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Abstract

Incompressible encryption (Dziembowski, Crypto’06; Guan, Wichs, Zhandry, Eurocrypt’22)
protects from attackers that learn the entire decryption key, but cannot store the full ciphertext.
In incompressible encryption, the attacker must try to compress a ciphertext within pre-specified
memory bound S before receiving the secret key.

In this work, we generalize the notion of incompressibility to functional encryption. In
incompressible functional encryption, the adversary can corrupt non-distinguishing keys at any
point, but receives the distinguishing keys only after compressing the ciphertext to within S
bits. An important efficiency measure for incompressible encryption is the ciphertext-rate (i.e.,
rate = |m|/|ct|). We give many new results for incompressible functional encryption for circuits,
from minimal assumption of (non-incompressible) functional encryption, with

1. ct-rate- 1
2 and short secret keys,

2. ct-rate-1 and large secret keys.
Along the way, we also give a new incompressible attribute-based encryption for circuits

from standard assumptions, with ct-rate- 1
2 and short secret keys. Our results achieve optimal

efficiency, as incompressible attribute-based/functional encryption with ct-rate-1 as well as short
secret keys has strong barriers for provable security from standard assumptions. Moreover, our
assumptions are minimal as incompressible attribute-based/functional encryption are strictly
stronger than their non-incompressible counterparts.

1 Introduction

A fundamental principle in cryptography is to leverage ‘secrets’ for differentiating between an honest
user legitimately accessing a system and an attacker trying to illegitimately access it. Consider
data encryption as an example, where the goal is data secrecy. A central assumption underlying
traditional encryption is that an attacker cannot learn anything about a user’s secret decryption key.
Moreover, this assumption seems inherent as if an attacker learns the secret key, then how can one
distinguish between ‘capabilities’ of an honest user and an attacker!?
∗Support for this research was provided by OVCRGE at UW–Madison with funding from theWisconsin Alumni Research
Foundation.
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In 2006, Dziembowzki [Dzi06] proposed an exquisite approach to restrict the ‘capabilities’ of
an attacker, even when the entire secret key gets corrupted. The proposal was to view long-term
memory storage as a limited and expensive resource. In words, the intuition was that no real-
world attacker can maintain an unbounded long-term memory, and it has to pick and choose
what it wants to store in its memory. Dziembowzki [Dzi06] formalized this in the secret-key
setting, and defined it as a forward-secure storage system. Recently, Guan, Wichs, and Zhandry
(henceforth GWZ) [GWZ22] generalized this to the public-key setting. They labeled cryptography
in this model as “incompressible” cryptography. The intuition being that an attacker cannot
‘compress’ its unbounded short-term memory into its bounded long-term memory. GWZ provided
multiple constructions for ‘incompressible’ public-key encryption and signatures, from a variety of
cryptographic assumptions with different efficiency tradeoffs.

Beyond Public-Key Encryption. Functional encryption (FE) [SW05, BSW07, KSW08, BSW11] is a
powerful generalization of public-key encryption (PKE) [DH76]. FE generalizes PKE by providing
fine-grained access to encrypted data. In FE, the master decryption key holder can create partial
‘functional’ decryption keys sk f for any supported function f of its choice. Such a key holder can
recover f (m) from any ciphertext ct, encrypting data m. Standard indistinguishability-based FE
security states that no polytime attacker cannot distinguish between encryptions ct0, ct1 of messages
m0, m1, unless it receives a secret key sk f ∗ s.t. f ∗(m0) ̸= f ∗(m1). That is, unless an attacker receives
a ‘distinguishing key’ sk f ∗ , it cannot distinguish between any two ciphertexts.1 The ability to learn
only function evaluation of encrypted data and nothing more has had fascinating consequences
in cryptography, both theoretically and practically [Sha84, BF01, Coc01, SW05, GPSW06, BW07,
BSW07, KSW08, BSW11, O’N10, GVW15, GPS16, GKW17, WZ17, CDG+17, GKRW18, KMUW18,
QWW18, GKW18, JLS21, JLS22, BS23, DGM23].

While functional keys offer fine-grained access over encrypted data, enabling many superior
applications, they also enable far more attack opportunities compared to plain encryption. In PKE,
there is just one secret key, and while that implies an all-or-nothing functionality, storing the key
securely for the entire system lifetime is much easier. On the contrary, in FE, there are master
secret keys as well as functional decryption keys. Each decryption key must be securely generated,
distributed, and stored by the appropriate user. While it might be reasonable to expect the central
trusted authority will (in most part) store master key msk securely; expecting this from every other
user (holding a functional key) is unrealistic.

Our Contributions: Incompressible FE. In this work, we study incompressible functional en-
cryption systems. We formalize the concept, and provide multiple constructions from a variety
of cryptographic assumptions enabling different efficiency tradeoffs. As we elaborate later in Ap-
pendix A, incompressibility in FE is extremely interesting, both theoretically and practically. In
short, it pushes the traditional perception in FE that leaking an entire decryption key is equivalent
to learning the function output on every previously encrypted data.

Formalizing incompressible FE. Interestingly, formally defining incompressibility for FE is more
nuanced than for PKE. In public-key encryption, there is just one secret key. Thus, to define

1Throughout the sequel, by the phrase a ‘distinguishing key’, we mean a secret key that can distinguish between two
ciphertexts (by running decryption). Similarly, by the phrase ‘non-distinguishing keys’, we mean secret keys that do not
enable a trivial distinguishing attack between two ciphertexts.
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incompressibility for PKE, one considers a simple two-stage attacker: in stage 1, the attacker receives
a ciphertext that it must ‘compress’ down to S bits2; and stage 2, where the attacker receives the
secret key (along with the S-bit ‘compressed’ ciphertext). As long as such an attacker cannot learn
anything about the message, the PKE scheme is a secure incompressible scheme. In functional
encryption setting, there are many more secret keys! Thus, depending upon the secret key(s) that a
stage 2 attacker learns, there are different formulations of incompressible FE security. Below, we
briefly summarize three such formulations, and discuss them in further detail in Section 2.1.3

– Standard security: the adversary receives one (or bounded number of) distinguishing secret
key(s), after compressing challenge ciphertext (i.e., in stage 2). Moreover, it receives un-
bounded number of non-distinguishing secret keys before and after compressing the ciphertext.

– Semi-strong security: this is a strengthening of standard security, where the adversary can
get an unbounded number of distinguishing keys in stage 2.

– Strong security: this further strengthens as now adversary gets the master secret key in stage 2.

Measuring incompressibility efficiency. Clearly, for the above to not be trivially impossible, the cipher-
text size should be larger than S, the incompressibility limit. Further, the ciphertext should be
larger than |m| to uniquely encode m and guarantee correctness. However, it is not clear if there are
any other necessary constraints on parameter sizes, beyond |ct| = max(S, |m|) + poly(λ). Here the
max(S, |m|) term ensures both ciphertext constraints (i.e., |ct| > S and |ct| > |m|).

Thus, an ideal goal is to design incompressible FEwhere |mpk|, |msk|, |sk f | are all independent of
S, and |ct| = max(S, |m|) + poly(λ). Such an incompressible FE scheme would have asymptotically
optimal-sized parameters. As we discuss later in Section 2.4, achieving optimality in all parameter
sizes is unachievable from standard falsifiable assumptions. Therefore, a standard approach in the
literature [GWZ22, BDD22] is to design encryption with highest ciphertext-rate. Ciphertext-rate is
defined as the ratio of message length and ciphertext length, i.e. |m||ct| .

Prior works [GWZ22, BDD22] built incompressible PKE with optimal ct-rate of 1. Unfortu-
nately, that comes at the cost of large secret keys, i.e. |sk| = poly(S, λ). In this work, we design
incompressible ABE/FE in two incomparable parameter regimes – ct-rate of 1 with “large” secret
keys, and ct-rate of 1

2 with “short” secret keys. We believe both parameter regimes to be equally
interesting. In FE applications, where an honest user stores only secret keys and not ciphertexts
in its persistent long-term storage, it might be beneficial to have short keys with constant ct-rate.
While, in applications where an honest user stores only a few secret keys and a large number of
ciphertexts, having a ct-rate of 1 might be more useful.

Our results

We summarize our main results below. All our schemes are in the standard model and under stan-
dard assumptions. We do not make any ideal-cipher, random oracle, or any other non-standard/non-
falsifiable cryptographic assumption.

2S is typically considered to be the bound on the adversary’s long-term storage.
3We can also consider joint compression of ciphertexts and secret keys in FE. The focus of this work is only on

ciphertext incompressibility as discussed in Appendix A. It is an interesting open question of whether new tradeoffs and
applications can be enabled, if one considers joint incompressibility of ciphertexts and secret keys.
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Incompressible FE. Our first set of results contains new constructions for incompressible FE for
polynomial-sized circuits. We provide three separate and incomparable FE constructions as
each provides a unique efficiency-security tradeoff. All three construction rely on a standard
public-key FE scheme for polynomial-sized circuits.

1. Our first incompressible FE scheme is proven secure in the semi-strong incompressibility
model. If the underlying FE scheme has ct-rate of r ∈ [0, 1], then our incompressible FE
scheme has an r

2 ct-rate.
2. Our second scheme is also proven secure in the semi-strong incompressibility model, ex-

cept we only prove selective security.4 Moreover, this construction is a ct-rate preserving
construction. That is, we obtain ct-rate r incompressible FE scheme from any ct-rate r
standard FE scheme. However, the secret keys are large to avoid known barriers.

3. Our third scheme is an extension of our above scheme. It is proven secure in the selective
standard incompressibility model, but it provides a rather non-trivial efficiency guarantee.
We prove that if the underlying FE scheme has short keys, then so does our incompressible
FE scheme (without lowering the ct-rate). As we elaborate later in the overview, this
does not contradict known implausibility results (see discussion in Section 2.4), but
rather tightly matches it.

By plugging in known optimal-ciphertext-rate FE schemes [GWZ22, JLL23], we obtain incom-
pressible FE schemes under the assumption of poly-secure FE with:

1. a ct-rate- 1
2 , short keys, and selective semi-strong security,

2. a ct-rate- 1
4 , short keys, and adaptive semi-strong security,

3. a ct-rate-1, large keys, and selective semi-strong security,
4. a ct-rate-1, short keys, and selective standard security.

Incompressible ABE. Our second result is an incompressible attribute-based encryption (ABE)
scheme for polynomial-sized circuits achieves (standard) incompressible ABE security, with
ciphertext size |ct| = S + |m|+ poly(λ) and all other parameter sizes, |mpk|, |msk|, |sk f |, are
independent of S. That is, this scheme has ct-rate of 1

2 , and short keys.

2 Technical Overview

In this section, we provide a high level overview of our main contributions. First, we formally
introduce the concept of incompressible FE. Second, we present the main technical ideas behind our
incompressible ABE and FE constructions. Lastly, we provide a discussion on alternate approaches,
and discuss known implausibility results and related work.

2.1 Defining Incompressible FE

Syntactically, incompressible FE is identical to (regular) FE as it contains the same set of algorithms:
Setup, Enc, KeyGen, Dec. The difference is that the security property is superior. Recall that the tra-
ditional IND-based FE security states an attacker that receives a challenge ciphertext ct (encrypting

4Here selective means that the adversary must submit challenge messages before receiving secret keys in stage 1.
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one of two messages m0, m1) along with a polynomial number of decryption keys sk f1 , . . . , sk fq (for
functions f1, . . . , fq) cannot guess which of m0 or m1 was encrypted so long as fi(m0) = fi(m1) for all
q functions. Clearly, if the attacker receives a key for some function f ∗ such that f ∗(m0) ̸= f ∗(m1),
then an attacker can trivially distinguish by decrypting the challenge ciphertext.5

Incompressibility of FE states that the indistinguishability should hold even when the attacker
receives a secret key for such a distinguishing function f ∗ so long as the adversary reduces its state
to a pre-specified bound S, before receiving the distinguishing key sk f ∗ . It is straightforward to
see that this is no longer trivially impossible whenever |ct| > S (i.e., compressed local state cannot
contains full ciphertext). A bit more formally, the incompressibility game can be abstracted out via
the following phases:

Phase I: regular FE-style game. The challenger and attacker play the regular FE indistinguishability
security game [BSW11]. (The restriction about querying only non-distinguishing keys still
holds.) That is, the attacker can use arbitrary polynomial time and space, and can query
function f as long as f (m0) = f (m1). Here m0, m1 are the challenge messages.

State Reduction. The attacker outputs a ‘compressed’ state st of size at most S.

Phase II: querying the distinguishing key. The attacker is reset with the above state st. It also gets
the challenge messages (m0, m1) sent during Phase I.6 The attacker then makes a key query
for any distinguishing function f ∗ s.t. f ∗(m0) ̸= f ∗(m1). The attacker is also allowed to make
polynomially many secret key queries for non-distinguishing functions f s.t. f (m0) = f (m1).
Finally, the attacker outputs its guess of which message was encrypted.

We say an FE scheme is a secure incompressible FE scheme if no PPT attacker can successfully
guess the message. Clearly, the above implies the regular FE security (since any successful attacker
in the regular FE game can also win in the above game by submitting its guess right after Phase
I). The definition is a natural generalization of incompressible encryption security [GWZ22] to FE.
The distinction is that, in PKE, there is a single (distinguishing) key; while, in FE, there could be
many distinguishing keys. Also, note that the above definition is oblivious to function class, thus
incompressible PKE/IBE/ABE etc. security can be defined as a special case of the above.

Stronger incompressibility security. Viewing incompressibility via the lens of FE, we observe
that we could even consider stronger corruption models. For instance, an attacker could ask for
more than one distinguishing key in Phase II or, more generally, an attacker might corrupt the
master secret key in Phase II (thereby obtain any key it wants)? It is immediate that the above
notions are increasingly more powerful. We refer to these notions of semi-strong incompressibility
and strong incompressibility, respectively. In this work, we provide new constructions for, both,
standard and semi-strong incompressibility security models. It is an interesting open problem to
design FE achieving strong incompressible security.

5We can also consider stronger simulation style security definitions [BSW11, O’N10]. However, we know that general
simulation-secure FE [AGVW13] is impossible, and there exists generic compilers [GKW17] to boost IND-based ABE
security to SIM-based security. Thus, we stick to IND-based security in this work, and leave SIM-based security for future.

6Giving the challenge messages to the Phase-II adversary could be useful in settings where the message size itself is
bigger than S.
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2.2 Incompressible FE

In this section, we provide a high level overview of our incompressible FE constructions. Our
overview is split into two parts– first, we explain our main ideas behind our constant-rate incom-
pressible FE scheme with short keys; and second, we discuss our optimal-rate incompressible FE
scheme. Both our constructions share some common ideas but, due to diverging goals, their exact
execution is significantly different.

Part I: rate- 1
2 with short keys. Our core idea is that, to ensure incompressibility of FE ciphertexts,

we will use an incompressible PKE scheme7 inside of a (regular) FE scheme. The plan is to use
incompressible PKE scheme to encrypt the actual challenge message, and put that inside the base
FE scheme such that only distinguishing keys decrypt the incompressible PKE ciphertext, while
non-distinguishing keys keep on using the message that is just directly encrypted within the FE
ciphertext.

In a bit more detail, during system setup, we sample an incompressible PKE public-secret
key pair (inc.pk, inc.sk) along with an FE master public-secret key pair. To encrypt a message m,
we run the base FE encryption algorithm to encrypt a message m along with a flag bit b and an
incompressible PKE ciphertext inc.ct. Typically, the encryptor sets the flag bit b = 0 (to denote that
this is a real-world ciphertext) and encrypts some number of zeros inside the incompressible PKE
ciphertext inc.ct. Now to create a functional key for some function f , the key generator defines an
expanded function f̂ on the input string (m, b, inc.ct) as follows:

f̂inc.sk(m, b, inc.ct) =

{
f (m) if b = 0 or f is a non-distinguishing function
f (IncPKE.Dec(inc.sk, inc.ct)) otherwise.

