the most frequent
number of devices/keys a DID owns, and adding dummy keys if needed to achieve a reasonable degree of
uniformity.

Essentially, we propose to augment DIDComm with a private-receiver anoncrypt mode that removes all
receiver identifiers from the header field, but still allows the receiver to detect which encrypted messages
are aimed at him. While message detection techniques have been studied before [BLMG21], we propose a
mechanism tailored to DIDComm’s specifics. To build our ra-anon mode, formally specified in Figure 10, we
propose to add one detection flag per recipient. Each of these detection flags is an encryption of 1, under a
key that only the legitimate recipient may reproduce – as it is the result of a Diffie-Hellman key-exchange
with the sender. The resulting ciphertext has the same size than in the normal anoncrypt mode, although the
associated header H –where we include the encrypted flags – now grows linearly with the number of recipients,
but only requires a number of bytes equal to the hash length per recipient, which seems reasonable. The
extra computation overhead is, on the sender’s side, one extra KDF evaluation and deterministic symmetric
encryption (of one bit) per recipient – both efficient operations. The computation overhead for receivers is
simply one KDF evaluation and, on average, t/2 deterministic symmetric decryptions (of a one-bit message),
where t is the number of potential recipients. Moreover, this proposal is RFC-compliant, as we are essentially
proposing a new method to encode recipients’ keys into the header H, which is something that RFC7518
already requires to concrete implementations [Jon15, Section 4.6.2].

Lastly, observe that the final receivers do not need to bulk download all the ciphertexts from the last
mediator: it is enough with downloading the tuple (H, epk , ek) associated to each encrypted message. With
that, they can already detect whether a message is aimed at them, and later request the full ciphertext (and
even when it is not aimed at them, in order to reduce correlation risk).

6.3 Receiver-Anonymous Combined Mode

We present as a final contribution a concrete mode of operation, ra-a-auth, that achieves all security
properties efficiently in one mode. That is, a sender- and receiver-anonymous mode of operation (anonymous
against any network attacker) but where the sender can authenticate itself to the final receiver. Its internal
operation is direct, given ra-anon and merge-a-auth: one simply has to include the encrypted flags as
done in ra-anon and, in addition, reencrypt the key encryption keys, giving them the extra structure that
includes the sender’s identity, as done in merge-a-auth. For lack of space, we defer the full specification
to Appendix C.

6.4 Security Analysis of Augmented DIDComm

The two new modes that achieve receiver-anonymity presented above can be formalized as a protocol in our
framework as depicted in Figure 8 with the code of the dash boxes included. Formally, we are able to show
that using the new modes at most leak the number of recipients, i.e., the worst case leakage is

ℓra(ID, ID1, . . . , IDt) := (ℓnet(ID, ID1, . . . , IDt), t).

This formalizes the aforementioned anonymity-preservation: nothing else is leaked, beyond what the
network layer leaks.

Theorem 3 For any n ≥ 1, and leakage function ℓnet, consider the real resources PKIn from Figure 4
and A-INSn,ℓnet,C from Figure 5, the augmented ideal resource DIDCommPKIn

n,ℓrcv,ℓra,C from Figure 7 with leakage
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Era-anon(pkB1
, . . . , pkBt

,M)

// Content encryption key and nonce

cek $← AEAD.K; N $← AEAD.N

// Ephem. key-pair for all receivers

(esk , epk)← DHKE.G

// Header computation

H ← ra-anon

foreach i ∈ [t] do

// Key agreement

Zi ← (pkBi
)esk

// Internal header value for flagging

fk i ← KDF(Zi, |AEAD.K|)
Ni

$← AEAD.N
(Ci, Ti)← AEAD.E(fk i, Ni, ra-anon, 1)

// Extend header

H ← H∥(Ni, Ci, Ti)

// Content encryption

(C, T )← AEAD.E(cek , N,H,M)

foreach i ∈ [t] do

// Key wrapping

kek i ← KDF(Zi, |DAE.K|, H)

ek i ← DAE.E(kek i, cek)

// Finalization

ek ← (ek1, . . . , ek t)

return (H, (N,C, T, epk , ek))

Dra-anon(skB , H, (N,C, T, epk , ek))

// Key agreement

Z ← epk skB

ra-anon∥H1∥ · · · ∥Ht ← H

// Flag detection

fk ← KDF(Z, |AEAD.K|)
j ← 0

foreach i ∈ [t] do

(Ni, Ci, Ti)← Hi

if AEAD.D(fk , Ni, ra-anon, · · ·
· · · Ci, Ti) = 1 then

j ← i

if j = 0 then

abort

// Content Key unwrapping

kek ← KDF(Z, |DAE.K|, Hj)

cek ← DAE.D(kek , ek j)

// Message decryption

M ← AEAD.D(cek , N,H,C, T )

return M // ∈ AEAD.M ∪ {⊥}

Figure 10: An anonymous-receiver anoncrypt mode of operation.

functions ℓrcv as in Theorem 1 and ℓra as defined above, and the augmented DIDComm protocol from Figure 8.
Then, for a negligible function ε,

[PKIn,A-INSn,ℓnet,C ]
πDIDComm,ε−−−−−−→ DIDCommPKIn

n,ℓrcv,ℓra,C . (2)

7 Benchmarks

We report now on the results obtained from prototypical implementations of our proposals, available in
[BBD23].

As baseline, we evaluate anon and auth, as well as naive-a-auth. We measure encryption and decryption
times, DIDComm message sizes, and maximum memory consumption of encryption (decryption is always less
demanding). The results are depicted in Figure 11. All tests are run for 1 to 6 recipients (using multiplex
encryption), in an Acer Swift3 laptop with 8 Intel Core i7 and 16 GB of RAM. The graphs depict the mean
value over 1000 iterations. We use as DID strings sample values like “did:example:bob#key0”. This is
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relevant, as these values are explicitly encoded within the resulting DIDComm message. Indeed, some popular
DID systems (e.g. did:peer) use as DID strings an encoding of a full list of public keys, which may take up
to several hundreds of bytes. Thus, removing duplicates is especially critical and the results shown in our
analysis are probably very conservative in that regard.

Computation- and communication-wise, merge-a-auth largely improves naive-a-auth, while ra-anon and
ra-a-auth incur in very acceptable overhead. Memory-wise, our new modes are slightly more costly (about
1.5% than naive-a-auth). However, it is likely that this can still be largely improved with more efficient
coding.