The incompressible FE secret key for function f consists of an FE secret key for function f̂ . Clearly,
the above scheme is correct. To prove security, our plan is to switch an honest/real-world encryption
of challenge message mβ from FE.Enc(mβ, 0, inc.ct(0)) to FE.Enc(m0, 1, inc.ct(mβ)). This should
follow from regular FE security as for any distinguishing and/or non-distinguishing secret key,
both ciphertexts would give the same result. Once this happens, then we hope to reduce security to
incompressibility security of the PKE scheme.

The above template has two issues– (1) how to secretly encode whether f is a distinguishing or
a non-distinguishing function inside f̂ , (2) how to ensure that a non-distinguishing key does not
contain any information about inc.sk. If we can resolve these issues, then it appears that this would
be enough to prove incompressibility security of our FE scheme.

Hidden triggers via another layer of ‘flagging’. Our approach to get around this is to introduce another
flag bit as a hidden trigger. That is, each expanded function f̂ no longer contains inc.sk in the clear,
but in an encrypted form. Moroever, the ciphertext encrypting inc.sk also contains another flag
bit b̂ that indicates whether the function f is a distinguishing or a non-distinguishing function
for challenge messages m0, m1. With this modification, we also need to update how we perform
encryption. Our incompressible FE ciphertext now is a regular FE ciphertext encrypting amessage m,
flag bit b, an incompressible PKE ciphertext inc.ct, and an SKE secret key ske.sk. And, the expanded

7Here, we use incompressible PKE for simplicity of exposition. In our formal construction, we use incompressible
SKE.
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function f̂ is defined as:

f̂ (m, b, inc.ct, inc.sk) =

{
f (m) if b = 0 or b̂ = 0
f (IncPKE.Dec(inc.sk, inc.ct)) otherwise.

where (b̂, inc.sk) = SKE.Dec(ske.sk, ske.ct). Here ske.ct is computed individually for each function
f , and it contains a flag b̂ and an incompressible PKE key inc.sk. Now in the real-world, ske.ct
encrypts zeros, but during the security proof, it transitions to encryption of a bit b̂ f (signalling f is
distinguishing/non-distinguishing) as well as incompressible SKE key inc.sk.

One final layer of redirection. The above FE encryption of m has four slots in the ciphertext: the first slot
contains the message m (to be used by the non-distinguishing functions), the second slot contains a
flag bit b (which indicates that we are in the ‘proof’ mode), the third contains an incompressible
PKE ciphertext (which, in the above overview, was an encryption of m and is to be used by the
distinguishing functions) and the last slot contains a (regular) SKE secret key. The FE secret key for
f is a secret key for function f̂ which has f and SKE encryption of flag bit b̂ and inc.sk hardwired.
The flag bit b̂ indicates whether this key is for a non-distinguishing function or a distinguishing
function, and inc.sk is included only in the distinguishing functions’ keys.

Unfortunately, the above solution still does not have good ct-rate as the incompressible PKE
scheme could have a bad rate. Furthermore, even if we plug in a ct-rate-1 incompressible PKE in
the above design, we could possibly achieve a ct-rate of 1

2 for our FE scheme, but it increases the
secret key size (as the incompressible PKE secret would be longer).

To achieve ct-rate- 1
2 , we add one final layer of redirection. Our incompressible FE ciphertext

encrypts an additional SKE secret key. We hardwire an SKE ciphertext, for this key, inside f̂ and this
ciphertext encodes function evaluation f (mb) for every distinguishing function f . This ensures that
we no longer need to encrypt a long message under the incompressible PKE system (as we encrypt
this SKE secret key) aswell as it still guarantees that the appropriate function value gets hardwired in
each distinguishing key. We provide our full construction and proof in detail in Section 5. Combining
our results with state-of-the-art (regular) FE schemes with constant/optimal ct-rate [JLL23], we
obtain either: (i) a 1

4 |ct|-rate incompressible FE scheme with short keys and adaptive semi-strong
incompressibility security, or (ii) a 1

2 |ct|-rate incompressible FE scheme with short keys and selective
semi-strong incompressibility security. Any further improvement in the ct-rate or selective/adaptive
security of (regular) FE schemes would automatically lead to an incompressible FE scheme with
short keys and better efficiency/security.

Part II: rate-1 with semi-strong security. When the desired goal is rate-1 incompressible FE, we
can no longer afford to FE encrypt a string that has one slot for the message and a separate slot
for an incompressible ciphertext. It is essential that the message slot and the slot containing the
randomness part for the core incompressibility/extractor-based argument overlap significantly. At
a high level, in the real-world, the encryption of m would be an FE encryption of (m, 0). In the
proof, we switch this to an encryption of (x, 1) where x is drawn uniformly at random, and the
‘1’ in second component indicates that ciphertext is generated in ‘proof’ mode. As a result, the
information about m0 or m1 is contained solely in the secret keys. For any non-distinguishing key
query f , we hardwire z = f (m0) = f (m1) in the secret key.8 In the second phase, the adversary

8Looking ahead, since the function output needs to be included in the secret keys, we can achieve only selective
security with this approach (that is, all key queries must come after the challenge messages are sent).
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can query for polynomially many distinguishing functions. The challenger samples a random
seed s, samples bit β and sets v = mβ ⊕ Exts(x) (the same s and v are used for all distinguishing
key queries). For any such key query f , the adversary receives an FE key for a related function
f̂(s,v) where f̂s,v(x, 1) = f (v⊕ Exts(x)). As before, we need to secretly encode whether a key is
for a distinguishing function or a non-distinguishing one, and we use the same hidden triggers
mechanism for this.

Our solution in detail. The master public key/secret key are generated using the regular FE scheme’s
setup. To encrypt a message m, we FE encrypt (m, 0, 0) where 0 is of length poly(λ). The secret key
for a function f is the FE secret key for function f̂ which has f and a random string ske.ct hardwired,
and is defined as follows:

f̂ske.ct(m, b, ske.sk) =


f (m) if b = 0 (used by real-world ciphertexts)
z if b̂ = 0 (used in proof for non-distinguishing keys)
f (v⊕ Exts(m)) otherwise (used in proof for distinguishing keys)

where
(

b̂, z, s, v
)
= SKE.Dec (ske.sk, ske.ct).

First, note that if the base FE scheme is rate-1, then so is the above scheme. Next, we briefly
discuss why this scheme satisfies selective semi-strong security. In the proof, at the start of the
experiment, the challenger samples a bit β ← {0, 1}, an SKE secret key ske.sk, a sufficiently long
string x, and an extractor seed s. On receiving the challenge messages (m0, m1), the challenger
sends an FE encryption of (x, 1, ske.sk). For the non-distinguishing secret keys, it computes ske.ct←
SKE.Enc (ske.sk, (0, f (m0),⊥,⊥)) and gives an FE secret key for f̂ske.ct. For the distinguishing secret
keys, ske.ct is an encryption of

(
1,⊥, s, mβ ⊕ Exts(x)

)
. Using the security of the base FE scheme

and the SKE scheme, we can show that this experiment is indistinguishable from the selective
semi-strong incompressibility experiment, and note that the information about β is only contained
in the distinguishing keys. However, mβ is masked by Exts(x), and if x is sufficiently longer than the
adversary’s state size S, then using the strong extractor’s guarantee, we can conclude that Exts(x)
looks uniformly random to the second-phase adversary, and therefore the bit β is hidden.

Conclusion. Note that once we replace m with the extractor randomness, for the non-distinguishing
function queries, we must hardwire f (m) in the secret key. As a result, we can only achieve selective
security. Next, note that the above construction achieves semi-strong security. The second-phase
adversary can query for polynomially many distinguishing functions. For each function f , we
compute ske.ct ← SKE.Enc (ske.sk, (1,⊥, s, v)) (where s and v are defined during setup and are
common for all queries), and give an FE secret key for f̂ske.ct.

Rate-1 incompressible FE with standard security and short keys. The solution discussed above achieves
semi-strong security, and has large secret keys (note that the secret key has v hardwired, and v
has same length as the message). However, there is a closely related approach where we can have
v to be of same length as the output size of f (and therefore, if the output of f is short, then the
FE secret key is short). The idea is that the function f does not need to be computed within f̂ske.ct.
Instead, we can define f̂ske.ct as follows:

f̂ske.ct(m, b, ske.sk) =


f (m) if b = 0
z if b̂ = 0
v⊕ Exts(m) otherwise

8



where
(

b̂, z, s, v
)
← SKE.Dec (ske.sk, ske.ct).

This approach gives us a incompressible FE scheme with regular security, having rate-1 cipher-
texts and short keys! In the proof, we choose x during setup and the challenge ciphertext is encryp-
tion of (x, 1, ske.sk). For the non-distinguishing function queries, we SKE encrypt (0, f (m0),⊥,⊥)
and give an FE key for f̂ske.ct. When we receive the distinguishing function f in the second phase, we
sample a seed s, set v = Exts(x)⊕ f

(
mβ

)
, compute ske.ct← SKE.Enc (ske.sk, (1,⊥, s, v)) and give

an FE key for f̂ske.ct. Using the extractor’s guarantee, we can conclude that v is indistinguishable
from a uniformly random string, and therefore β is hidden. This approach can handle a bounded
number of distinguishing key queries. When instantiated with a rate-1 (regular) FE scheme (such
as the semi-adaptive FE construction of [JLL23]), this gives us a rate-1 incompressible FE scheme
with short keys.

At first sight, rate-1 incompressible FE with short keys may look surprising (see discussion
in Section 2.4). The crucial thing to note here is that the function output size is small, and we
are aiming for standard incompressible security (and not semi-strong security). This allows the
feasibility of rate-1 incompressible FE with short secret keys.

2.3 Incompressible ABE with ciphertext-rate-1
2

Attribute-based encryption (ABE) [SW05, GPSW06] is an extremely popular sub-class of FE. The
two common variants of ABE are key-policy ABE and ciphertext-policy ABE. In key-policy ABE,
the ciphertext is associated with an attribute attr in addition to a payload message m, and the
functionality is that given a secret key sk f , for some predicate f , one can learn m if f (attr) = 1 and
otherwise the payload is hidden. Ciphertext-policy is a dual where the predicate and attribute
switch places. In this work, we keep our focus on the key-policy variant of ABE. Our results can be
easily generalized to ciphertext-policy ABE as well.

Our main goal is to design incompressible ABE without relying on general-purpose FE. Given
that we have many diverse design for building ABE (when compared with FE) from a much wider
variety of cryptographic assumptions, thus it is an interesting question whether we could design
incompressible ABE from the same set of assumptions that are known to imply regular ABE.

Why doesn’t hybrid encryption work? A natural first idea is to use the folklore hybrid encryption
technique to combine a (regular) ABE scheme with an incompressible SKE scheme. Basically, the
encryption algorithm for the candidate incompressible ABE scheme does the following– (1) sample
an incompressible secret key inc.sk, (2) encrypt message m using inc.sk to create an incompress-
ible SKE ciphertext inc.ct, (3) encrypt inc.sk w.r.t. attribute attr under the base ABE scheme. The
incompressible ABE ciphertext contains, both ABE and incompressible SKE ciphertexts.

The intuition behind above template is that maybe just encoding the payload message m using
an incompressible encoding could be enough. While it seems a solid candidate template to boost to
incompressible ABE, it does not work! Further, it highlights a key technical difficulty in building
incompressible encryption. The issue is that to rely on incompressible SKE security, we need to
remove any information about inc.sk from the challenge ciphertext and somehow put it inside the
ABE (distinguishing) secret key. This type of ciphertext/secret key shuffling is not immediate for
an ABE scheme, especially when the goal is to achieve good ciphertext-rate.

Our initial approach is to encrypt messages using ABE in a “non-committing” way. To make
our task easier, we start with a simpler goal of poor ciphertext-rate. Recall that ciphertext-rate is the
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ratio of message over ciphertext length, i.e. |m||ct| .

Poor ct-rate via deferred encryption. With the simpler target of poor-rate incompressible ABE,
our first attempt is to use deferred encryption techniques [GKW16] developed originally in the
context of boosting selective to semi-adaptive security for FE. At a high level, deferred encryption
paradigm relies on the canonical Yao-style garbled-circuit-based 2PC (two-party computation)
protocol [Yao82] to defer computation of actual ciphertext to decryption process. We use the same
core principle for obtaining the desired ciphertext/secret key shuffling.

A bit formally, to encrypt a message m for attribute attr, the encryptor samples randomness r and
writes down the encryption circuit Dm,r that has m, r hardwired and, on input an incompressible
SKE key inc.sk, outputs IncSKE.Enc(inc.sk, m; r). The encryptor garbles Dm,r, resulting in a garbled
circuit D̂ and wire keys {labi,b}i,b. These keys are themselves encrypted using the base ABE scheme,
where label labi,b is encrypted for attribute (attr, i, b). The point is by ensuring that a decryptor only
learns half of the wire keys, we can simulate the garbled circuit, rather than actually putting the
message in the garbled circuit explicitly.

To achieve this, an incompressible ABE secret key for function f includes two keys – an incom-
pressible SKE key inc.sk f and an ABE key sk f̂ for the base ABE scheme. The key generator samples a
fresh incompressible SKE secret key inc.sk f for each predicate function f , and then creates the ABE
scheme for function f̂ , where f̂ (attr, i, b) = 1 iff f (attr) = 1 and inc.sk f [i] = b. Clearly, the above
scheme satisfies correctness. More importantly, one could show that, by simulating the garbled
circuit, the ABE portion of the ciphertext can be programmed to contain an incompressible SKE
ciphertext rather than the actual hardwired (m, r). And, this is enough to reduce incompressible
ABE security to incompressible SKE security9.

Why does it give poor rate? Unfortunately, the above strategy leads to very poor ciphertext-rate (i.e.,
1/poly(λ)). This is because it garbles an incompressible SKE encryption circuit, and even when
encrypting a single bit, the ciphertext size grows as poly(S, λ). There are two main sources of
inefficiency:

• Our template uses a generic incompressible SKE scheme. Even if we use an incompressible
SKE with optimal ciphertext-rate-1 (i.e., |ct| = max(|m|, S) + poly(λ)), its encryption circuit
might still be as large as poly(λ, S, |m|).

• Suppose that we have an incompressible SKE, where encryption circuit is of size max(|m|, S) +
poly(λ). This is still not enough since garbling introduces more overhead. Note that the
garbled circuit size typically is at least λ× larger than the original circuit size.

To get around the above technical hurdles, we develop a new ‘two-level’ deferred encryption
technique. We believe this might be of independent interest. Recently, deferred encryption tech-
niques were used in the context of bounded collusion FE [GGLW22, AMVY21, GGL24] to build
more efficient FE schemes. We believe that one might be able to enable newer efficiency tradeoffs in
bounded collusion FE by applying our two-level deferred encryption techniques.

9Technically, one needs to permute thewire keys to ensure theABE ciphertext contains no information about inc.sk f , but
we ignore this for simplicity. For the technical overview, one could instead use incompressible PKE and the permutation
trick won’t be needed
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Rate-1
2 ABE via ‘two-level’ deferred encryption. At a high level, our solution to improving

ciphertext-rate to 1
2 can be partitioned into a two-step approach. The first step is to design an

incompressible ABE scheme for encrypting short (λ-bit) messages, with optimal ciphertext size.
That is, we want the ciphertext size to be S + poly(λ), where S is the compression parameter. In
other words, the goal is to design an optimal incompressible ABE scheme for short messages. Our
second step is to generically upgrade any optimal incompressible ABE supporting λ-bit messages
to a ct-rate- 1

2 incompressible ABE scheme. That is, the resulting scheme can encrypt unbounded
length messages and has ciphertext size: |m|+ S + poly(λ). This implies the ciphertext-rate to be
1
2 , which is computed as the fraction |m||ct| when |m| → S → ∞ (i.e., message size approaches the
compression parameter, and it approaches ∞).