Figure 11: Benchmarks for the basic DIDComm modes and our proposals.

merge-a-auth mode While naive-a-auth adds up the costs of independent anon and auth runs, merge-a-auth just
adds a KDF evaluation and deterministic encryption per recipient to the cost of auth. Space-wise, we add
some structure to the encrypted keys, but the overhead is worth it. Especially, since we avoid duplicated
encodings of identifiers (the Bi’s in the H field). Overall, merge-a-auth reduces almost by a factor of 2 the
costs of naive-a-auth, except memory-wise, for which it increases costs by 1%.

ra-anon mode In this mode, encryption and decryption costs have a strong dependency on the number of
recipients – we add as many flag encryptions as recipients at encryption time, and to the trial decryption
at decryption time. Still, the costs seem reasonable. The same applies to memory needs, and message size,
where the extra linear growth is due to the additional encrypted flags.
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ra-a-auth mode In this mode, we add to merge-a-auth the computational and space costs associated
to the encrypted flags and trial decryptions. Still, it is worth noting that the final costs remain below than
those of naive-a-auth– excluding memory needs, with only a very small increase of about 1.5%

8 Lessons Learned

DIDComm is a new communications framework focused on DIDs, aiming to uphold their decentralized
philosophy. This results in significant changes in message routing and poses challenges for new developers.
For instance, intermediate hops can alter the transport medium without sender or recipient awareness.
Nevertheless, the security of the cryptographic layer (DIDComm messaging) and interoperability are essential.
To meet interoperability requirements, DIDComm uses simple and effective technologies like JSON and
cryptographic specifications such as JWA [Jon15].

In summary, when analyzing and proposing improvements on deployed protocols, one encounters inherent
tradeoffs between security and other dimensions, such as deployability, code simplification, or efficiency. We
summarize next some of the learnings from our work in this regard.

Deployability vs security and efficiency. Analyzing security with simple primitives allows the use of
known techniques. However, proposing improvements or fixes is harder, as it requires adhering to existing
technologies and standards to maximize adoption, even if it sacrifices efficiency. Candidate improvements
should also avoid adding unrealistic trust assumptions. For example, using broadcast encryption (BE)
[BGW05] in DIDComm messaging could optimize encryption for multiple recipients. However, to the best
of our knowledge, current BE schemes are not supported by the JWA stack, requiring a significant shift in
DIDComm. Additionally, BE schemes need a trusted setup for a master secret, which contradicts DIDComm’s
decentralized model. Efficiency gains from BE are also limited unless multi-recipient encryption is widely
used.

Code simplification vs security and efficiency. Engineering-wise, reusing code reduces the risk of
coding vulnerabilities, but it can be risky when combining cryptographic primitives. In DIDComm, to achieve
sender anonymity while allowing the receiver to verify the sender’s identity, authcrypt and anoncrypt are
applied sequentially. This combination, however, does not provide the expected guarantees when using
non-committing encryption in anoncrypt. Formal security analysis reveals that non-committing encryption
allows adversaries to specify different messages to different recipients, resulting in a weaker resource. This
issue is easily fixed by using committing encryption schemes.

Naively composing cryptographic primitives can also impact costs, and this impact may be significant or
not. For our improved merge-a-auth mode, the computational costs, despite nearly halving, are still in the
order of milliseconds, making the gains modest. However, space costs are significantly impacted, with a 2x
improvement translating to hundreds of bytes, which is critical when chaining multiple hops in DIDComm.
Nevertheless, in this case, since the improvements are based on existing standards, implementing the improved
version does not add much complexity to the code and may be worthwhile.

Composable analysis as basis for future analyses. Another important aspect worth noting is that,
having chosen a composable security framework that allows us to model a generic communication pattern
is beneficial when extending our work to cover a larger set of protocols that deal with cryptographic
communication protocols between DIDs that fit into the same pattern. More precisely, analyzing routing in
DIDComm would boil down to showing which type of network resource, i.e., which leakage function ℓnet of
A-INS DIDComm routing actually achieves over the Internet. Thus, the final leakage of DIDComm messaging
and DIDComm routing can be obtained by composition. Even more, such a routing analysis will use the
same encryption modes, where the results of this paper can be invoked again thanks to our parameterizable
assumed network (with appropriate parameters as the underlying network resource is then the Internet with
presumably no protection).
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9 Conclusion

We have given the first formal model of (the encryption modes of) DIDComm, a popular framework for secure
communications using Decentralized Identifiers (DIDs). Our model follows the Constructive Cryptography
paradigm, ensuring composability. While proving security, we identified a subtle (easily fixable) issue, observed
that DIDComm leaks more information beyond what is leaked by the network, and proposed improved and
extended encryption modes that increase efficiency and preserve privacy.

For future work, two main lines stand out. First, in our analysis we have covered DIDComm’s encryption
modes. However, it also supports signing – which we have not looked into. Second, DIDComm also includes
higher-level protocols that build on its encryption (and signing) modes, and that we leave out of scope as well,
like the routing protocol, which defines the mechanism to establish a communication path between sender
and receipient.
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A Standards Followed by AnonCrypt and AuthCrypt

AnonCrypt follows the specification of JSON web algorithms’ (JWA) ECDH-ES, as specified in RFC 7518
[Jon15], whereas AuthCrypt follows the newer JWA’s ECDH-1PU RFC draft [Mad21]. Both methods are
based on NIST 800-56A recommendation [BCK+18]: ECDH-1PU, which stands for ECDH one-pass unified
model, is defined therein in section 6.2.1.2 as “C(1e, 2s, ECC CDH)”, while ECDH-ES, which stands for ECDH
ephemeral static, is defined therein in section 6.2.2.2 as “C(1e, 1s, ECC CDH)”.

Both AnonCrypt and AuthCrypt use the “One-Step KDF” (with SHA-256) specified in [BCD20] to derive
the KEK from the shared secret resulting from the key agreement, following the recommendations given in
Section 5.8.2.1 of [BCK+18]. Even though key-wrapping is optional as per JWA, DIDComm messaging editor’s
draft [CLT22, section 5.1.4] mandates it for both AuthCrypt and AnonCrypt. Specifically, the AES key wrap
algorithm defined in RFC 3394 [HS02] is used to encrypt the CEK using the KEK. Additionally, [CLT22,
section 5.1.3] also declares AES256-CBC with HMAC-SHA512 (A256CBC-HS512) as the required encryption
scheme for both AuthCrypt and AnonCrypt, and AES256-GCM (A256GCM) as recommended for AnonCrypt
only. Additionally, it declares the AEAD scheme XChaCha20Poly1305 (XC20P) as optional. Moreover, in
the same section the documents states that “implementations MUST choose nonces securely”, and both
[lep20, authlib/jose/drafts jwe models.py] and [JH15, Section 3.3] suggest this should be achieved by
generating uniformly random initialization vectors.

B On the Weaker Ideal Functionality

Lack of commitment. Compared to the strong ideal resource we achieve, this one allows a malicious
sender, in one go, cast different messages to different recipients. This is due to admitting in anon (and
consequently also anon(auth(.))) AEAD schemes that are not (compactly) committing. This is in contrast
to the stronger resource, where each send-event is always a commitment to the message, i.e., in one send
event, all receivers either receive the same message or no message. Here, a malicious sender can specify
different messages to different parties and as such, a party that receives as output (ID,M) cannot conclude
that this can be traced back to a unique send-event where the entity ID sent the message M . Hence, the
weaker resource can be obtained by replacing the adversary command snd by one that takes as input ID and
a list (M1, ID1), . . . , (Mn, IDn), and which to distributes n messages to n recipients in one go, capturing the
worst case.

C Code for the Receiver-Anonymous Combined Mode

We give in Figure 12 the code of the receiver-anonymous combined mode, as introduced in Section Section 6.3.

D Constructive Cryptography

In the framework of constructive cryptography (CC) [MR11, Mau12], security of a cryptographic scheme
is not defined as a game between an adversary and a challenger offering some oracles, but rather as the
indistinguishability of two worlds. More precisely, one defines the two worlds as resources, a concept analogous
to functionalities in universal composability [Can01]. The real world resource is made up of a set of assumed
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Era-a-auth(skA, pkB1
, . . . , pkBt

,M)

// Content encryption key and nonce

cek $← AEAD.K
N $← AEAD.N

// Ephem. key-pair for all receivers

(esk , epk)← DHKE.G

// Header computation

H ← ra-a-auth

foreach i ∈ [t] do

// Key agreement

Ze,i ← (pkBi
)esk

// Internal header value for flagging

fk i ← KDF(Ze,i, |AEAD.K|)
Ni

$← AEAD.N
(Ci, Ti)← AEAD.E(fk i, Ni, ra-a-auth, 1)

// Extend header

H ← H∥(Ni, Ci, Ti)

// Content encryption

(C, T )← AEAD.E(cek , N,H,M)

foreach i ∈ [t] do

// Key agreement

Zs,i ← (pkBi
)skA

// Key wrapping

kek0,i ← KDF(Ze,i, |DAE.K|, H∥T )
kek1,i ← KDF(Ze,i∥Zs,i, |DAE.K|, H∥T )
ci ← DAE.E(kek1,i, cek)

ek i ← DAE.E(kek0,i, ra-a-auth∥A∥ci)

// Finalization

ek ← (ek1, . . . , ek t)

return (H, (N,C, T, epk , ek))

Dra-a-auth(skB , H, (N,C, T, epk , ek))

// Key agreement and first layer unwrapping

Ze ← epk sk
B

ra-a-auth∥H1∥ · · · ∥Ht ← H

// Flag detection

fk ← KDF(Z, |AEAD.K|)
j ← 0

foreach i ∈ [t] do

(Ni, Ci, Ti)← Hi

if AEAD.D(fk , Ni, ra-a-auth, · · ·
· · · Ci, Ti) = 1 then

j ← i

if j = 0 then

abort

kek0 ← KDF(Ze, |DAE.K|, H∥T )
M0 ← DAE.D(kek0, ek j)

if M0 ̸= ra-a-auth∥A∥ · · · then
return ⊥

Zs ← (pkA)
skB

// Content-Key unwrapping

kek1 ← KDF(Ze∥Zs, |DAE.K|, H∥T )
cek ← DAE.D(kek1, c)

if cek = ⊥ then

return ⊥

// Content decryption

M ← AEAD.D(cek , N,H,C, T )

if M ̸= ⊥ then

return (A,M)

else

return ⊥

Figure 12: A merged operation of anoncrypt and authcrypt including receiver anonymity.

resources, composed in parallel, to which a converter is attached. The converter implements a protocol that
uses the cryptographic scheme whose security one wants to define. The ideal world resource is made up of an
ideal resource, to which also a spacial converter is attached, called the simulator.

As a basic example, think of the scheme being regular symmetric-key encryption. To define its security in
CC, we need to specify what the assumed resources are, what the protocol using the scheme while attached
to those resources is, what the ideal resource is, and finally how the simulator behaves. For this specific
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example, we think of a setting where a sender Alice wants to send messages confidentially to Bob.
As assumed resources, we specify an insecure channel INS between Alice and Bob and a shared key

KEY. The insecure channel INS allows Alice to input the ciphertext, and outputs the ciphertext to Bob, but
also to the adversary Eve. Moreover, Eve can also input a ciphertext for Bob to INS. When Bob gets the
ciphertexts from INS, he does not see who the sender was. The shared key KEY simply samples a key for the
symmetric-key encryption scheme, according to the specific key-generation algorithm, and outputs it to both
Alice and Bob.

The protocol π, attached to both INS and KEY, is defined as the natural way to use the scheme. Now,
Alice and Bob do not have direct access to INS and KEY anymore, π will elaborate their inputs and outputs
to and from those resources. Concretely, π first collects the key K from KEY. Then, on input a message
M from Alice, π encrypts M into C := EncK(M), and sends the ciphertext C to Bob over INS. Once a
ciphertext C ′ is obtained by π from INS (which could have been send by either Alice or Eve), it is decrypted
into M ′ := DecK(C ′) by π, and output to Bob. The protocol attached to the resources defines the whole real
resource, denoted REAL := π[KEY, INS].

As ideal resource, we specify a confidential channel CNF between Alice and Bob. The confidential channel
CNF allows Alice to input the message, and outputs the message to Bob, but to the adversary Eve it only
outputs the length of the message. On the other end, and in the insecure channel, Eve can still input a
message for Bob to CNF, and Bob can not see who the sender was (we are capturing confidentiality, not
authenticity).