The first step of our approach relies on our two-level deferred encryption technique, and the
second step relies on a rather simple yet highly consequential observation about incompressible
all-or-nothing encryption systems. First, let us dive into the design of our incompressible ABE
scheme for short messages, and later we will extend it to encrypt arbitrary length messages.

Incompressible ABE for λ-bit messages. Recall the two sources of inefficiency that we discussed
earlier– large encryption circuit and garbling overhead. To get around the first issue, our plan is to
use Dziembowski’s information-theoretic scheme [Dzi06]. As we explain next, it has many useful
structural properties that help in simplifying our encryption circuit that we want to garble. Next,
to overcome the second issue, we use a special FE scheme that efficiently garbles our specialized
encryption circuit. One of our core observations for the second part is that we only need a partially
hiding FE scheme [GVW15] with short keys, and we know how to build these [GKP+13, BGG+14].
We provide more details next.

The main ingredients behind our two-level deferred encryption approach are as follows:

• First, we rely on a special ‘partially hiding’ FE scheme. In a typical partially hiding FE
(PHFE) scheme, a ciphertext encrypts an input x which is viewed as two disjoint components
(xpriv, xpub). That is, input x has a private component xpriv and a public component xpub. Each
secret key sk f is still associated with a single function f , but it enables the functionality that
decryptor can compute f (x) = f (xpriv, xpub) as well as it can learn xpub. That is, xpub is no
longer hidden, and treated as a public component.
The two special properties that we need from PHFE are that the secret key size is short, and
the encryption circuit size only grows with the input length. That is, for any function f ,
representable as a fixed depth (say λ) circuit, the size of the corresponding secret key sk f
is at most poly(λ). Moreover, we need the encryption circuit size to just grow as poly(λ, |x|).
In words, both the secret key and encryption circuit size, |sk f | and |Enc|, can grow with
depth, but not the size, of the circuit representation of f . While such PHFE is a very strong
assumption in general, it is much easier to design if only a single secret key gets corrupted. In
short, we need the following:

- (public/private input splittability) x = (xpriv, xpub)

- (key succinctness) |sk f | = poly(λ, depth( f )).
- (Enc succinctness) |Enc| = poly(λ, |x|, depth( f )).
- (1-key, 1-ciphertext security) given f , sk f and an encryption of x, an adversary learns
nothing more than f (x) and xpub.
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Such PHFE schemes can be based on the Learningwith Errors assumption [GKP+13, BGG+14].
Moreover, we believe that we might be able to design them from simple assumptions such as
standard IBE/ABE. We leave further analysis of above PHFE for future works.

• Second, we open up Dziembowski’s (information-theoretic) incompressible SKE for λ-bit
messages. The secret key consists of two λ−bit strings (k, w). The scheme uses a strong
extractor Ext : {0, 1}λ × {0, 1}S+poly(λ) → {0, 1}λ. To encrypt a message m ∈ {0, 1}λ, the
encryptor chooses a random source R ← {0, 1}S+poly(λ), and outputs (R,Extk(R)⊕ w⊕m)
as the incompressible ciphertext. Using extractor security, we have that given a uniformly
random seed sd, and an S-bit digest computed from R← {0, 1}S+poly(λ), the output of Extsd(R)
still looks uniformly random. This is enough to prove SKE incompressibility.

Now our intuition is that if the strong extractor can be implemented using a fixed-depth circuit
(say poly(λ)), then Dziembowski’s encryption algorithm can also be implemented by a poly(λ)-
depth circuit (as all other operations are just ⊕). It is well-known [RRV99, GVW15, CL16] that
strong extractors with the desired efficiency properties exist. Thus, combining this with the fact
that we have PHFE with short keys and short encryption circuit, we can bypass the two sources of
inefficiency in our basic garbled circuit based construction.

At a high level, our approach is to add an “extra” level of deferred encryption via PHFE. That is,
instead of directly garbling the incompressible SKE encryption circuit (as we did earlier), we will
garble an FE encryption circuit and give an FE secret key in the clear. The purpose of doing this is
to ensure that the incompressible SKE encryption circuit is no longer “garbled”, but instead the
computation of incompressible SKE ciphertext is performed under the PHFE hood. This makes the
garbled circuit efficient, and independent of the compression parameter S, since it is just performing
PHFE encryption which is a short computation. Moreover, since PHFE encodes the functions
optimally within the functional secret key, thus Dziembowski’s encryption circuit can be encoded
far more efficiently. Combining the above ideas, the decryptor still recovers an incompressible SKE
ciphertext eventually (which it decrypts as before), but the difference is that computation of the
incompressible SKE ciphertext happens more efficiently.

We refer the above as a two-level deferred encryption technique. This is because we view garbled
circuits as performing one level of outer deferring, and by using PHFE internally, we can further
defer the encryption process to outside of the garbled circuit. Our two-level deferring technique
might be of independent interest. Next, we explain our ABE scheme more formally.

Structure of our incompressible ABE ciphertext and secret keys: An incompressible ABE ciphertext
contains the following components:

- a long (S + poly(λ) bit) string R.

- a garbled circuit Ĉ of size poly(λ).

- an FE secret key, of size poly(λ).

- 2λ (regular) ABE ciphertexts, each en-
crypts a garbled circuit wire label. Hence,
overall, these contribute poly(λ) bits.

The incompressible ABE secret key contains two λ-bit strings k, w and a (regular) ABE secret key.
Note that the ciphertext size is S + poly(λ), and the secret key has size poly(λ).

How these components are computed:
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- To encrypt a message m, we first choose a sufficiently long string R. Let DR be a function that
takes as input (k, w) and outputs Extk(R)⊕ w. Note that DR has size poly(λ, S), but depth is
bounded by λ (because of extractor properties).

- Next, we sample fe.msk, and compute skR ← FE.KeyGen(fe.msk, DR). This key has size poly(λ)
(due to PHFE key succinctness).

- We then compute the garbled circuit and wire labels. Let Cct be a circuit that has the λ-bit
message m, fe.msk and randomness rEnc hardwired, takes as input two λ-bit strings (k, w)
and outputs FE.Enc(fe.msk, (k, m⊕ w); rEnc). Here k is viewed as the public component, and
m⊕ w as the private component. This produces garbled circuit Ĉ and wire labels {labi,b}.
(Since PHFE encryption algorithm is succinct.)

- Finally, we encrypt the label labi,b using ABE public key for attribute (attr, i, b).

Unsurprisingly, the ABE secret key for a function f is same as for our poor-rate design. That is, it
contains an incompressible SKE key (for Dziembowski’s scheme) inc.sk f = (k f , w f ) and a regular
ABE key for circuit sk f̂ , where f̂ (attr, i, b) = 1 iff f (attr) = 1 and inc.sk f [i] = b.

To decrypt an incompressible ABE ciphertext, one must follow a four-step process– (i) decrypt
the (regular) ABE ciphertexts using the (regular) ABE secret key to recover wire labels correspond-
ing to inc.sk f = (k f , w f ), (ii) evaluate the garbled circuit to obtain a PHFE ciphertext, (iii) decrypt
the PHFE ciphertext using the PHFE secret key to obtain an incompressible SKE ciphertext (for
Dziembowski’s scheme), (iv) decrypt the incompressible SKE ciphertext using inc.sk f to recover
message m.

The proof of incompressibility security is similar to the security proof for our poor-rate scheme,
with a few extra hybrid steps. Crucially, after simulating the garbled circuit, we have to use PHFE
security before reducing to the incompressible SKE security. We refer to Section 8 and Appendix C
for a detailed description of our construction and its security analysis. This concludes the high level
overview of our incompressible ABE scheme for small messages with optimal efficiency.10

Improving ct-rate for incompressible ABE via hybrid encryption. At the beginning of this
section, we briefly summarized why hybrid encryption does not work to combine a regular ABE
with incompressible SKE to build an incompressible ABE. However, it turns out that we can use a
hybrid encryption idea to combine an incompressible ABE/IBE/PKE for fixed-length messages and
PRFs to encrypt unbounded length messages efficiently.

Basically, we use deterministic hybrid encryption to encrypt long messages. The idea is that an
encryptor now samples a random PRF key K ← {0, 1}λ, and encrypts K using the incompressible
ABE scheme. Now to encrypt the actual message m, it uses K to deterministically encrypt the
message as follows: m⊕ (FK(1)|| · · · ||FK(|m|)). The final ciphertext contains the one-time-padded
message and the incompressible ABE ciphertext. Whenever the ciphertext size of the incompressible
ABE scheme grows as S + poly(λ) (since |K| = λ), we get that the total ciphertext size grows as
S + |m|+ poly(λ). This gives us the desired efficiency, and security follows from a simple hybrid
argument since incompressible ABE security can be used to argue that K is hidden.

Combining the above two steps, we obtain our result of incompressible ABE with short keys,
and ciphertext size |ct| = S + |m|+ poly(λ). Next, we move to our incompressible FE constructions.

10Recall, for short messages, the ciphertext size must be at least S + poly(λ). Thus, our incompressible ABE scheme
achieves optimal efficiency of all parameters for the small-message setting.
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2.4 Rate-optimality, related work, and alternate approaches

Implausibility result and rate-optimality. In a follow-upwork [BGK+24], it was shown that constructing
a ct-rate-1 incompressible public-key encryption scheme with a short secret key is impossible if
the goal is to prove security under the hardness of standard falsifiable assumptions [Nao03] via
black-box reductions [Nao03, GW11, Wic13]. In more detail, the authors proved that a ct-rate-1
incompressible PKE with large keys and a |ct|-rate- 1

2 incompressible PKE with short keys to be
asymptotically optimal. Since incompressible ABE implies incompressible PKE, thus the above
implausibility extends to incompresssible ABE as well. This suggests our incompressible ABE
scheme with ct-rate- 1

2 matches the lower bound. Moreover, we also know FE is strictly more
powerful than PKE, thus it seems reasonable to assume that the above lower bound holds for
incompressible FE as well. While this is mostly accurate, there is a slight technical nuance. In
this work, for simplicity, we consider FE for boolean-value functions. That is, each FE secret key
is associated with a function with one-bit output. Thus, for such FE schemes, we can argue that
a ct-rate- 1

2 incompressible FE scheme with short keys is optimal if the adversary can corrupt an
unbounded number of FE secret keys (i.e., we consider adversaries in the semi-strong setting).
Otherwise, it turns out ct-rate-1 incompressible FE schemewith short keys is not ruled by [BGK+24]
if we only consider standard incompressibility security (i.e., where an adversary corrupts only one
distinguishing key). Thus, our final FE construction (overview in Section 2.2, full construction in
Section 7) does not bypass the implausibility result, but rather it tightly matches it.

Related works. In the space of incompressible encryption, Dziembowski [Dzi06] gave the first incom-
pressible SKE constructions, an information-theoretic rate-1

3 construction, and a rate-1
2 construction

using one-way functions. GWZ [GWZ22] presented two constructions for incompressible PKE– the
first construction is based on the existence of PKE schemes but had poor rate, and the second used
indistinguishable obfuscators [GGH+13, SW14, GGH+16] to construct a rate-1 scheme. Following
GWZ, Branco et al. [BDD22] constructed a rate-1 incompressible PKE scheme that is resistant against
chosen ciphertext attacks (CCA) using a rate-1 incompressible SKE and (programmable) hash
proof systems. Most recently, GWZ [GWZ23] introduced multi-user incompressible encryption
schemes, where the adversary initially has access to arbitrarily many ciphertext for different mes-
sages encrypted under different secret keys. After compressing these ciphertexts to an α-fraction
and receiving all the secret keys, it can guess at most α-fraction of the messages. They also defined
a simulation-based incompressible security notion.

In addition to incompressible encryption, GWZ defined and constructed incompressible signa-
ture schemes. Incompressible signatures state that no adversary can forge a valid signature, nor
reconstruct a signature from its compressed version. A closely related concept is the notion of
incompressible encodings [DGO19, GLW20, MW20]. These encodings have the property that it is
computationally infeasible to reconstruct a codeword for a message from its compressed form, even
in the presence of the message. Prior works [DGO19, GLW20, MW20] provided positive results for
incompressible encodings in the random oracle model as well as the CRS model. Another related
concept is the bounded storage model (BSM) [Mau92, CM97, AR99, Lu02, Raz17, GZ21, DQW23],
where the adversary has unbounded computational power, but a restricted memory capacity. While
BSM appears to be closely related to the incompressible cryptography paradigm, note that the
adversary in the latter setting is not space-bounded; only its long-term storage space is bounded.

Alternate approaches. As suggested by an anonymous reviewer, one can generalize the GWZ [GWZ22]
PKE constructions to build incompressible ABE. A direct generalization would give us two con-
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structions: (1) an incompressible ABE scheme with poor rate, starting with any ABE scheme (2)
an optimal-rate incompressible ABE scheme using indistinguishability obfuscation. We observe
that our technique for improving ct-rate for incompressible ABE via hybrid encryption can still
be applied to the first construction and this gives us a rate-1

2 ABE from minimal assumption of
ABE with short keys and standard security. We provide this in Appendix B for completeness. One
might try to extend it to FE as well, but it is unclear due to the functionality provided by general FE.
Any straightforward adaption either seems insufficient even for proving standard incompressibility
security, or it needs the recursive hidden trigger type techniques we use in our FE constructions
already.

Lastly, we remark that the reason we keep our PHFE based as our main ABE construction is
because it contains a new two-level deferred encryption technique which we believe could be of
independent interest. Moreover, state that we believe our ABE construction relies on a very weak
PHFE for instantiation. We hope that in the future it can be designed from simpler assumptions
such as IBE etc.

3 Preliminaries and Notations

Throughout this paper, we will use λ to denote the security parameter and negl(·) to denote
a negligible function in the input. We will use the short-hand notation PPT for “probabilistic
polynomial time”. For any finite set X, x ← X denotes the process of picking an element x from X
uniformly at random. Similarly, for any distribution D, x ← D denotes an element x drawn from
the distribution D. For any natural number n ∈ N, [n] denotes the set {1, 2, . . . , n}. For any two
binary string x and y, x||y denotes the concatenation of x and y. We use the following two notations
to denote a family of circuits - {Cn}n is a set of families of circuits indexed by some parameter n
and {Cd,ℓ}d,ℓ is a set of families of circuits indexed by the depth of the circuits d and the number of
inputs to the circuits ℓ.

3.1 Randomness Extractors

Definition 1 (Strong Average Min-Entropy Extractor). A (k, ϵ)-strong average min-entropy extractor is
an efficient function Ext : {0, 1}d × {0, 1}n → {0, 1}m such that for all jointly distributed random variable
X, Y where X takes values {0, 1}d and H∞(X|Y) ≥ k, we have (Ud,Ext(X, Ud), Y) ≈ϵ (Ud, Um, Y) where
Ud, Um are uniformly random strings of length d, m respectively. Here H∞(X|Y) = − log E

y←Y
(maxx

Pr(X = x|Y = y)) is the average min-entropy of X conditioned on Y.

Theorem 2. There exists an explicit efficient (k, 2−λ)-strong average min-entropy extractor Ext : {0, 1}d ×
{0, 1}n → {0, 1}λ such that k = poly(λ), d = poly(λ), n = S + k and the depth of the extractor circuit is
poly(λ, log(n)).

3.2 Pseudorandom Functions

A family of pseudorandom functions PRF = (KeyGen, Eval) with key space {Kλ}λ, input space
{Xλ}λ and output space {Yλ}λ consists of the following algorithms.

• KeyGen(1λ) : The key generation algorithm is a randomized algorithm that takes as input the
security parameter 1λ and outputs a key k ∈ Kλ.
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• Eval(k, x) : The evaluation algorithm is a deterministic algorithm that takes as input a key
k ∈ Kλ and x ∈ Xλ and outputs y ∈ Yλ.