The simulator σ, attached to CNF, will elaborate Eve’s inputs and outputs to and from CNF. Concretely,
σ first samples a key K according to the specific key-generation algorithm.

Then, on input a ciphertext C from Eve, σ decrypts C into M := DecK(C), and sends the message M to
Bob over CNF. Once a length ℓ of a message is obtained by σ from CNF, a random message M̃ of length ℓ is
sampled and encrypted into C̃ := EncK(M̃), and then output to Eve. The simulator attached to the resource
CNF defines the whole ideal resource, denoted IDEAL := σ CNF.

Finally, since both REAL and IDEAL have the same interfaces, we can consider a distinguisher trying
to tell them apart. If any distinguisher can succeed with only negligible probability, then we can deem
the symmetric-key encryption scheme used by π to be secure. In this case, we say that the symmetric-key
encryption scheme constructs CNF from INS and KEY, denoted [KEY, INS]

π−→ CNF.
A nice feature of CC security definitions, is that they are composable. Let us explain with a slightly

different version of the example above. We could also define security of a symmetric-key encryption scheme
as constructing a secure channel SEC from an authenticated channel AUT and KEY via a protocol π1 and
simulator σ1. The secure channel SEC is like CNF, but does not allow Eve to input anything, and the
authenticated channel AUT is like INS, but also does not allow Eve to input anything. The new definition
would be captured by the statement [KEY,AUT]

π1−−→ SEC. On the other hand, we could define security of a

MAC scheme as constructing AUT from INS and KEY via protocol π2, denoted [KEY, INS]
π1−−→ AUT.

Now since we can construct AUT from INS using π1 and SEC from AUT using π2, it would seem natural
that composing the two protocols π2 and π1 sequentially, would result in a protocol constructing SEC directly
from INS. This is indeed the case, and in fact from CC’s composition theorem we have that

[KEY, INS]
π1−−→ AUT and [KEY,AUT]

π1−−→ SEC

=⇒ [KEY,KEY, INS]
π2π1−−−→ SEC.

The main advantage of composition is that, concretely for this example, proving security of the symmetric-key
encryption scheme and of the MAC scheme is sufficient, and security of the Encrypt-then-MAC scheme
requires no further proof, since it is implied.
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E Additional Definitions and Proofs

E.1 Security Notions for Key-Derivation Function (KDF)

Following [Kra10], a KDF is considered secure if, on input (σ, L, c), its output is pseudorandom, for (σ, α)← Σ,
and where only the auxiliary knowledge α is made public.2

Definition 5 A KDF KDF is secure w.r.t. source Σ if no adversary A given α, where (σ, α) ← Σ, can
distinguish with non-negligible advantage between an oracle returning KDF(σ, L, c) on input (c, L), and one
returning a uniformly distributed bitstring of length L, where A is restricted to not repeat any input c. We
define A’s advantage as Advkdf

KDF(A) := 2 · Pr[b̂ = b]− 1, where b is a uniform bit selecting one of the two

experiments and b̂ is A’s output.

E.2 Security Notions for Deterministic AE (DAE)

Following [RS06], also the notion of security for DAE combines the two properties of confidentiality and
unforgeability into a single notion.

Definition 6 A DAE scheme DAE is DAE-secure if, for any efficient adversary A,

Advdae
DAE(A) = Pr[AE(K,·),D(K,·) = 1 |K ← G]− Pr[A$(·),⊥(·) = 1]

is negligible, if A is neither allowed to repeat queries nor to query the second oracle with answers from the
first (to avoid trivial wins).

E.3 Security Notions for AE with Associated Data (AEAD)

Following [Rog02], we require an AEAD scheme to provide both confidentiality (IND$-CPA) and unforgeability
(INT-CTXT). We combine these two properties into a single notion as per [Rog02, RS06], and adapt such
notion to the multi-user setting, as introduced in [BBM00], loosely following the syntax from [HTT18]. Note
that for the specific case of GCM, tight multi-user bounds were established in [HTT18].

RealAEAD

K1,K2, . . .
$← AEAD.K

procedure Enc(i,N,H,M) :

return AEAD.E(Ki, N,H,M)

procedure Dec(i,N,H,C, T ) :

return AEAD.D(Ki, N,H,C, T )

RandAEAD

procedure Enc(i,N,H,M) :

(C, T ) $← {0, 1}|M| × {0, 1}τ

return (C, T )

procedure Dec(i,N,H,C, T ) :

return ⊥

Figure 13: Games defining the multi-user security of an AE scheme AEAD.

Definition 7 An AEAD scheme AEAD with tag length τ is muAE$-secure if, for any efficient adversary A,

Advmuae$
AEAD (A) = Pr[ARealAEAD = 1]− Pr[ARandAEAD = 1]

is negligible, where games RealAEAD and RandAEAD are defined in fig. 13. Moreover, A is neither allowed to
repeat pairs (i,N) to its Enc oracle, nor to query the Dec with answers from Enc (to avoid trivial wins).

We further require an AEAD scheme to be committing [FOR17], that is, an honestly generated ciphertext
(C, T ) only decrypts to a non-⊥ message M if the same values K,N,H used to encrypt are used to decrypt.

2 In the original definition of [Kra10], a KDF also specifies a salt, but since the KDF used by DIDComm does not, we adapted
the notation.
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E.4 Security Proofs

Proof 1 (Proof of Theorem 1) Recall that, by Definition 4, the statement from Equation (1) means that
for any corrupt set C ⊆ {U1, . . . ,Un} and corresponding honest set H = U ∖ C, there exists a simulator σ
such that

πH
DIDComm[PKIn,A-INSn,ℓ] ≈ε σ

C∪{E}DIDCommPKIn
n,ℓ,C . (3)

We will prove Equation (3) for the protocol πDIDComm from fig. 8 obtained by using anoncrypt ( anon) and
authcrypt ( auth) from fig. 2 and our new combined mode a-auth from fig. 9. The result also follows
trivially for the naive combination of anoncrypt and authcrypt. We proceed by fixing an arbitrary corrupt set
C ⊆ {U1, . . . ,Un} and then providing a concrete simulator σ and a sequence of hybrids H0, . . . ,H3 such that,
for any distinguisher D,

• H0 ≡ πH
DIDComm[PKIn,A-INSn,ℓ];

• H0 ≈ε1 H1, with ε1(D) := Advkdf
KDF(A1), for A1 := ρ1(D);

• H1 ≈ε2 H2, with ε2(D) := Advdae
DAE(A2), for A2 := ρ2(D);

• H2 ≈ε3 H3, with ε3(D) := Advae$
AEAD(A3), for A3 := ρ3(D);

• H3 ≡ σC∪{E}DIDCommPKIn
n,ℓ,C;

where ε(D) =
∑3

i=1 εi(D), and reductions ρ1(D) to ρ4(D) are defined below.

Simulator σ We formally describe the simulator σ in fig. 18. It is attached to the DIDCommPKIn
n,ℓ,C resource,

and it needs to simulate the behavior of the corrupted parties C, as well as that of the adversary E. Note that
the uniqueness of M (which ensures H3 ≡ σC∪{E}DIDCommPKIn

n,ℓ,C), is guaranteed by the committing property
of the AEAD scheme.

Hybrid H0 This hybrid, formally specified in fig. 14, is the monolithic representation of the real resource
resource πH

DIDComm[PKIn,A-INSn,ℓ].

Hybrid H1 This hybrid, formally specified in fig. 15, is the same as H0, except that instead of using KDF
to generate KEKs for DAE, we sample random keys for each message and sender-receiver pairs, and store
them internally in a table K in order to correctly decrypt with DAE. Indistinguishability between H0 and H1

will follow from security of the KDF, which in our case implies DDH, as we explicitly formalized DIDComm’s
KDF building block from the DDH-based constructions in [Kra10].

Hybrid H2 This hybrid, formally specified in fig. 16, is the same as H1, except that instead of using DAE to
encrypt CEKs, we sample random ciphertexts for each message and include them in the resulting ciphertext
instead of the encryptions of the CEKs. We store the actual CEKs internally in table K, so that we can
retrieve these upon receiving messages without having to use DAE. Note that now the KEK are not needed
anymore. Indistinguishability follows from security of the underlying DAE scheme.

Hybrid H3 This hybrid, formally specified in fig. 17, is the same as H2, except that instead of using AEAD
to encrypt messages with the CEK, we sample random ciphertexts for each message and include them in the
resulting ciphertext instead of the encryptions of the messages. We store the actual messages internally in
table M, so that we can retrieve these upon receiving without having to use AEAD. Indistinguishability follows
from the security of the underlying AEAD scheme.

Finally, the reductions ρ1 through ρ4 are trivially defined as the code wrapping the differences between the
various hybrids, since we used real-or-ideal notions of security for each primitive.
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Init()

foreach Ui ∈ H
sk∗

i ← ⊥
pk∗

i ← ⊥
ID∗ ← ⊥

C← []

R← []

S ← ∅
ctr← 0

Ui(reg; ID) // Ui ∈ H

ID∗
i ← ID

(sk , pk)← DHKE.G
sk∗

i ← sk

pk∗
i ← pk

E(rcv)

O ← S
S ← ∅
return O

E(snd;C∗, (ID1, . . . , IDt))

foreach j ∈ [t] do

R[IDj ]
∪← C∗

E(fwd; hnd)

if 0 ≤ hnd < c then

(C∗, ID1, . . . , IDt)← C[hnd]

foreach j ∈ [t] do

R[IDj ]
∪← C∗

Ui(snd; mode,M, (ID1, . . . , IDt))

pk ← (pk ID1
, . . . , pk IDt

)

cek $← AEAD.K
N $← AEAD.N
H ← ID1∥ · · · ∥IDt

if mode = auth then

H ← ID∗
i ∥H

elseif mode = a-auth then

H ← a-auth∥H
(C, T )← AEAD.E(cek , N,H,M)

(esk , epk)← DHKE.G
foreach j ∈ [t] do

Ze,j ← (pk IDj
)esk

Zs,j ← (pk IDj
)sk

∗
i

Zj ← Ze,j∥Zs,j

kek e,j ← KDF(Ze,j , |DAE.K|, H)

kek j ← KDF(Zj , |DAE.K|, H∥T )
if mode = anon then

ek j ← DAE.E(kek e,j , cek)

elseif mode = auth then

ek j ← DAE.E(kek j , cek)

if mode = a-auth then

cj ← DAE.E(kek j , cek)

ek j ← DAE.E(kek e,j , a-auth∥ID∗
i ∥cj)

ek ← (ek1, . . . , ek t)

C ← (N,C, T, epk , ek)

C∗ ← (mode, H,C)

S ∪← (ctr,C∗, ℓC(ID
∗
i , ID1, . . . , IDt))

C[ctr]← (C∗, ID1, . . . , IDt)

ctr
+← 1

Ui(rcv)

O ← R[ID∗
i ]

R[ID∗
i ]← ∅

O′ ← ∅
foreach (mode, H,C) ∈ O do

(N,C, T,H, epk , ek)← C

(ek1, . . . , ek t) ← ek

(ID, ID1, . . . , ID1)← Parse(H)

j∗ ← 0

foreach j ∈ [t]

if IDj = ID∗
i then

j∗ ← j

Ze ← epk sk∗
i

kek e ← KDF(Ze, |DAE.K|, H)

if mode = a-auth then

m← DAE.D(kek e, ek j∗)

(ID, c)← Parse(m)

if mode = auth ∨ mode = a-auth then

Zs ← (pk ID)
sk∗

i

Z ← Ze∥Zs

kek ← KDF(Z, |DAE.K|, H∥T )
if mode = anon then

cek e ← DAE.D(kek e, ek j∗)

Manon ← AEAD.D(cek e, N,H,C, T )

O′ ∪←Manon

elseif mode = auth then

cek ← DAE.D(kek , ek j∗)

Mauth ← AEAD.D(cek , N,H,C, T )

O′ ∪← (ID,Mauth)

elseif mode = a-auth then

cek ′ ← DAE.D(kek , c)
Ma-auth ← AEAD.D(cek ′, N,H,C, T )

O′ ∪← (ID,Ma-auth)

return O′

Figure 14: Hybrid H0 for the proof of Theorem 1.