Definition 3. A PRF scheme PRF is secure if for all PPT adversary A, there exists a negligible function
negl(·) such that for all λ ∈N,

|Pr[AEval(k,·)(1λ) = 1 : k← KeyGen(1λ)]− Pr[AR(·)(1λ) = 1 : R← Uλ]| ≤ negl(λ)

where Uλ is the set of all functions from Xλ to Yλ.

3.3 Garbling Scheme

A garbling scheme GC = (Garble,Eval) for a class of circuits {Cλ}λ consists of the following algo-
rithms.

• Garble(1λ, C): The garbling algorithm is a randomized algorithm that takes as input the
security parameter 1λ and a circuit C ∈ Cλ such that C : {0, 1}n → {0, 1} and outputs a
garbled circuit Ĉ and a set of labels {labi,b}i∈[n],b∈{0,1}.

• Eval(Ĉ, {labi}i∈[n]) : The evaluation algorithm takes as input a garbled circuit Ĉ and a set of n
labels {labi}i∈[n] and outputs y ∈ {0, 1}.

Correctness. For correctness of a garbling scheme GC for a class of circuits {Cλ}λ, we require that
for all λ ∈N, C ∈ Cλ, x ∈ {0, 1}n,

Eval(Ĉ, {labi,xi}i∈[n]) = C(x)

where (Ĉ, {labi,b}i∈[n],b∈{0,1})← Garble(1λ, C).

Security. For security, we define simulation based security [Yao86, BHR12].

Definition 4. A garbling scheme GC = (Garble,Eval) for a class of circuits {Cλ}λ is said to be secure if
there exists a PPT algorithm Sim such that for all PPT adversaries A = (A1,A2), there exists a negligible
function negl(·) such that for all λ ∈N, the following holds.∣∣∣∣∣Pr

[
A2(Ĉ, {labi,xi}i∈[n], aux) = 1 :

(C, x, aux)← A1(1λ),
(Ĉ,

{
labi,xi

}
i∈[n])← Sim(1λ, 1n, 1|C|, C(x))

]

−Pr

[
A2(Ĉ, {labi,xi}i∈[n], aux) = 1 :

(C, x, aux)← A1(1λ),
(Ĉ,

{
labi,b

}
i∈[n],b∈{0,1})← Garble(1λ, C))

] ∣∣∣∣∣ ≤ 1
2
+ negl(λ).

3.4 Incompressible Secret Key Encryption

An incompressible secret key encryption scheme IncSKE = (Setup,Enc,Dec) with message space
{Mλ}λ consists of the following PPT algorithms.

• Setup(1λ, 1S, 1n) : The setup algorithm is a randomized algorithm that takes as input the
security parameter λ, a parameter 1S, the length of the message 1n and outputs a secret key sk.
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• Enc(sk, m) : The encryption algorithm is a randomized algorithm that takes as input a secret
key sk and a message m ∈ Mλ and outputs a ciphertext ct.

• Dec(sk, ct) : The decryption algorithm takes as input a secret key sk and a ciphertext ct and
outputs either a message m ∈ Mλ or ⊥.

Correctness. For correctness, we require that for all λ ∈ N, S ∈ N, n ∈ N, m ∈ Mλ and sk ←
Setup(1λ, 1S, 1n),

Pr[Dec(sk,Enc(sk, m)) = m] = 1

where the probability is over the random bits used in the encryption algorithm.

Incompressible SKE Security. Consider the following experiment with an adversary A =
(A1,A2).

• Initialization Phase: A1 on input 1λ, outputs an upper bound on the state size 1S and the
length of the message 1n. The challenger runs sk← Setup(1λ, 1S, 1n).

• Challenge Phase: A1 outputs a message m, along with an auxiliary information aux. The
challenger randomly chooses b ∈ {0, 1}. If b = 0, it samples a truly random string ct∗. Else, it
computes a ciphertext ct∗ = Enc(sk, m) and sends it to A1.11

• First Response Phase: A1 computes a state st such that |st| ≤ S.

• Second Response Phase: A2 receives (sk, aux, st) and outputs b′. A wins the experiment if
b = b′.

Definition 5. An SKE scheme is said to be incompressible secure if for all PPT adversaries A, there exists a
negligible function negl(·) such that for all λ ∈N,

Pr[A wins in the above experiment] ≤ 1
2
+ negl(λ)

CPA-SKE Security. Consider the following experiment with an adversary A where Setup algo-
rithm takes only 1λ and 1n as input.

• Initialization Phase: The challenger runs sk← Setup(1λ, 1n).

• Pre-Challenge Query Phase: A is allowed to make polynomially many queries. For each
query m, the challenger computes ct← SKE.Enc(sk, m) and returns ct to Adv.

• Challenge Phase: A outputs a message m∗. The challenger randomly chooses b ∈ {0, 1}. If
b = 0, it samples a truly random string ct∗. Else, it computes a ciphertext ct∗ = Enc(sk, m∗)
and sends it to A.12

11In the incompressible security definition presented in prior works [BDD22, GWZ23], the adversary sends two
messages m0, m1 and receives an encryption of one of these message. Note that this is a weaker notion, which is implied
by the incompressible security notion defined in this paper.

12Note that this security notion implies the standard indistinguishability security notion where the adversary sends
two messages m0, m1 and receives an encryption of one of the messages.
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• Post-Challenge Query Phase: A is allowed to make polynomially many queries. For each
query m, the challenger computes ct← SKE.Enc(sk, m) and returns ct to Adv.

• Response Phase: A outputs b′ ∈ {0, 1} and wins the experiment if b = b′.

Definition 6. An SKE scheme is said to be secure if for all PPT adversaries A, there exists a negligible
function negl(·) such that for all λ ∈N, n ∈N,

Pr[A wins in the above experiment] ≤ 1
2
+ negl(λ)

Theorem 7 ([Dzi06]). Assuming the existence of one-way functions, there exists an incompressible SKE
scheme with poly(λ) secret-key size and S + n + poly(λ) ciphertext size where n is the size of the message
and S is the compressibility parameter. The depth of the decryption circuit is poly(λ, log(S, n)).

3.5 Functional Encryption

A functional encryption schemeFE = (Setup,KeyGen,Enc,Dec) for the function space {Fn : Xn → Yn}n
consists of the following PPT algorithms.

• Setup(1λ, 1n) : The setup algorithm is a randomized algorithm that takes as input the security
parameter 1λ and an index 1n and outputs a master public key mpk and a secret key msk.

• KeyGen(msk, f ) : The key generation algorithm is a randomized algorithm that takes as input
the master secret msk and a function f ∈ Fn and outputs a secret sk f .

• Enc(mpk, m) : The encryption algorithm is a randomized algorithm that takes as input a public
key mpk and a message m ∈ Xn and outputs a ciphertext ct.

• Dec(sk f , ct) : The decryption algorithm takes as input a secret key sk f and a ciphertext ct and
outputs either a y ∈ Yn or ⊥.

Correctness. For correctness, we require that for all λ ∈ N, n ∈ N, m ∈ Xn, f ∈ Fn and
(mpk,msk)← Setup(1λ, 1n),

Pr[Dec(KeyGen(msk, f ),Enc(mpk, m)) = f (m)] = 1

where the probability is over the random bits used in the encryption and key generation algorithm.

Adaptive IND-based Security. Consider the following experiment with an adversary A.

• Initialization Phase: The challenger runs (mpk,msk)← Setup(1λ, 1n) and sends mpk to A.

• Pre-Challenge Query Phase: A is allowed to make polynomially many queries. For each
query f , the challenger computes sk f ← KeyGen(msk, f ) and returns sk f to A.

• Challenge Phase: A outputs two message m0, m1. If there exists a function f queried by A
such that f (m0) ̸= f (m1), the challenger aborts the game. Else, it randomly chooses b ∈ {0, 1}
and computes a ciphertext ct∗ = Enc(mpk, mb) and sends it to A.
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• Post-Challenge Query Phase: A is allowed to make polynomially many queries. For each
query f , if f (m0) ̸= f (m1), the challenger sends ⊥. Else, computes sk f ← KeyGen(msk, f )
and returns sk f to A.

• Response Phase: A outputs b′. A wins the experiment if b = b′.

Definition 8. An FE scheme satisfies adaptive indistinguishability-based security if for all PPT adversaries
A, there exists a negligible function negl(·) such that for all λ ∈N,

Pr[A wins in the above experiment] ≤ 1
2
+ negl(λ)

If the FE is secure against an unbounded number of queries from the adversary, then we say that the
scheme is collision-resistant.

A relaxed notion of the FE indistinguishability-based security is thewell-known selective security
model. An FE scheme is said to be selectively secure if it is secure against PPT adversaries A that do
not make any key queries during the pre-challenge query phase, and have to submit the challenge
message before obtaining the public parameters.

The following two theorems addresses the optimal ciphertext-rate and secret-key size FE schemes
for both adaptive and selective settings. It is important to note that in these FE scheme, the decryption
algorithm requires the complete description of the function f in addition to the secret key sk f to
perform decryption.

Theorem 9 ([JLL23]). Assuming selectively secure FE for circuits, there exists an adaptively secure FE
such that

|mpk| = Oλ(1), |sk f | = Oλ(1)13, |ct| = 2|x|+ Oλ(1)

where Oλ(·) hides factors of poly(λ), λ is the security parameter, ct is a ciphertext and sk f is a secret key for
the function f , x is any element from the input space of f and mpk is the master public key generated by the
scheme.

Theorem 10 ([JLL23]). Assuming selectively secure FE for circuits, there exists an adaptively secure FE
such that

|mpk| = Oλ(1), |sk f | = Oλ(1)14, |ct| = |x|+ Oλ(1)

where Oλ(·) hides factors of poly(λ), λ is the security parameter, ct is a ciphertext and sk f is a secret key for
the function f that outputs a single bit, x is any element from the input space of f and mpk is the master
public key generated by the scheme.

Simulation security. Consider the following real and simulated experiment with an adversary A
where Sim is a PPT simulator.

13Size is independent of the function description length | f |, but the decryption algorithm requires the entire description
of f .

14The decryption algorithm requires the entire description of f .
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Real Experiment

• Initialization Phase: The challenger runs (mpk,msk)← Setup(1λ, 1n) and sends mpk to A.

• Challenge Phase: A outputs a message m and a function f . The challenger computes a
ciphertext ct← Enc(mpk, m) and sk f ← KeyGen(msk, f ) and sends (ct, sk f ) to A.

• Response Phase: A outputs b.

Simulated Experiment

• Initialization Phase: The simulator runs (mpk,msk)← Setup(1λ, 1n) and sends mpk to A.

• Challenge Phase: A outputs amessagem and a function f . The simulator computes (ct, sk f )←
Sim(mpk, f , f (m), 1|m|) and sends (ct, sk f ) to A.

• Response Phase: A outputs b.

Definition 11. An FE scheme is said to be single-key simulation secure if for all PPT adversaries A, there
exists a PPT simulator Sim and a negligible function negl(·) such that for all λ ∈N, n ∈N,∣∣∣Pr[A outputs 0 in the real experiment]− Pr[A outputs 0 in the simulated experiment]

∣∣∣ ≤ negl(λ)

Theorem 12 ([GKP+13]). Assuming the hardness of LWE, there exists a single-key simulation secure FE
for a class of circuits {Cn,d}n,d that takes input of size n, outputs a single bit and has depth d such that

|ct| = Oλ(n · d2), |sk f | = Oλ(d2), |mpk| = Oλ(n · d2)

where Oλ(·) hides factors of poly(λ), λ is the security parameter, ct is a ciphertext and sk f is a secret key for
the circuit f ∈ Cn,d and mpk is the master public key generated by the scheme.

Corollary 13. Assuming the hardness of LWE, there exists a single-key simulation secure FE for a class of
circuits {Cn,d}n,d that takes input of size n, outputs m-bits and has depth d such that

|ct| = Oλ(m · n · d2), |sk f | = Oλ(m · d2), |mpk| = Oλ(m · n · d2)

where Oλ(·) hides factors of poly(λ), λ is the security parameter, ct is a ciphertext and sk f is a secret key for
the circuit f ∈ Cn,d and mpk is the master public key generated by the scheme.

Specializing FE. An attribute based encryption scheme (ABE) is a function encryption scheme
where the message space is {Mn ×Xn}n, i.e., it is a tuple of a message and an attribute and the
function class is a set of function {Fn}n such that any function fC ∈ Fn is associated with a predicate
function C with the following definition.

FC(m, x) =

{
m i f C(x) = 1
⊥ i f C(x) = 0

In the security experiment, the adversary has to output m0, m1, x∗ in the challenge phase with
the restriction that it has never queried a key for a function fC such that C(x∗) = 1.
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Theorem 14 ([BGG+14]). Assuming the hardness of LWE, there exists an selectively secure ABE scheme
for any family of circuits {Cd,ℓ}d,ℓ that has ℓ-length input and d-depth satisfying

|ct| = Oλ(ℓ · d2), |sk f | = Oλ(d2), |mpk| = Oλ(ℓ · d2)

where Oλ(·) hides factors of poly(λ), λ is the security parameter, ct is a ciphertext and sk f is a secret key for
the predicate f ∈ Cd,ℓ and mpk is the master public key generated by the scheme.

An identity based encryption scheme (IBE) is a attribute based encryption scheme where the
message space is {Mλ × IDλ}λ, i.e., it is a tuple of a message and an identity and the function
class is a set of function {Fλ}λ such that any function fid ∈ Fλ is associated with an identity idwith
the following definition.

Fid(m, id′) =

{
m i f id = id′

⊥ i f id ̸= id′

In the security experiment, the adversary has to output m0, m1, id∗ in the challenge phase with
the restriction that it has never queried a key for id∗.

4 Incompressible Functional Encryption: Definitions

In this section, we will proceed to define the incompressible version of the security game for FE
scheme where Setup takes an additional input 1S. Similar to the incompressible SKE schemes, we
will consider two adversaries A1,A2. The first adversary A1 will be provided with the complete
challenge ciphertext and produce a compressed version of it. The second adversary A2 is provided
with the master public key, compressed challenge ciphertext which was created by A1 and certain
secret keys.

Definition 15. (Incompressible FE Security). Let FE = (Setup,KeyGen,Enc,Dec) be an FE scheme in
which the setup algorithm takes an additional parameter 1S as input. Consider the following experiment with
an adversary A = (A1,A2).

• Initialization Phase: A1 on input 1λ, outputs an upper bound on the state size 1S and 1n. The
challenger runs (msk,mpk)← Setup(1λ, 1S, 1n) and sends mpk to A1.

• Pre-Challenge Query Phase: In this phase, A1 is allowed to make polynomially many key queries.
For each query f sent to the challenger, the challenger computes sk f ← KeyGen(msk, f ) and returns
sk f to A1.

• Challenge Phase: A1 outputs two messages m0, m1, along with an auxiliary information aux. If
there exists a function f queried byA1 such that f (m0) ̸= f (m1), the challenger aborts the game. Else,
it randomly chooses b ∈ {0, 1} and computes a ciphertext ct∗ = Enc(mpk, mb) and sends it to A1.

• Post-Challenge Query Phase: This is similar to the pre-challenge query phase. The adversary A1 is
allowed to send polynomially many key queries. For each query f , if f (m0) ̸= f (m1), the challenger
sends ⊥. Else, computes sk f ← KeyGen(msk, f ) and returns sk f to A1.

• First Response Phase: A1 computes a state st such that |st| ≤ S.
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• Second Response Phase: A2 receives (mpk, aux, st) and can make the following query.

– Key Query Phase: In this phase, A2 is allowed to make a single distinguishing key query
but polynomially many queries for non-distinguishing keys. The challenger computes sk f ←
KeyGen(msk, f ) and returns sk f to A2.