30



Init()

foreach Ui ∈ H
sk∗

i ← ⊥
pk∗

i ← ⊥
ID∗ ← ⊥

C← []

R← []

I← []

Ke ← []

K← []

S ← ∅
ctr← 0

Ui(reg; ID) // Ui ∈ H

ID∗
i ← ID

I[ID∗
i ]← i

(sk , pk)← DHKE.G
sk∗

i ← sk

pk∗
i ← pk

E(rcv)

O ← S
S ← ∅
return O

E(snd;C∗, (ID1, . . . , IDt))

// Assuming C
∗
.H matches ID1, . . . , IDt

if ∃hnd,C∗′, ID′
1, . . . , ID

′
t :

C[hnd] = (C∗′, ID′
1, . . . , ID

′
t)

∧ C∗′.C = C∗.C then

foreach j ∈ [t] do

R[IDj ]
∪← (hnd,C∗)

else

foreach j ∈ [t] do

R[IDj ]
∪← (−1,C∗)

E(fwd; hnd)

if 0 ≤ hnd < c then

(C∗, ID1, . . . , IDt)← C[hnd]

foreach j ∈ [t] do

R[IDj ]
∪← (hnd,C∗)

Ui(snd; mode,M, (ID1, . . . , IDt))

pk ← (pk ID1
, . . . , pk IDt

)

cek $← AEAD.K
N $← AEAD.N
H ← ID1∥ · · · ∥IDt

if mode = auth then

H ← ID∗
i ∥H

elseif mode = a-auth then

H ← a-auth∥H
(C, T )← AEAD.E(cek , N,H,M)

(esk , epk)← DHKE.G
foreach j ∈ [t] do

if Ui ∈ H ∧ ∀ι ∈ [t] : UI[IDι] ∈ H then

kek e,j
$← {0, 1}|DAE.K|

Ke[ctr, j]← kek e,j

kek j
$← {0, 1}|DAE.K|

K[ctr, i, j]← kek j

else

Ze,j ← (pk IDj
)esk

Zs,j ← (pk IDj
)sk

∗
i

Zj ← Ze,j∥Zs,j

kek e,j ← KDF(Ze,j , |DAE.K|, H)

kek j ← KDF(Zj , |DAE.K|, H∥T )
if mode = anon then

ek j ← DAE.E(kek e,j , cek)

elseif mode = auth then

ek j ← DAE.E(kek j , cek)

if mode = a-auth then

cj ← DAE.E(kek j , cek)

ek j ← DAE.E(kek e,j , a-auth∥ID∗
i ∥cj)

ek ← (ek1, . . . , ek t)

C ← (N,C, T, epk , ek)

C∗ ← (mode, H,C)

S ∪← (ctr,C∗, ℓC(ID
∗
i , ID1, . . . , IDt))

C[ctr]← (C∗, ID1, . . . , IDt)

ctr
+← 1

Ui(rcv)

O ← R[ID∗
i ]

R[ID∗
i ]← ∅

O′ ← ∅
foreach (hnd, (mode, H,C)) ∈ O do

(N,C, T,H, epk , ek)← C

(ek1, . . . , ek t) ← ek

(ID, ID1, . . . , ID1)← Parse(H)

j∗ ← 0

foreach j ∈ [t]

if IDj = ID∗
i then

j∗ ← j

if Ui ∈ H then

if hnd ̸= −1 then kek e ← Ke[hnd, i]

else kek e
$← {0, 1}|DAE.K|

else

Ze ← epk sk∗
i

kek e ← KDF(Ze, |DAE.K|, H)

if mode = a-auth then

m← DAE.D(kek e, ek j∗)

(ID, c)← Parse(m)

if mode = auth ∨ mode = a-auth then

if Ui ∈ H then

i′ ← I[ID]

if hnd ̸= −1 then kek ← K[hnd, i′, i]

else kek $← {0, 1}|DAE.K|

else

Zs ← (pk ID)
sk∗

i

Z ← Ze∥Zs

kek ← KDF(Z, |DAE.K|, H∥T )
if mode = anon then

cek e ← DAE.D(kek e, ek j∗)

Manon ← AEAD.D(cek e, N,H,C, T )

O′ ∪←Manon

elseif mode = auth then

cek ← DAE.D(kek , ek j∗)

Mauth ← AEAD.D(cek , N,H,C, T )

O′ ∪← (ID,Mauth)

elseif mode = a-auth then

cek ′ ← DAE.D(kek , c)
Ma-auth ← AEAD.D(cek ′, N,H,C, T )

O′ ∪← (ID,Ma-auth)

return O′

Figure 15: Hybrid H1 for the proof of Theorem 1 with the changes from H0 highlighted in gray.
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Init()

foreach Ui ∈ H
sk∗

i ← ⊥
pk∗

i ← ⊥
ID∗ ← ⊥

C← []

R← []

I← []

K← []

J← []

S ← ∅
ctr← 0

Ui(reg; ID) // Ui ∈ H

ID∗
i ← ID

I[ID∗
i ]← i

(sk , pk)← DHKE.G
sk∗

i ← sk

pk∗
i ← pk

E(rcv)

O ← S
S ← ∅
return O

E(snd;C∗, (ID1, . . . , IDt))

// Assuming C
∗
.H matches ID1, . . . , IDt

if ∃hnd,C∗′, ID′
1, . . . , ID

′
t :

C[hnd] = (C∗′, ID′
1, . . . , ID

′
t)

∧ C∗′.C = C∗.C then

foreach j ∈ [t] do

R[IDj ]
∪← (hnd,C∗)

else

foreach j ∈ [t] do

R[IDj ]
∪← (−1,C∗)

E(fwd; hnd)

if 0 ≤ hnd < c then

(C∗, ID1, . . . , IDt)← C[hnd]

foreach j ∈ [t] do

R[IDj ]
∪← (hnd,C∗)

Ui(snd; mode,M, (ID1, . . . , IDt))

pk ← (pk ID1
, . . . , pk IDt

)

cek $← AEAD.K
K[ctr]← cek

N $← AEAD.N
H ← ID1∥ · · · ∥IDt

if mode = auth then

H ← ID∗
i ∥H

elseif mode = a-auth then

H ← a-auth∥H
(C, T )← AEAD.E(cek , N,H,M)

(esk , epk)← DHKE.G
foreach j ∈ [t] do

if Ui ∈ H ∧ ∀ι ∈ [t] : UI[IDι] ∈ H then

ek j
$← DAE.C

if mode = a-auth then

J[ctr, j]← ID∗
i

else

Ze,j ← (pk IDj
)esk

Zs,j ← (pk IDj
)sk

∗
i

Zj ← Ze,j∥Zs,j

kek e,j ← KDF(Ze,j , |DAE.K|, H)

kek j ← KDF(Zj , |DAE.K|, H∥T )
if mode = anon then

ek j ← DAE.E(kek e,j , cek)

elseif mode = auth then

ek j ← DAE.E(kek j , cek)

if mode = a-auth then

cj ← DAE.E(kek j , cek)

ek j ← DAE.E(kek e,j , a-auth∥ID∗
i ∥cj)

ek ← (ek1, . . . , ek t)

C ← (N,C, T, epk , ek)

C∗ ← (mode, H,C)

S ∪← (ctr,C∗, ℓC(ID
∗
i , ID1, . . . , IDt))

C[ctr]← (C∗, ID1, . . . , IDt)

ctr
+← 1

Ui(rcv)

O ← R[ID∗
i ]

R[ID∗
i ]← ∅

O′ ← ∅
foreach (hnd, (mode, H,C)) ∈ O do

(N,C, T,H, epk , ek)← C

(ek1, . . . , ek t) ← ek

(ID, ID1, . . . , ID1)← Parse(H)

j∗ ← 0

foreach j ∈ [t]

if IDj = ID∗
i then

j∗ ← j

if Ui ∈ H then

if hnd ̸= −1 then cek ← K[hnd]

else cek $← AEAD.K
M ← AEAD.D(cek , N,H,C, T )

if mode = a-auth then

ID← J[hnd, j∗]

if mode = anon then

O′ ∪←M

elseif mode = auth then

O′ ∪← (ID,M)

elseif mode = a-auth then

O′ ∪← (ID,M)

else

Ze ← epk sk∗
i

kek e ← KDF(Ze, |DAE.K|, H)

if mode = a-auth then

m← DAE.D(kek e, ek j∗)

(ID, c)← Parse(m)

Zs ← (pk ID)
sk∗

i

Z ← Ze∥Zs

kek ← KDF(Z, |DAE.K|, H∥T )
if mode = anon then

cek e ← DAE.D(kek e, ek j∗)

Manon ← AEAD.D(cek e, N,H,C, T )

O′ ∪←Manon

elseif mode = auth then

cek ← DAE.D(kek , ek j∗)

Mauth ← AEAD.D(cek , N,H,C, T )

O′ ∪← (ID,Mauth)

elseif mode = a-auth then

cek ′ ← DAE.D(kek , c)
Ma-auth ← AEAD.D(cek ′, N,H,C, T )

O′ ∪← (ID,Ma-auth)

return O′

Figure 16: Hybrid H2 for the proof of Theorem 1 with the changes from H1 highlighted in gray.
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Init()

foreach Ui ∈ H
sk∗

i ← ⊥
pk∗

i ← ⊥
ID∗ ← ⊥

M← []

C← []

R← []

I← []

S ← ∅
ctr← 0

Ui(reg; ID) // Ui ∈ H

ID∗
i ← ID

I[ID∗
i ]← i

(sk , pk)← DHKE.G
sk∗

i ← sk

pk∗
i ← pk

E(rcv)

O ← S
S ← ∅
return O

E(snd;C∗, (ID1, . . . , IDt))

// Assuming C
∗
.H matches ID1, . . . , IDt

if ∃hnd,C∗′, ID′
1, . . . , ID

′
t :

C[hnd] = (C∗′, ID′
1, . . . , ID

′
t)

∧ C∗′.C = C∗.C then

foreach j ∈ [t] do

R[IDj ]
∪← (hnd,C∗)

else

foreach j ∈ [t] do

R[IDj ]
∪← (−1,C∗)

E(fwd; hnd)

if 0 ≤ hnd < c then

if ← C[hnd] ̸= ⊥ then

(C∗, ID1, . . . , IDt)← C[hnd]

foreach j ∈ [t] do

R[IDj ]
∪← (hnd,C∗)

else

foreach i ∈ [n] do

if ∃M : (hnd,M) ∈M[ID∗
i ] then

R[ID∗
i ]

∪←M

elseif ∃ ID,M : (hnd, ID,M) · · ·
· · · ∈M[ID∗

i ] then

R[ID∗
i ]

∪← (ID,M)

Ui(snd; mode,M, (ID1, . . . , IDt))

pk ← (pk ID1
, . . . , pk IDt

)

cek $← AEAD.K
N $← AEAD.N
H ← ID1∥ · · · ∥IDt

if mode = auth then

H ← ID∗
i ∥H

elseif mode = a-auth then

H ← a-auth∥H
(esk , epk)← DHKE.G
if Ui ∈ H ∧ ∀ι ∈ [t] : UI[IDι] ∈ H then

(C, T ) $← {0, 1}|M|+τ

foreach j ∈ [t] do

ek j
$← DAE.C

if I[IDj ] ̸= ⊥ then

if mode = anon then

M[IDj ]
∪← (ctr,M)

elseif mode = auth then

M[IDj ]
∪← (ctr, ID∗

i ,M)

elseif mode = a-auth then

M[IDj ]
∪← (ctr, ID∗

i ,M)

else

(C, T )← AEAD.E(cek , N,H,M)

foreach j ∈ [t] do

Ze,j ← (pk IDj
)esk

Zs,j ← (pk IDj
)sk

∗
i

Zj ← Ze,j∥Zs,j

kek e,j ← KDF(Ze,j , |DAE.K|, H)

kek j ← KDF(Zj , |DAE.K|, H∥T )
if mode = anon then

ek j ← DAE.E(kek e,j , cek)

elseif mode = auth then

ek j ← DAE.E(kek j , cek)

if mode = a-auth then

cj ← DAE.E(kek j , cek)

ek j ← DAE.E(kek e,j , a-auth∥ID∗
i ∥cj)

ek ← (ek1, . . . , ek t)

C ← (N,C, T, epk , ek)

C∗ ← (mode, H,C)

S ∪← (ctr,C∗, ℓC(ID
∗
i , ID1, . . . , IDt))

if Ui ∈ H ∧ ∀ι ∈ [t] : UI[IDι] ∈ H then

C[ctr]← ⊥
else

C[ctr]← (C∗, ID1, . . . , IDt)

ctr
+← 1

Ui(rcv)