Finally, A2 outputs b′. A wins the experiment if b = b′.

An FE scheme is said to be incompressible secure if for all PPT adversaries A = (A1,A2), there exists a
negligible function negl(·) such that for all λ ∈N,

Pr[A wins in the above experiment] ≤ 1
2
+ negl(λ)

We consider two stronger variants of the above security - strongly incompressible and semi-
strongly incompressible. In the strongly incompressible version, A2 is provided with the master
secret msk whereas in the semi-strongly incompressible version, it is allowed to make polynomially
many distinguishing key queries.

Definition 16. (Strongly Incompressible FE Security). An FE scheme is said to be strongly incompressible
secure if for all PPT adversaries A = (A1,A2), there exists a negligible function negl(·) such that for all
λ ∈N,

Pr[A wins in the Incompressible FE experiment] ≤ 1
2
+ negl(λ)

provided the second adversary A2 is also given the master secret key msk at the beginning of Second
Response Phase.

Definition 17. (Semi-Strongly Incompressible FE Security). An FE scheme is said to be semi-strongly
incompressible secure if for all PPT adversaries A = (A1,A2), there exists a negligible function negl(·)
such that for all λ ∈N,

Pr[A wins in the Incompressible FE experiment] ≤ 1
2
+ negl(λ)

provided the second adversary A2 is allowed to make polynomially many distinguishing key queries in
the Key Query Phase.

We can consider similar incompressible security notions for IBE and ABE schemes.

5 Rate-1
2 Incompressible FE with Short Keys and Semi-Strong Security

In this section, we present a semi-strong incompressible FE scheme, using a regular FE scheme along
with an incompressible SKE and regular SKE scheme. If the underlying FE has ct-rate of r ∈ [0, 1],
then our incompressible FE scheme has an r

2 ct-rate.
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Our Construction. Our FE scheme supports functions from the class {Fn : Nn → {0, 1}}n such
that any function in this class has a polylog(|Nn|) depth circuit using the following primitives.
Throughout S denotes the (in)compressibility parameter.

• IncSKE = (IncSKE.Setup, IncSKE.Enc, IncSKE.Dec) be an incompressible SKE. We define α =
α(λ, S) as the length of the secret key of this scheme and β = β(λ, S) as the length of the
ciphertext for a message of length λ encrypted using this scheme.

• SKE = (SKE.Setup,SKE.Enc, SKE.Dec) be an SKE scheme with secret keys of length λ.

• FE = (FE.Setup,FE.Keygen,FE.Enc,FE.Dec) be an FE schemewith message spaces
{
Ñn

}
n and

function space
{
F̃n

}
n that contains the decryption circuits of IncSKE and SKE.

Let ñ = ñ(λ, n, S) be the lexicographically smallest functionality index such that F̃ñ contains
Fn, the decryption circuit of SKE and IncSKE. We describe the algorithms for our incompressible
FE scheme below.

• Setup(1λ, 1S, 1n) : The setup algorithm samples a master public key and a master secret key of
the FE scheme by computing (fe.mpk, fe.msk)← FE.Setup(1λ, 1ñ). It generates a secret key of
the incompressible SKE scheme by computing inc.sk← IncSKE.Setup(1λ, 1S, 1λ) and two secret
keys of the SKE scheme by computing ske.sk← SKE.Setup(1λ) and ske.sk′ ← SKE.Setup(1λ).
It sets mpk = fe.mpk and msk = (fe.msk, inc.sk, ske.sk, ske.sk′).

• KeyGen(msk, f ) : Let msk = (fe.msk, inc.sk, ske.sk, ske.sk′). The key generation algorithm first
computes ciphertext ske.ct = SKE.Enc(ske.sk, (0, 0α)) and ske.ct′ = SKE.Enc(ske.sk′, 0). Then,
it generates a key of the FE scheme by computing fe.sk f ← FE.Keygen(fe.msk, C f ,ske.ct,ske.ct′)
where the function C f ,ske.ct,ske.ct′ is described in Figure 1.

Input: Messages m, SKE key ske.sk, incompressible ciphertext inc.ct and a flag b
Hardwired: Function f , two SKE ciphertexts ske.ct, ske.ct′

Output: y

1. Check if b = 0 :
− If yes, output y = f (m).

2. Otherwise, compute ( f lag, inc.sk)← SKE.Dec(ske.sk, ske.ct).
3. Check if f lag = 0 :
− If yes, output y = f (m).

4. Otherwise, compute ske.sk′ ← IncSKE.Dec(inc.sk, inc.ct).
5. Output y = SKE.Dec(ske.sk′, ske.ct′).

Figure 1: Description of C f ,ske.ct,ske.ct′

• Enc(mpk, m) : Letmpk = fe.mpk. The encryption algorithm randomly samples inc.ct← {0, 1}β

and generates fe.ct← FE.Enc(fe.mpk, (m,⊥, inc.ct, 0))15. It returns fe.ct.

• Dec(sk f , ct) : Let sk f = fe.sk f . The decryption algorithm decrypts the ciphertext by computing
m = FE.Dec(fe.sk f , ct). It returns m.

15By ⊥, we mean it sets a null secret key.
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Correctness. A ciphertext corresponding to a message m in the above scheme is an encryption
of (m,⊥, inc.ct, 0) using the FE scheme, i.e., ct ← FE.Enc(fe.mpk, (m,⊥, inc.ct, 0)) where inc.ct is a
truly random string.

Consider that a decryptor possesses the secret key sk f for some function f . The secret key
sk f is a key fe.sk f of the underlying FE scheme for the circuit C f ,ske.ct,ske.ct′ which takes as input
in (m, ske.sk, inc.ct, b) and outputs f (m) if b = 0. The decryption algorithm simply computes the
decryption algorithm of the underlying FE scheme on the ciphertext ct using fe.sk f and returns
the output. Since, b is set to 0 in the ciphertext ct, decrypting ct using fe.sk f gives f (m) due to the
correctness of the underlying FE scheme.

Size of the master public key. The master public key of our scheme is fe.mpk. Therefore, the size
is |fe.mpk|.

Size of the ciphertext. Recall that the ciphertext is an FE encryption of (m,⊥, inc.ct, 0) where the
third component has size β. From the definition of β, it is the length of an incompressible ciphertext
which is intended encrypt an SKE secret key, therefore, β = S + poly(λ) using Dziembowski’s
construction (see Theorem 7). So, the size of (m,⊥, inc.ct, 0) is |m|+ S + poly(λ). Assuming that FE
has ct-rate of r, the size of fe.ct is also r−1 · (|m|+ S + poly(λ)). Therefore, the rate of the proposed
scheme is

r · |m|
(|m|+ S + poly(λ))

=
r(

1 +
S
|m| +

poly(λ)

|m|

)
Size of the secret keys. The size of the secret key associated with a function f is |fe.sk f | where
fe.sk f is an FE secret key for the circuit C f ,ske.ct,ske.ct′ . To use this secret key, the decryption algorithm
would require the entire description of C f ,ske.ct,ske.ct′ (see Theorem 9 and Theorem 10).

In addition to the description of f and the decryption circuits of SKE and IncSKE, the circuit
C f ,ske.ct,ske.ct′ contains two SKE ciphertexts generated during the key generation process. Therefore,
fe.sk f should contain both an FE secret key for the circuit C f ,ske.ct,ske.ct′ and the two ciphertexts
ske.ct, ske.ct′. The first SKE ciphertext is an encryption of an incompressible SKE scheme’s secret key
inc.sk along with a bit f lag, and the second is just a bit y. Using Dzeimbowski’s construction (see
Theorem 7), we have |inc.sk| = poly(λ). Therefore, |fe.sk f | is the size of an FE secret key associated
with C f ,ske.ct,ske.ct′ , with an additional poly(λ).

Theorem 18. Assuming FE = (FE.Setup,FE.Keygen,FE.Enc,FE.Dec) is an ct-rate-r adaptively (se-
lectively) secure FE scheme, SKE = (SKE.Setup,SKE.Enc, SKE.Dec) is a secure SKE scheme against
unbounded number of ciphertexts and IncSKE = (IncSKE.Setup, IncSKE.Enc, IncSKE.Dec) be a secure
incompressible SKE scheme, then the above construction is an adaptively (selectively) secure semi-strongly
incompressible FE scheme. Also,

|mpk| = |fe.mpk|, |sk| = |fe.sk|, |ct| = (|m|+ S + poly(λ))/r

Proof-Sketch: The proof proceeds via a sequence of hybrid experiments.

• H0: This corresponds to the adaptive semi-strong incompressibility security game. The
adversary first receives the master public key mpk. It queries for polynomially many non-
distinguishing keys, and receives the corresponding secret keys. Then, it sends its challenge
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messages m0, m1 and receives the challenge ciphertext which is encryption of mb. Again,
the adversary queries for polynomially many non-distinguishing keys, and receives the
corresponding secret keys. It then compresses its state, and queries for both distinguishing
and non-distinguishing functions. Upon receiving the secret keys, it must guess which
message was encrypted.

• H1 : In this hybrid, the challenger keeps the challenge ciphertext same as before, but modifies
the distinguishing secret keys. For every distinguishing key query for some function f , it
encrypts f (mb) instead of 0 to generate ske.ct′.
Note that H0 and H1 are indistinguishable due to SKE security. This is because the attacker
does not get access to the SKE secret key, except in the form of ciphertexts as part of functional
secret keys. We highlight we know the value f (mb) because the adversary is allowed to make
distinguishing key queries in the second phase only.

• H2 : In this hybrid, the challenger generates inc.ct∗ by encrypting ske.sk′ instead of sampling a
truly random string. The rest of the game proceeds as before.
Indistinguishability of hybrids H1 and H2 follows from standard indistinguishability-based
security of the incompressible SKE scheme. This is because the secret key inc.sk is used only
during the generation of inc.ct∗.

• H3 : In this hybrid experiment, the challenger keeps the challenge ciphertext same as before,
butmodifies the distinguishing secret keys. For every distinguishing key query for some function
f , it encrypts (1, inc.sk) instead of (0, 0α) to generate ske.ct.
Note that H2 and H3 are indistinguishable due to SKE security. This is because the attacker
does not get access to the SKE secret key, except in the form of ciphertexts as part of functional
secret keys.

• H4 : In this hybrid, the challenger modifies the challenge ciphertext ct∗ by encrypting
(m0, ske.sk, inc.ct∗, 1) instead of (mb,⊥, inc.ct∗, 0). The rest of the game proceeds as before.
Indistinguishability of hybrids H3 and H4 follows from adaptive indistinguishability-based
security of FE, as the output of the function stays the same for all key queries. This is because
in H4, the non-distinguishing keys would decrypt the challenge ciphertext to f (m0) (since b
is set to 1 and f lag = 0), which is equal to f (mb). Whereas, the distinguishing keys would
decrypt to f (mb) (since b is set to 1 and f lag = 1, see Figure 1).

• H5 : In this hybrid, the challenger reverts to generating inc.ct∗ by sampling a truly random
string. The rest of the game proceeds as before.
Indistinguishability of hybrids H4 and H5 follows from the incompressible indistinguishability-
based security of the incompressible SKE scheme. This is because the information inc.sk is
needed to generate distinguishing keys in the second phase.
Finally, note that in H5, the bit b is used only in the second phase while generating distinguish-
ing keys. That is, ske.ct′ is generated by encrypting f (mb). Therefore, the winning probability
for any adversary in G5 depends on the standard indistinguishability-based security of the
regular SKE scheme.
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The proof for the above theorem is provided in Appendix D.

Using Theorem 9, we have the following corollary.

Corollary 19. Assuming the existence of selectively secure FE for circuits, there exists a ct-rate- 1
4 adaptively

secure semi-strongly incompressible FE scheme for circuits. Also,

|mpk| = poly(λ), |sk f | = poly(λ), |ct| = 2(|m|+ S) + poly(λ)

Using Theorem 10, we have the following corollary.

Corollary 20. Assuming the existence of selectively secure FE for circuits, there exists a ct-rate- 1
2 selectively

secure semi-strongly incompressible FE scheme for circuits. Also,

|mpk| = poly(λ), |sk f | = poly(λ), |ct| = |m|+ S + poly(λ)

6 Rate-1 Incompressible FE with Large Keys and Semi-Strong Security

In this section, we present a selective semi-strong incompressible FE scheme, using a (regular) public
key FE, together with other standard cryptographic primitives. If the underlying FE scheme has
ct-rate-1, then our incompressible FE scheme also has ct-rate-1. Although the functional key sizes
are larger.

Our construction. For simplicity, we consider boolean-valued functions. To design an incom-
pressible FE supporting function class {Fn : {0, 1}n → {0, 1}}n∈N, we use the following primitives.
Throughout S denotes the (in)compressibility parameter.

• Ext : {0, 1}d×{0, 1}ℓ → {0, 1}λ be a strong average-min entropy randomness extractor, where
d = d(λ) and ℓ = ℓ(λ, S).

• SKE = (SKE.Setup,SKE.Enc, SKE.Dec) be an SKE scheme that can encrypt messages of length
n + d + 1. (Here n is the FE message length and d is the seed length. W.l.o.g., we assume the
secret key length to be λ.)

• FE = (FE.Setup,FE.Keygen,FE.Enc,FE.Dec) be an FE scheme with message spaces {{0, 1}n}n
and function space

{
F̃n

}
n.

Let ñ = max(n, S) + λ + 1. We require the function class F̃ñ to be such that it contains Fn,
and the decryption circuit of SKE and extractor Ext.

We describe the algorithms for our incompressible FE scheme below.

• Setup(1λ, 1S, 1n) : Let ñ = max(n, S)+λ+ 1. The setup algorithm samples amaster public and
secret key of the FE scheme by sampling (fe.msk, fe.mpk)← FE.Setup(1λ, 1ñ). It also samples
an SKE secret key ske.sk← SKE.Setup(1λ). It sets msk = (ske.sk, fe.msk) and mpk = fe.mpk.

• KeyGen(msk, f ) : Parse master key as msk = (ske.sk, fe.msk). The key generation algorithm
first computes ciphertext ske.ct = SKE.Enc(ske.sk, 0). That is, it encrypts n+ d+ 1 zeros. Then,
it generates an FE secret key by computing fe.sk f ← FE.Keygen(fe.msk, C f ,ske.ct), where C is
described in Fig. 2.
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Input: x ∈ {0, 1}max(n,S), an SKE secret key ske.sk ∈ {0, 1}λ, bit flag ∈ {0, 1}.
Hardwired: Function f , an SKE ciphertext ske.ct.
Output: y ∈ {0, 1}.

1. Check if flag = 0 :
− If yes, parse x as an n-bit message m, and output f (m).

That is, if S > n, then m = x[1 : n], else m = x.
2. Otherwise, compute (b, s, v) = SKE.Dec(ske.sk, ske.ct).
Here b ∈ {0, 1} , s ∈ {0, 1}d, v ∈ {0, 1}n.

3. Check if b = 0 :
− If yes, then output first bit of s, i.e. s[1].

4. Otherwise, parse x as an S-bit source R, and output f (v⊕ Exts(R)).
That is, if S < n, then set R = x[1 : S], else set R = x.
Then compute message m = v⊕ Exts(R) and output f (m).

Figure 2: Description of C f ,ske.ct

• Enc(msk, m) : The encryption algorithm generates the ciphertext by computing fe.ct ←
FE.Enc(msk, (m,⊥, 0)). It outputs fe.ct. (We point out that the message m is padded to
be of length S in case S > n. Also, by ⊥, we mean it sets a null secret key.)

• Dec(sk f , ct) :Thedecryption algorithmdecrypts the ciphertext by computingm = FE.Dec(sk f , ct).
It returns m.

Correctness. Follows immediately from the construction.

Size of the master public key. The master public key of our scheme is fe.mpk. Therefore, the size
is |fe.mpk|.

Size of the ciphertext. The size of themessage encrypted by FE.Enc is ñ = max(n, S)+λ+ 1. Now
if the base FE scheme has ct-rate-1, then ciphertext size in our scheme is also max(S, n) + poly(λ).

Size of the secret key. The size of the secret key associated with a function f is |fe.sk f | where
fe.sk f is an FE secret key for the circuit C f ,ske.ct. To use this secret key, the decryption algorithm
would require the entire description of C f ,ske.ct (see Theorem 10).

In addition to the description of f and the decryption circuit of SKE, the circuit C f ,ske.ct contains
an SKE ciphertext generated during the key generation process. So, fe.sk f should contain both an FE
secret key for the circuit C f ,ske.ct,ske.ct′ and the ciphertext ske.ct. The SKE ciphertext is an encryption
of a message of length n + d + 1 where d is the seed length of the extractor16 and n is the length
of the message. Therefore, |fe.sk f | is equal to n + d + 1 plus the size of an FE secret key associated
with C f ,ske.ct.

16d is equal to poly(λ), see Theorem 2
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Theorem 21. Assuming SKE = (SKE.Setup,SKE.Enc,SKE.Dec) is IND-CPA secure, FE = (FE.Setup,
FE.Keygen,FE.Enc,FE.Dec) is a selectively secure FE with ct-rate-r, then the above FE construction is a
selective semi-strong incompressible FE scheme. Also,

|mpk| = |fe.mpk|, |sk| = |fe.sk|+ |ske.ct|, |ct| = (max(n, S) + poly(λ))/r

Proof-Sketch: The proof proceeds via a sequence of hybrid experiments.

• H0: This corresponds to the selective semi-strong incompressibility security game. The
adversary first sends its challengemessages m0, m1 and receives the challenge ciphertext which
is encryption of mb. Next, the adversary queries for polynomially many non-distinguishing
keys, and receives the corresponding secret keys. It then compresses its state, and queries for
both distinguishing and non-distinguishing functions. Upon receiving the secret keys, it must
guess which message was encrypted.

• H1 : In this hybrid, the challenger keeps the challenge ciphertext same as before, but modifies
the secret keys. During setup, the challenger samples a single random string R← {0, 1}S as
the extractor source, and a single random string s← {0, 1}d as the extractor seed. Now, instead
of using an SKE encryption of 0 within each secret key, the challenger does the following:

– For every non-distinguishing key query for some function f , it encrypts (0, f (m0), 0). That
is, the second message bit is f (m0) and rest are still all zeros.

– For every distinguishing key query for some function f , it sets v = mb ⊕ Exts(R), and
computes the SKE ciphertext as to be an encryption of (1, s, v).

Note that H0 and H1 are indistinguishable due to SKE security. This is because the attacker does
not get access to the SKE secret key, except in the form of ciphertexts as part of functional secret
keys. We highlight that since we need to know f (m0) to answer even a non-distinguishing
key query, thus we can only prove selective security of our incompressible FE scheme.

• H2 : In this hybrid, the challenger encrypts (R, ske.sk, 1) instead of (mb,⊥, 0). (Note that
here we are overloading notation and consider that there is a fixed deterministic way, e.g. by
padding, to write R and m as max(n, S)-bit strings.) The rest of the game proceeds as before.
Indistinguishability of hybrids H1 and H2 follows standard selective indistinguishability-based
security of FE, as the output of the function stays the same for all key queries. This is because
for non-distinguishing keys we know that f (m0) = f (mb), while for non-distinguishing keys,
the function output is still f (mb).

• H3 : In this hybrid experiment, v is chosen uniformly at random (instead of setting it as
mb ⊕ Exts(R). Using the strong extractability guarantee of the extractor, we can argue that H2
and H3 are negligibly close.
Finally, note that the bit b is not used in H3, and therefore the adversary has no advantage in
this experiment.

The detailed proof for the above theorem is provided in Appendix E.

Using Theorem 10, we have the following corollary.
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Corollary 22. Assuming the existence of ct-rate-1
2 selectively secure FE for circuits, there exists a ct-rate-1

2
selectively secure semi-strongly incompressible FE scheme for circuits. Also,

|mpk| = poly(λ), |sk f | = |m|+ poly(λ), |ct| = |m|+ S + poly(λ)

7 Rate-1 Incompressible FE with Short Keys and Standard Security

In this section, we present a selective (standard) incompressible FE scheme, using a (regular) public
key FE, together with other standard cryptographic primitives. If the underlying FE scheme has
ct-rate-1, then our incompressible FE scheme also has ct-rate-1. Interestingly, we show that if the
underlying FE scheme has short keys, then our resulting incompressible FE scheme has short keys
as well. While it might seem to contradict the lower bound [BGK+24], we observe that since we only
prove standard incompressibility security (where only one non-distinguishing key gets corrupted)
and the functions supported by our FE scheme has single-bit output, thus this does not contradict
the result. This is because the lower bound actually states that if an incompressible FE scheme has
ct-rate-1, then the size of the functional secret key must grow with the output length of the function,
and not necessarily the input/message length.

Our construction. As discussed in the overview, this construction relies on the same ingredients
as our FE construction from Section 6. The core difference is that now the functions that we create
secret keys for change slightly. Below we describe the algorithms where we make modifications,
and underline all the changes.

• Setup(1λ, 1S, 1n) : This is the same as in Section 6.

• KeyGen(msk, f ) : Parse master key as msk = (ske.sk, fe.msk). The key generation algorithm
first computes ciphertext ske.ct = SKE.Enc(ske.sk, 0). That is, it encrypts d + 2 zeros. Then,
it generates an FE secret key by computing fe.sk f ← FE.Keygen(fe.msk, C′f ,ske.ct), where C is
described in Figure 3.

Input: x ∈ {0, 1}max(n,S), an SKE secret key ske.sk ∈ {0, 1}λ, bit flag ∈ {0, 1}.
Hardwired: Function f , an SKE ciphertext ske.ct.
Output: y ∈ {0, 1}.

1. Check if flag = 0 :
− If yes, parse x as an n-bit message m, and output f (m).

2. Otherwise, compute (b, s, v) = SKE.Dec(ske.sk, ske.ct).
Here b ∈ {0, 1} , s ∈ {0, 1}d, v ∈ {0, 1}.

3. Check if b = 0 :
− If yes, then output first bit of s, i.e. s[1].

4. Otherwise, parse x as an S-bit source R, and output v⊕ Exts(R).
That is, it no longer computes f in this case.

Figure 3: Description of C′f ,ske.ct
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• Enc(msk, m),Dec(sk f , ct) : The encryption and decryption algorithms are the same as in Sec-
tion 6.

Correctness. Follows immediately from the construction.

Size of the master public key and ciphertext. This is the same as in Section 6.

Size of the secret key. The size of the secret key associated with a function f is |fe.sk f | where
fe.sk f is an FE secret key for the circuit C′f ,ske.ct. To use this secret key, the decryption algorithm
would require the entire description of C′f ,ske.ct (see Theorem 10).

In addition to the description of f and the decryption circuit of SKE, the circuit C f ,ske.ct contains
an SKE ciphertext generated during the key generation process. So, fe.sk f should contain both an FE
secret key for the circuit C f ,ske.ct,ske.ct′ and the ciphertext ske.ct. The SKE ciphertext is an encryption
of a message of length d + 2 where d is the seed length of the extractor17. Therefore, |fe.sk f | is the
size of an FE secret key associated with C f ,ske.ct, with an addition d + 1.

Theorem 23. Assuming SKE = (SKE.Setup,SKE.Enc,SKE.Dec) is IND-CPA secure, FE = (FE.Setup,
FE.Keygen,FE.Enc,FE.Dec) is a selectively secure FE with ct-rate-r, then the above FE construction is a
selective (standard) incompressible FE scheme. Also,

|mpk| = |fe.mpk|, |sk| = |fe.sk|, |ct| = (max(n, S) + poly(λ))/r

Proof-Sketch: The proof is very similar to the security proof of Theorem 21, except with one change.
Since we only prove standard incompressibility of our FE scheme, then we only need to answer a
single distinguishing key query. Therefore, rather than programming v as mb ⊕ Exts(R) as in the
previous proof, we simply program v = f (mb)⊕ Exts(R). That is, we only hardwire one function
value inside v rather than the full message mb. Because of this change, we can only prove standard
incompressibility security (because we cannot answer more than one non-distinguishing key), but
the circuit C′f ,ske.ct (that we have to create a functional key for) now has a succinct description as it
only needs f and ske.ct (which is short anyways). For completeness, we sketch the hybrids below.

• H0: This corresponds to the selective standard incompressibility security game. The adver-
sary first sends its challenge messages m0, m1 and receives the challenge ciphertext which
is encryption of mb. Next, the adversary queries for polynomially many non-distinguishing
keys, and receives the corresponding secret keys. It then compresses its state, and queries for
one distinguishing function f st and many non-distinguishing functions. Upon receiving the
secret keys, it must guess which message was encrypted.

• H1 : In this hybrid, the challenger keeps the challenge ciphertext same as before, but modifies
the secret keys. During setup, the challenger samples a single random string R← {0, 1}S as
the extractor source, and a random string s← {0, 1}d as the extractor seed. Now, instead of
using an SKE encryption of 0 within each secret key, the challenger does the following:

– For every non-distinguishing key query for some function f , it encrypts (0, f (m0), 0). That
is, the second message bit is f (m0) and rest are still all zeros.

17d is equal to poly(λ), see Theorem 2
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– For distinguishing key query f , it sets v = f (mb) ⊕ Exts(R), and computes the SKE
ciphertext as to be an encryption of (1, s, v).

• H2 : In this hybrid, the challenger encrypts (R, ske.sk, 1) instead of (mb,⊥, 0). The rest of the
game proceeds as before.

• H3 : In this hybrid experiment, v is chosen uniformly at random (instead of setting it as
f (mb)⊕ Exts(R).
Finally, note that the bit b is not used in H3, and therefore the adversary has no advantage in
this experiment.

The detailed proof for the above theorem is provided in Appendix F.

Using Theorem 10, we have the following corollary.

Corollary 24. Assuming the existence of ct-rate-1 selectively secure FE for circuits, there exists a ct-rate-1
selectively secure regular incompressible FE scheme for circuits. Also,

|mpk| = poly(λ), |sk f | = poly(λ), |ct| = max(S, n) + poly(λ)

Remark 25 (Handling functions with longer outputs, or a fixed number of distinguishing keys).
The above FE construction can be naturally extended to support functions with longer outputs, or a fixed
number of distinguishing keys. The idea is quite simply to hardwire either the multi-bit function output (in
the first case) or the function output for every distinguishing function (in the second case). Note that if the
secret keys for the underlying FE scheme are short (independent of the function description), then the above
scheme achieves incompressible FE with optimal ciphertexts as well as secret keys.

8 Rate-1
2 Incompressible ABE with Short Keys

In this section, we present an regular incompressible ABE scheme with ct-rate-1
2 , using a regular ABE

scheme, a single-key simulation secure secret key FE scheme along with other primitives.

Our Construction. Our ABE construction supports attribute spaces {Xn}n using the following
primitives.

• PRF = (PRF.KeyGen,PRF.Eval) is a PRF scheme with keys of length λ and output space
{0, 1}.

• Ext : {0, 1}d × {0, 1}ℓ → {0, 1}λ is a strong average-min entropy randomness extractor where
d = d(λ) and ℓ = ℓ(λ, S).

• FE = (FE.Setup,FE.Keygen,FE.Enc,FE.Dec) is a functional encryption scheme with message
spaces {Nn}n and function spaces {Fn}n that contains the extractor circuit Ext.

• GC = (GC.Garble,GC.Eval) is a garbling scheme for Boolean circuits with label spaces {Mn}n.

• ABE = (ABE.Setup,ABE.KeyGen,ABE.Enc,ABE.Dec) is anABE scheme that supports attribute
spaces {X̃n}n , predicate classes {Cn : X̃n → {0, 1}}n and message spaces {Mn}n.
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Let κ = ⌈log(d + λ)⌉ and κ′ = κ + 1. Let ñ = ñ(λ, n) be the lexicographically smallest func-
tionality index such that any element (x, (i, b)) ∈ Xn × {0, 1}κ′ can be uniquely represented in
X̃ñ. Let ŝ = ŝ(λ, S) be the lexicographically smallest functionality index such that every function
fR(x, y) = Extx(R)⊕ y where R ∈ {0, 1}ℓ, x ∈ {0, 1}d , y ∈ {0, 1}λ can be uniquely represented in
Fŝ. We describe the algorithms for our incompressible ABE scheme below.

• Setup(1λ, 1S, 1n): The setup algorithm runs ABE setup algorithm to generate a master public
and secret key (abe.mpk, abe.msk) ← ABE.Setup(1λ, 1ñ). It sets mpk = (abe.mpk, S) and
msk = abe.msk.

• KeyGen(msk, F): Let msk = abe.msk and F : Xn → {0, 1} be a predicate function. The key
generation algorithm first randomly generates (kF, wF) ∈ {0, 1}d+λ. Let F̂ be a circuit that has
(F, (kF, wF)) hardwired, takes as input (x, (i, b)) ∈ Xn × {0, 1}κ′ , and outputs 1 if and only
if (F(x) = 1) ∧ (b = (kF||wF)[i]). The algorithm generate an ABE key for F̂ by computing
abe.skF ← ABE.KeyGen(abe.msk, F̂). It returns (kF, wF, abe.skF).

• Enc(mpk, m, x): Let mpk = (abe.mpk, S) and x ∈ Xn. The encryption algorithm generates
a fresh master secret key of the functional encryption scheme fe.msk ← FE.Setup(1λ, 1ŝ), a
PRF key prf.key← PRF.KeyGen(1λ) and randomly generates two strings R ∈ {0, 1}ℓ and rEnc
which will be used as the random bits in an FE encryption.
Let Cfe.msk′,m′,r′ be a circuit that has fe.msk′, m′ and r′ hardwired and takes as input (k, w)
and outputs FE.Enc(fe.msk′, (k, w⊕m′); r′). The encryption algorithm constructs the circuit
Cfe.msk,prf.key,rEnc and generates a garbled circuit and its corresponding labels by computing
(Ĉ, {labi,b}i∈[κ],b∈{0,1})← GC.Garble(1λ, Cfe.msk,prf.key,rEnc).

For all i ∈ [κ], b ∈ {0, 1}, it encrypts each label labi,b with the attribute (x, (i, b)) by computing
abe.cti,b ← ABE.Enc(abe.mpk, labi,b, (x, (i, b))).
It then generates an FE key fe.sk← FE.Keygen(fe.msk, DR)where DR′ takes as input (k, v) and
outputs Extk(R′)⊕ v.
It generates ti = PRF.Eval(prf.key, i)), ∀i ∈ [|m|] and sets t = t1||t2|| . . . ||tm. It finally outputs
({abe.cti,b}i∈[κ],b∈{0,1}, Ĉ, fe.sk, R, t⊕m).

• Dec(skF, ct): Let skF = (kF, wF, abe.skF) and ct = ({abe.cti,b}i∈[κ],b∈{0,1}, Ĉ, fe.sk, R, z). The
decryption algorithm first decrypts ciphertexts abe.cti,(kF ||wF)[i], for all i ∈ [κ] using abe.skF
and obtains the labels labi,(kF ||wF)[i] = ABE.Dec(abe.skF, abe.cti,(kF ||wF)[i]).

Then, it evaluates the garbled circuit Ĉ using labels
{
labi,(kF ||wF)[i]

}
i∈[κ]

to obtain fe.ct =

FE.Enc(fe.msk, (kF, wF ⊕ prf.key); rEnc). It decrypts fe.ct to obtain y = FE.Dec(fe.sk, fe.ct). It
computes prf.key = ExtkF(R)⊕ w f ⊕ y. It generates ti = PRF.Eval(prf.key, i)), ∀i ∈ [|m|] and
sets t = t1||t2|| . . . ||tm. Finally, it outputs m = z⊕ t.