O ← R[ID∗
i ]

R[ID∗
i ]← ∅

O′ ← ∅
foreach O ∈ O do

if O = (hnd, (mode, H,C)) then

(N,C, T,H, epk , ek)← C

(ek1, . . . , ek t) ← ek

(ID, ID1, . . . , ID1)← Parse(H)

j∗ ← 0

foreach j ∈ [t]

if IDj = ID∗
i then

j∗ ← j

Ze ← epk sk∗
i

kek e ← KDF(Ze, |DAE.K|, H)

if mode = a-auth then

m← DAE.D(kek e, ek j∗)

(ID, c)← Parse(m)

Zs ← (pk ID)
sk∗

i

Z ← Ze∥Zs

kek ← KDF(Z, |DAE.K|, H∥T )
if mode = anon then

cek e ← DAE.D(kek e, ek j∗)

Manon ← AEAD.D(cek e, N,H,C, T )

O′ ∪←Manon

elseif mode = auth then

cek ← DAE.D(kek , ek j∗)

Mauth ← AEAD.D(cek , N,H,C, T )

O′ ∪← (ID,Mauth)

elseif mode = a-auth then

cek ′ ← DAE.D(kek , c)
Ma-auth ← AEAD.D(cek ′, N,H,C, T )

O′ ∪← (ID,Ma-auth)

elseif O = M ∧ O = (ID,M) then

O′ ∪← O

return O′

Figure 17: Hybrid H3 for the proof of Theorem 1 with the changes from H2 highlighted in gray.
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Init()

I,J,H← []

S ← ∅
ctr← 0

A-INSn,ℓ.Ui(reg; ID) // i ∈ [n], Ui ∈ C

I[i]← ID

J[ID]← i

DIDCommn,ℓ,C .Ui(reg; ID)

E(reg; i, ID) // Activated by DIDCommn,ℓ,C

ID∗
i ← ID

I[i]← ID

J[ID]← i

(sk∗
i , pk

∗
i )← G

return pk∗
i // Sent back to DIDCommn,ℓ,C

Ui(snd;M, (ID1, . . . , IDt)) // Ui ∈ C

S ∪← (ctr,M, (ID1, . . . , IDt))

ctr
+← 1

Ui(rcv) // i ∈ [n], Ui ∈ C

ID← I[i]

O ← R[ID]

R[ID]← ∅
return O

E(fwd; hnd)

DIDCommn,ℓ,C .E(fwd; hnd)

E(rcv)

O ← ∅
foreach O = (hnd, mode, lm, la) ∈ S do

if lm ∈ N then

M $← {0, 1}lm

if la ̸= ID1∥ · · · ∥IDt then

ID1∥ · · · ∥IDt
$← IDt

pk ← (pk ID1
, . . . , pk IDt

)

cek $← AEAD.K
N $← AEAD.N
H ← ID1∥ · · · ∥IDt

if mode = auth then

H ← ID∗
i ∥H

elseif mode = a-auth then

H ← a-auth∥H
(esk , epk)← DHKE.G
(C, T )← AEAD.E(cek , N,H,M)

H[ctr]← (N,H,C, T )

foreach j ∈ [t] do

Ze,j ← (pk IDj
)esk

Zs,j ← (pk IDj
)sk

∗
i

Zj ← Ze,j∥Zs,j

kek e,j ← KDF(Ze,j , |DAE.K|, H)

kek j ← KDF(Zj , |DAE.K|, H∥T )
if mode = anon then

ek j ← DAE.E(kek e,j , cek)

elseif mode = auth then

ek j ← DAE.E(kek j , cek)

if mode = a-auth then

cj ← DAE.E(kek j , cek)

ek j ← DAE.E(kek e,j , a-auth∥ID∗
i ∥cj)

ek ← (ek1, . . . , ek t)

C ← (N,C, T, epk , ek)

C∗ ← (mode, H,C)

O ∪← C∗

S ← ∅
return O

E(snd;C, (ID1, . . . , IDt))

foreach j ∈ [t] do

if UJ[IDj ] ∈ C then

DIDCommn,ℓ,C .E(inj;C)

R,R′ ← ∅
(N,C, T, epk , ek)← C

(mode, H,C)← C∗

hnd← H[(N,H,C, T )]

if hnd ̸= ⊥
DIDCommn,ℓ,C .E(fwd; hnd)

else

(N,C, T,H, epk , ek)← C

(ek1, . . . , ek t) ← ek

(ID, ID1, . . . , ID1)← Parse(H)

foreach j ∈ [t]

i← J[ID]

j∗ ← J[IDj ]

Ze ← epk sk∗
i

kek e ← KDF(Ze, |DAE.K|, H)

if mode = a-auth then

m← DAE.D(kek e, ek j∗)

(ID, c)← Parse(m)

Zs ← (pk ID)
sk∗

i

Z ← Ze∥Zs

kek ← KDF(Z, |DAE.K|, H∥T )
if mode = anon then

cek e ← DAE.D(kek e, ek j∗)

M ← AEAD.D(cek e, N,H,C, T )

elseif mode = auth then

cek ← DAE.D(kek , ek j∗)

M ← AEAD.D(cek , N,H,C, T )

elseif mode = a-auth then

cek ′ ← DAE.D(kek , c)
M ← AEAD.D(cek ′, N,H,C, T )

if M = ⊥ then

R′ ∪← IDj

else

R ∪← IDj

DIDCommn,ℓ,C .E(snd; ID,M,R,R′)

Figure 18: Simulator σ for the proof of Theorem 1.
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Proof 2 (Proof (sketch) of Theorem 3) Just as we did in the proof of Theorem 1, we can define the
first hybrid resource H0 by replacing the code (H,C)← . . . calling the cryptographic primitives in each of the
cases by the actual implementations as defined in Figure 2, and additionally Figures 10 and 12, for Theorem 3.
We can then “flatten” the code, as we did in the proof of Theorem 1, that is, reuse variables that are defined
in the same way across different code paths. For Theorem 1, this would mean that most of the hybrid H0

from Theorem 1 can be recycled, and only t more calls to AEAD.E, AEAD.D, and KDF should be added. The
next hybrids, and the resulting reductions, would then be straightforward, since the same set of cryptographic
primitives is used.
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