Correctness. An encryption of a message m using attribute x in the above scheme consists of
({abe.cti,b}i∈[κ],b∈{0,1}, Ĉ, fe.sk, R, z) where (Ĉ, {labi,b}i∈[κ],b∈{0,1}) ← GC.Garble(1λ, Cfe.msk,prf.key,rEnc),
abe.cti,b ← ABE.Enc(abe.mpk, labi,b, (x, (i, b))), fe.sk ← FE.Keygen(fe.msk, DR) where DR takes as
input (k, v) and outputs Extk(R) ⊕ v. Also, z = t ⊕ m where t = t1||t2|| . . . ||tm where ti =
PRF.Eval(prf.key, i)).
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From the correctness of theABE scheme,we have labi,(kF ||wF)[i] = ABE.Dec(abe.skF, abe.cti,(kF ||wF)[i]).
From the correctness of the garbling scheme, the output of evaluating the garbled circuit C̃ on
the labels {labi,(kF ||wF)[i]}i is fe.ct = FE.Enc(fe.msk, (kF, wF ⊕ prf.key); rEnc). From the correctness
of the FE scheme, we get y = FE.Dec(fe.sk, fe.ct) where y = ExtkF(R)⊕ wF ⊕ prf.key. Therefore,
the PRF key can be obtained using y, kF, R, wF. Finally, m = t⊕ z where t = t1||t2|| . . . ||tm where
ti = PRF.Eval(prf.key, i).

Size of the master public key. The master public key of our scheme is mpk = (abe.mpk, S).
Therefore, the size is |abe.mpk|+ log(S).

Size of the ciphertext. The size of a ciphertext is |Ĉ| + 2 · (|k| + |w|) · |abe.ct| + |R| + |fe.sk| +
|ske.ct|. Recall that k is the seed to the extractor and w has the length equal to the output length
of the extractor which has the same length as the PRF key. The length of the PRF key prf.key is λ.
Using Theorem 2, we have k = poly(λ), |w| = λ and |R| = S + poly(λ).

Ĉ is a garbled circuit of FE.Enc(fe.msk′, (·, ·); r′) that takes as input two poly(λ) bit strings. Hence,
we have |Ĉ| = poly(λ). Adding all the values, we get that the size of the entire ciphertext is
poly(λ) · |abe.ct|+ |fe.sk|+ |m|+ S. Therefore, the rate of our scheme is

|m|
|ct| =

|m|
poly(λ) · |abe.ct|+ |fe.sk|+ |m|+ S

=
1

poly(λ) · |abe.ct|+ |fe.sk|
|m| + 1 +

S
|m|

Size of the secret key. A secret key in our scheme is of the form (kF, wF, abe.skF). Therefore, its
size is |abe.sk|+ poly(λ).

Theorem 26. Assuming ABE = (ABE.Setup,ABE.KeyGen,ABE.Enc,ABE.Dec) is an adaptively secure
ABE scheme,GC = (GC.Garble,GC.Eval) is a secure garbling scheme, FE = (FE.Setup,FE.Keygen,FE.Enc,
FE.Dec) is a 1-key simulation secure functional encryption scheme, PRF = (PRF.KeyGen,PRF.Eval) is a
secure PRF scheme and Ext is a strong average-min entropy randomness extractor, then the above construction
is an incompressible ABE scheme. Also,

|mpk| = |abe.mpk|+ O(λ), |sk| = |abe.sk|+ poly(λ)

|ct| = poly(λ) · |abe.ct|+ |fe.sk|+ |m|+ |S|

Proof-Sketch: The proof proceeds via a sequence of hybrid experiments.

• H0: This corresponds to the adaptive incompressibility security game. The adversary first
receives the master public keympk. It queries for polynomially many non-distinguishing keys,
and receives the corresponding secret keys. Then, it sends its challenge messages m0, m1 and
receives the challenge ciphertext which is encryption of mb. Again, the adversary queries
for polynomially many non-distinguishing keys, and receives the corresponding secret keys.
After compressing its state, it queries for polynomially many non-distinguishing functions
but only a single distinguishing function. Upon receiving the secret keys, it must guess which
message was encrypted.
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• H1 : In this hybrid, the challenger modifies the challenge ciphertext according to the distin-
guishing key. Specifically, it generates (k∗, w∗) in the challenge phase and will use this to
generate the distinguishing key. It then encrypts 0 instead of labi,1−(k∗,w∗)[i] with attributes
(x∗, i, 1− (k∗, w∗)[i]) to generate abe.ct∗i,1−(k∗,w∗)[i].

Indistinguishability of H0 and H1 follows from standard indistinguishability-based security of
ABE scheme. This is because the attacker does not gain access to any ABE key that can decrypt
these ciphertext. For any non-distinguishing key for F, i.e., F(x∗) = 0, the secret key cannot
decrypt any abe.ct∗i,1−(k∗,w∗)[i] because the first component of the attribute is x∗. Whereas, the
distinguishing key for F∗ generated in the second phase, the key can decrypt a ciphertext if its
attribute is of the form (x∗, i, (k∗, w∗)[i]) which is not the case for abe.ct∗i,1−(k∗,w∗)[i].

• H2 : In this hybrid game, the challenger uses the simulator to generate a simulated garbled cir-
cuit and the partial set of labels in the challenge phase. That is, it generates

(
Ĉ∗,

{
lab∗i,(kF∗ ,wF∗ )[i]

})
← GC.Sim(1λ, 1κ, 1|Cfe.msk,m,r |, fe.ct∗).
Note that H1 and H2 are indistinguishable due to the simulation security of the garbling
scheme.

• H3 : In this hybrid, the challenger generates a simulated FE ciphertext using DR∗(k∗, w∗ ⊕
prf.key) rather than encrypting (k∗, w∗ ⊕ prf.key) using the real encryption algorithm.
Indistinguishability of H2 and H3 follows from standard simulation-based security of FE
scheme.

• H4 : In this hybrid, the challenger generates the simulated FE ciphertext using DR∗(k∗, w∗ ⊕ 0)
instead of DR∗(k∗, w∗ ⊕ prf.key).
Note that H3 and H4 are indistinguishable due to the incompressible indistinguishability
security of Dziembowki’s scheme. In the Dziembowski’s scheme, a ciphertext is of the form
(R∗,Extk∗(R∗)⊕ w∗ ⊕m∗) where m∗ is the message and (k∗, w∗) is the secret key. Recall that
part of the ciphertext of our ABE scheme is the FE key for DR∗ where DR∗ is a circuit that takes
as input (k, w) and outputs Extk(R∗)⊕ w.
To generate the simulated FE ciphertext, we require DR∗(k∗, w∗⊕ 0) (or DR∗(k∗, w∗⊕ prf.key)).
So, using the Dziembowski’s ciphertext, we generate both fe.sk∗ and fe.ct∗. To generate
the distinguishing key in the second phase, (k∗, w∗) is provided by the challenger in the
incompressible security game.

• H5 : In this hybrid, the challenger randomly samples t∗ instead of using the PRF outputs. The
indistinguishability of H0 and H1 follows from pseudorandom property of the PRF scheme.
Finally, note that in H5, the bit b is only present in the challenge ciphertext in the form of
t∗ ⊕ mb where t∗ is a truly random string that is not utilized anywhere else in the game.
Therefore, t∗ ⊕mb is also a truly random string, make it impossible for an adversary to guess
b with non-negligible probability.

The proof for the above theorem is provided in Appendix C.

Using Theorem 13 and Theorem 14, we get the following corollary.
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Corollary 27. Assuming the hardness of LWE problem, the above construction is a selective incompressible
ABE scheme for predicate classes with circuit of depth D with the following parameters.

|mpk| = poly(λ), |sk| = poly(λ) · D, |ct| = poly(λ) · (D + log(|m|)) + |m|+ |S|

Using a standard complexity leveraging argument (for instance, see [BB11]), we can obtain an
adaptively secure version of the ABE scheme in Theorem 14 which results in the following corollary.

Corollary 28. Assuming the sub-exponential hardness of LWE problem, the above construction is an adaptive
incompressible ABE scheme for predicate classes with circuit of depth D with the following parameters.

|mpk| = poly(λ), |sk| = poly(λ) · D, |ct| = poly(λ) · (D + log(|m|)) + |m|+ |S|
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A Discussion on Incompressible FE

While the regular ABE/FE definitions offer strong security guarantees, there are many real-world
scenarios that are not captured by the existing ABE/FE definitions. We discuss the following
motivating scenarios for looking beyond traditional definitions of FE.

• Audit Logs and Big Databases. Suppose an organizationwants to use (ciphertext-policy)ABE
to provide auditors, customers, and employees fine-grained access over all customer and
organizational data. Every user affiliated with this organization will receive a secret key
corresponding to their attributes. Each data block will be encrypted under a policy predicate
and a user gets access to a data block based on its attributes.
Most large tech companies (such as Google, Facebook, Amazon, Microsoft) store and generate
hundreds to thousands of terabytes of data everyday. Even mid-size organizations and
universities routinely process a few terabytes of data everyday. Thus, we assume the daily
communication and data storage is in the order of terabytes. An honest user may not want to
locally store such large amounts of data forever; they can process it appropriately and then
discard it. The organization stores all encrypted data in its (long-term) storage server, for
analytics and audit purposes. This storage, which would be in the order of petabytes, is only
sparingly accessed by most users. Therefore, we can assume that regular download access to
this storage server is limited to at most a few terabytes. We wish to have the following security
guarantees:

– Daily security: Suppose an adversary colludes with users with attributes x1, x2, . . . , xt.
It can decrypt the daily communication that these users are authorized to access, but
it should not be able to learn anything about the messages that these users are not
authorized to access.

– Security even in presence of storage server: Suppose, at a later point, the adversary with
secret keys for user attributes x1, . . . , xt also learns the secret key for some target user
with attribute x∗. While such key breaches are possible, they might be rare. Therefore, it
is infeasible for an adversary to store the entire daily communication and data storage
ciphertexts, in the hope of learning/corrupting a key for x∗ at a later point. However,
does the presence of a storage server make the system vulnerable?
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If a traditional ABE system is used then the adversary, that can access S ≈ 10 gigabytes
from the server, could potentially learn o(S)18 gigabytes of information that only x∗ was
authorized to learn. Is it possible to prevent any leakage even when the adversary can arbitrarily
select any S gigabytes of information from the server?

• Eternal Forward Security from Bounded ‘Long-Term Storage’. Consider any setting where
FE is used to provide fine-grained data access. The master public key is used to encrypt, and
the central authority can generate secret keys for various members of the organization. Each
member i is authorized to learn a particular function fi of the encrypted data. As long as msk
remains hidden, an adversary colluding with users i1, . . . , it can only learn fi1 , . . . , fit applied
on the encrypted data.
Suppose msk gets compromised. Clearly, all future encrypted communications will no longer
be private. The adversary, given an encryption of x, can learn f (x) for any function f of
its choice. However, is the same true for all past encryptions too? The answer depends on the
adversary’s long-term storage. Suppose it has bounded long-term storage, and can only store
S bits of the ciphertext.
In traditional FE, the adversary can potentially learn S bits of f (x) by storing just S bits of
a ciphertext, even when |ct| >> S bits. What if there exists an FE scheme where |ct| is just
slightly greater than S, but any adversary with S-bits of memory learn any information about
f (x), even given msk? Such an FE gives eternal forward security for bounded long-term
storage attackers.

• Imperfect Key Distribution and Generation.While functional secret keys offer fine-grained
access over encrypted data, they also lead to a lot more opportunities for an attacker to
undermine the security of the system compared to plain encryption. In many applications,
this unfortunately is the major deterrent factor preventing a much wider adoption of FE
systems in practice.
Simply put, in PKE, there is just one secret key, and while that implies an ‘all-or-nothing’ flavor
of security, it also makes it far easier to store the key securely for the entire system lifetime. In
FE, on the contrary, the central authority is burdened with multiple tasks with strong security
implications – (1) storing msk securely, (2) correctly computing functional keys for each user,
and (3) securely distributing keys to users. E.g., in identity-based encryption (IBE), there is
an exponential number of functional keys (one for each user identity). What if the authority
generates Alice’s key for the identity ‘a1ice@iacr.org’ instead of ‘alice@iacr.org’. (The
difference is a typo, using number ‘1’ instead of letter ‘l’.)
Broadly, the argument is that there are a lot more attack avenues and targets in FE systems.
While it is reasonable to expect the master key authority will (in most part) storemsk securely,
expecting it from every user is unrealistic. Thus, in practice, standard FE security might not
be enough! We need to look beyond the traditional security formulations.

18Here we say o(S) instead of S since an ABE ciphertext encrypting a few bits could be as large as a few hundred bytes.
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B Incompressible ABE from GWZ [GWZ22]

In this section, we provide an alternate construction for rate-1 incompressible ABE by extending
the rate-1 incompressible PKE scheme from [GWZ22], as long as the stage two adversary only
queries a single distinguishing function. That is, the following construction satisfies the (standard)
incompressible ABE security.

Construction. Let FE = (FE.Setup,FE.Keygen,FE.Enc,FE.Dec) be a rate-1 secure FE scheme, PRG :
{0, 1}λ → {0, 1}ℓ be a secure PRG and Ext : {0, 1}n × {0, 1}d → {0, 1}λ be a strong average
min-entropy extractor.

• Setup(1λ, 1S): The setup algorithm first runs FE.Setup to generate a master public and secret
key (fe.mpk, fe.msk)← FE.Setup(1λ). It sets mpk = abe.mpk and msk = (abe.msk, S).

• KeyGen(msk, id): Letmsk = (fe.msk, S). The key generation algorithmfirst randomly generates
two string v ∈ {0, 1}d×λ. It computes skC ← FE.Keygen(fe.msk, fC,v) where

fC,v(m, x, b) =


m i f b = 0∧ C(x) = 1
m⊕ v i f b = 1∧ C(x) = 1
⊥ otherwise

It returns skC.

• Enc(mpk, m, x): Let mpk = fe.mpk. The encryption algorithm first randomly generate s ∈
{0, 1}d , t ∈ {0, 1}λ , R ∈ {0, 1}n and computes fe.ct ← FE.Enc(mpk, ((s, t), x, 0)). It then
computes c = PRG(Ext(R; s)⊕ t)⊕m and return (fe.ct, R, c).

• Dec(sk, ct): Let sk = (skC) and ct = (fe.ct, R, c). It first computes (s, t) = FE.Dec(skC, fe.ct)
and m = c⊕ PRG(Ext(R; s)⊕ t). It returns m.

Correctness. A ciphertext for a message m and an attribute x in the above scheme is (fe.ct, R, c)
where c = PRG(Ext(R; s)⊕ t)⊕m, fe.ct ← FE.Enc(fe.mpk, ((s, t), x, 0)) for some randomly gener-
ated s, t, R. The decryption algorithm computes FE.Dec(skC, fe.ct) which by the correctness of FE
is equal to (s, t) when skC is a secret key associated to a circuit C such that C(x) = 1. Then, the
decryption algorithm proceeds by computing c⊕ PRG(Ext(R; s)⊕ t) which is equal to m.

Security. Since the proof is similar to the proof in [GWZ22], we only highlight the changes in
sequence of hybrids.

1. H0 : This the original regular adaptive ABE incompressible security game where the challenge
ciphertext is an encryption of mb.

2. H1 : The challenge ciphertext is generated by computing fe.ct ← FE.Enc(mpk, ((s, t) ⊕
vC∗), x, 1) where C∗ is the circuit given by the adversary in the query phase of the Second
Response Phase.
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3. H2 :The challenge ciphertext is (fe.ct, R, z)where z = PRG(T)⊕mb, fe.ct← FE.Enc(mpk, (S, x, 1)
where S, R, T are randomly generated. In the query phase of the Second Response Phase, first
s is randomly generated. Then, t is set to T ⊕ Ext(R; s) and finally vC∗ = S⊕ (s, t).

4. H3 : In the query phase of the Second Response Phase, s, t are randomly generated and
vC∗ = S⊕ (s, t).

5. H4 : The challenge ciphertext is (fe.ct, R, z) where fe.ct← FE.Enc(mpk, (S, x, 1) where S, R, z
are randomly generated.

Remark. Observe that we can achieve only standard and not semi-strong security because we
cannot construct multiple distinguishing keys such that vC∗ ’s are uniformly random and fe.ct
decrypts to the same (s, t). Additionally, it is worth mentioning that the FE scheme used above
can be built from any standard ABE scheme by substituting PKE with ABE in the transformation
described in [GWZ22] Section 3.4.

C Proof of Theorem 26

Proof. We will show that the scheme provided in Section 8 is secure using a sequence of hybrid
arguments.

G0: This is the adaptive incompressible ABE security game where the challenger randomly chooses
d ∈ {0, 1} and encrypts one of m0, m1 for the attribute x∗ given by A1.

• Initialization Phase:

1. The first adversary A1 outputs S - an upper bound on the state size and 1n.
2. It computes (abe.mpk, abe.msk)← ABE.Setup(1λ, 1ñ).
3. It sets mpk = (abe.mpk, S) and msk = abe.msk and sends mpk to A1.

• Pre-Challenge Query Phase:

1. For each query F from the first adversaryA1, the challenger randomly generates (kF, wF).
2. It generates an ABE secret key by computing abe.skF ← ABE.KeyGen(abe.msk, F̂).
3. It returns skF = (kF, wF, abe.skF) to A1.

• Challenge Phase:

1. The first adversary A1 sends (m0, m1, x∗, aux) where x∗ is the target attribute and aux is
auxiliary information which will be relayed to the second adversary A2.

2. The challenger randomly generates d ∈ {0, 1}.
3. It generates fe.msk∗ ← FE.Setup(1λ, 1ŝ).
4. It generates a PRF key prf.key∗ ← PRF.KeyGen(1λ).
5. It randomly generates two strings r∗Enc, R∗.

6. It computes
(

Ĉ∗,
{
lab∗i,b

}
i∈[κ],b∈{0,1}

)
← GC.Garble(1λ, Cfe.msk∗,prf.key∗,r∗Enc

).
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7. For all i ∈ [κ], b ∈ {0, 1}, it computes abe.ct∗i,b ← ABE.Enc(abe.mpk, labi,b, (x∗, i, b)).
8. It generates fe.sk∗ ← FE.Keygen(fe.msk, DR∗).
9. It computes t∗i = PRF.Eval(prf.key∗, i)), ∀i ∈ [|m|] and sets t∗ = t∗1 ||t∗2 || . . . ||t∗m.
10. It returns ({abe.ct∗i,b}i∈[κ],b∈{0,1}, Ĉ∗, fe.sk∗, R∗, t∗ ⊕md) to A1.

• Post-Challenge Query Phase:

1. For each query F from the first adversary A1, the challenger checks whether F(x∗) = 1.
2. If the check is true, it returns ⊥.
3. Else, it randomly generates (kF, wF).
4. It generates an ABE secret key by computing abe.skF ← ABE.KeyGen(abe.msk, F̂).
5. It returns skF = (kF, wF, abe.skF) to A1.

• First Response Phase:

1. The first adversary A1 outputs a state st such that |st| ≤ S.

• Second Response Phase:

1. The second adversary A2 is given the master public key mpk, the auxiliary information
aux and state st from the first adversary A1.

2. Key Generation Queries
(a) For the query F∗ such that F∗(x∗) = 1 from the second adversary A2.

– The challenger randomly generates (kF∗ , wF∗).
– It generates anABE secret key by computing abe.skF∗ ← ABE.KeyGen(abe.msk, F̂∗).
– It returns skF∗ = (kF∗ , wF∗ , abe.skF∗) to A2.

(b) For every query F such that F(x∗) = 0.
– The challenger randomly generates (kF, wF).
– It generates an ABE secret key by computing abe.skF ← ABE.KeyGen(abe.msk, F̂).
– It returns skF = (kF, wF, abe.skF) to A2.

3. Finally, A2 outputs d′ ∈ {0, 1}.

G1: The challenger generates (kF∗ , wF∗) in the Challenge Phase and uses it encrypt 0 instead of
labi,1−(kF∗ ,wF∗ )[i] under the ABE scheme.

• Challenge Phase:

1. The first adversary A1 sends (m0, m1, x∗, aux) where x∗ is the target attribute and aux is
auxiliary information which will be relayed to the second adversary A2.

2. The challenger randomly generates (kF∗ , wF∗).

3. It randomly generates d ∈ {0, 1}.
4. It generates fe.msk∗ ← FE.Setup(1λ, 1ŝ).
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5. It generates a PRF key prf.key∗ ← PRF.KeyGen(1λ).
6. It randomly generates two strings r∗Enc, R∗.
7. It generates fe.sk∗ ← FE.Keygen(fe.msk, DR∗).

8. It computes
(

Ĉ∗,
{
lab∗i,b

}
i∈[κ],b∈{0,1}

)
← GC.Garble(1λ, Cfe.msk∗,prf.key∗,r∗Enc

).

9. For all i ∈ [κ], it computes abe.ct∗i,(kF∗ ,wF∗ )[i]
← ABE.Enc(abe.mpk, labi,(kF∗ ,wF∗ )[i],

(x∗, i, (kF∗ , wF∗)[i])).

10. For all i ∈ [κ], it computes abe.ct∗i,1−(kF∗ ,wF∗ )[i]
← ABE.Enc(abe.mpk, 0, (x∗, i,

1− (kF∗ , wF∗)[i])).

11. It computes t∗i = PRF.Eval(prf.key∗, i)), ∀i ∈ [|m|] and sets t∗ = t∗1 ||t∗2 || . . . ||t∗m.
12. It returns ({abe.ct∗i,b}i∈[κ],b∈{0,1}, Ĉ∗, fe.sk∗, R∗, t∗ ⊕md) to A1.

• Second Response Phase:

1. The second adversary A2 is given the master public key mpk, the auxiliary information
aux and state st from the first adversary A1.

2. Key Generation Queries
(a) For the query F∗ such that F∗(x∗) = 1 from the second adversary A2.

– The challenger randomly generates (kF∗ , wF∗).

– It generates anABE secret key by computing abe.skF∗ ← ABE.KeyGen(abe.msk, F̂∗).
– It returns skF∗ = (kF∗ , wF∗ , abe.skF∗) to A2.

(b) For every query F such that F(x∗) = 0.
– The challenger randomly generates (kF, wF).
– It generates an ABE secret key by computing abe.skF ← ABE.KeyGen(abe.msk, F̂).
– It returns skF = (kF, wF, abe.skF) to A2.

3. Finally, A2 outputs d′ ∈ {0, 1}.

G2: The challenger generates the garbled circuit and the necessary labels using the simulator.

• Challenge Phase:

1. The first adversary A1 sends (m0, m1, x∗, aux) where x∗ is the target attribute and aux is
auxiliary information which will be relayed to the second adversary A2.

2. The challenger randomly generates (kF∗ , wF∗).
3. It randomly generates d ∈ {0, 1}.
4. It generates fe.msk∗ ← FE.Setup(1λ, 1ŝ).
5. It generates a PRF key prf.key∗ ← PRF.KeyGen(1λ).
6. It randomly generates two strings r∗Enc, R∗.
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7. It generates fe.sk∗ ← FE.Keygen(fe.msk∗, DR∗).

8. It computes
(

Ĉ∗,
{
lab∗i,(kF∗ ,wF∗ )[i]

}
i∈[κ]

)
← GC.Sim(1λ, 1κ, 1|Cfe.msk,m,r |,FE.Enc(msk∗,

(kF∗ , wF∗ ⊕ prf.key∗); r∗Enc)).

9. For all i ∈ [κ], it computes abe.ct∗i,(kF∗ ,wF∗ )[i]
← ABE.Enc(abe.mpk, labi,(kF∗ ,wF∗ )[i], (x∗, i, (kF∗ , wF∗)[i])).

10. For all i ∈ [κ], it computes abe.ct∗i,1−(kF∗ ,wF∗ )[i]
← ABE.Enc(abe.mpk, 0, (x∗, i, 1− (kF∗ , wF∗)[i])).

11. It computes t∗i = PRF.Eval(prf.key∗, i)), ∀i ∈ [|m|] and sets t∗ = t∗1 ||t∗2 || . . . ||t∗m.
12. It returns ({abe.ct∗i,b}i∈[κ],b∈{0,1}, Ĉ∗, fe.sk∗, R∗, t∗ ⊕md) to A1.

G3: The challenger simulates the FE ciphertext and secret key in the Challenge Phase.

• Challenge Phase:

1. The first adversary A1 sends (m0, m1, x∗, aux) where x∗ is the target attribute and aux is
auxiliary information which will be relayed to the second adversary A2.

2. The challenger randomly generates (kF∗ , wF∗).
3. It randomly generates d ∈ {0, 1}.
4. It generates fe.msk∗ ← FE.Setup(1λ, 1ŝ).
5. It generates a PRF key prf.key∗ ← PRF.KeyGen(1λ).
6. It randomly generates two strings r∗Enc, R∗.
7. It generates fe.sk∗ ← FE.Keygen(fe.msk∗, DR∗).

8. It generates fe.ct∗ ← FE.Sim(1λ, DR∗ , DR∗(kF∗ , wF∗ ⊕ prf.key∗), 1κ).

9. It computes
(

Ĉ∗,
{
lab∗i,(kF∗ ,wF∗ )[i]

}
i∈[κ]

)
← GC.Sim(1λ, 1κ, 1|Cfe.msk,m,r |, fe.ct∗).

10. For all i ∈ [κ], it computes abe.ct∗i,(kF∗ ,wF∗ )[i]
← ABE.Enc(abe.mpk, labi,(kF∗ ,wF∗ )[i], (x∗, i, (kF∗ , wF∗)[i])).

11. For all i ∈ [κ], it computes abe.ct∗i,1−(kF∗ ,wF∗ )[i]
← ABE.Enc(abe.mpk, 0, (x∗, i, 1− (kF∗ , wF∗)[i])).

12. It computes t∗i = PRF.Eval(prf.key∗, i)), ∀i ∈ [|m|] and sets t∗ = t∗1 ||t∗2 || . . . ||t∗m..
13. It returns ({abe.ct∗i,b}i∈[κ],b∈{0,1}, Ĉ∗, fe.sk∗, R∗, t∗ ⊕md) to A1.

G4: The challenger encrypts a garbled string instead of the PRF key in the Challenge Phase.

• Challenge Phase:

1. The first adversary A1 sends (m0, m1, x∗, aux) where x∗ is the target attribute and aux is
auxiliary information which will be relayed to the second adversary A2.

2. The challenger randomly generates (kF∗ , wF∗).
3. It randomly generates d ∈ {0, 1}.
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4. It generates fe.msk∗ ← FE.Setup(1λ, 1ŝ).
5. It generates a PRF key prf.key∗ ← PRF.KeyGen(1λ).
6. It randomly generates two strings r∗Enc, R∗.
7. It generates fe.sk∗ ← FE.Keygen(fe.msk∗, DR∗).

8. It generates fe.ct∗ ← FE.Sim(1λ, fe.sk∗, DR∗ , DR∗(kF∗ , wF∗ ⊕ 0), 1κ).

9. It computes
(

Ĉ∗,
{
lab∗i,(kF∗ ,wF∗ )[i]

}
i∈[κ]

)
← GC.Sim(1λ, 1κ, 1|Cfe.msk,m,r |, fe.ct∗).

10. For all i ∈ [κ], it computes abe.ct∗i,(kF∗ ,wF∗ )[i]
← ABE.Enc(abe.mpk, labi,(kF∗ ,wF∗ )[i], (x∗, i, (kF∗ , wF∗)[i])).

11. For all i ∈ [κ], it computes abe.ct∗i,1−(kF∗ ,wF∗ )[i]
← ABE.Enc(abe.mpk, 0, (x∗, i, 1− (kF∗ , wF∗)[i])).

12. It computes t∗i = PRF.Eval(prf.key∗, i)), ∀i ∈ [|m|] and sets t∗ = t∗1 ||t∗2 || . . . ||t∗m..
13. It returns ({abe.ct∗i,b}i∈[κ],b∈{0,1}, Ĉ∗, fe.sk∗, R∗, t∗ ⊕md) to A1.

G5: The challenger randomly generates t∗ in the Challenge Phase.

• Challenge Phase:

1. The first adversary A1 sends (m0, m1, x∗, aux) where x∗ is the target attribute and aux is
auxiliary information which will be relayed to the second adversary A2.

2. The challenger randomly generates (kF∗ , wF∗).
3. It randomly generates d ∈ {0, 1}.
4. It generates fe.msk∗ ← FE.Setup(1λ, 1ŝ).
5. It generates a PRF key prf.key∗ ← PRF.KeyGen(1λ).
6. It randomly generates two strings r∗Enc, R∗.
7. It generates fe.sk∗ ← FE.Keygen(fe.msk∗, DR∗).
8. It generates fe.ct∗ ← FE.Sim(1λ, fe.sk∗, DR∗ , DR∗(kF∗ , wF∗ ⊕ 0), 1κ).

9. It computes
(

Ĉ∗,
{
lab∗i,(kF∗ ,wF∗ )[i]

}
i∈[κ]

)
← GC.Sim(1λ, 1κ, 1|Cfe.msk,m,r |, fe.ct∗).

10. For all i ∈ [κ], it computes abe.ct∗i,(kF∗ ,wF∗ )[i]
← ABE.Enc(abe.mpk, labi,(kF∗ ,wF∗ )[i], (x∗, i, (kF∗ , wF∗)[i])).

11. For all i ∈ [κ], it computes abe.ct∗i,1−(kF∗ ,wF∗ )[i]
← ABE.Enc(abe.mpk, 0, (x∗, i, 1− (kF∗ , wF∗)[i])).

12. It generates fe.sk∗ ← FE.Keygen(fe.msk, DR∗).

13. It randomly generates t∗.

14. It returns ({abe.ct∗i,b}i∈[κ],b∈{0,1}, Ĉ∗, fe.sk∗, R∗, t∗ ⊕md) to A1.
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Analysis: Let pA,i denote probability of A = (A1,A2) outputting d′ = d in Game Gi. We will
show that this probability is almost the same in every game.

Lemma 29. Assuming ABE is adaptively secure ABE scheme, then for all PPT adversaries A = (A1,A2),
there exists a negligible function negl(·) such that for all λ, |pA,1 − pA,0| ≤ negl(λ).

Proof. The proof of the lemma following from the multi-ciphertext adaptive security of the ABE
scheme. We will show that if there exists an adversary A = (A1,A2) that can distinguish G1 and
G0, then there is an adversary B that wins the adaptive security game of the ABE scheme with equal
probability.
B starts by receiving S and 1n from A1 and sends 1n to its challenger. The challenger returns

abe.mpk andB simulated G1 until the challenger phase. To respond to the queries F fromA1, it sends
F̂ to its challenger. The challenger responds with skF and B relays it to A1. To generate the ABE
ciphertexts, B sends ({labi,1−(kF∗ ,wF∗ )

}i∈[κ], {0}i∈[κ], {(x∗, i, 1− (kF∗ , wF∗)[i]}i∈[κ]) to its challenger. It
receives {abe.ct∗i }i∈[κ] and uses it to simulate the rest of the game.

Let us carefully analyse the key queries made by B to its challenger C. Observe that the targeted
attributes given by B to C are {(x∗, i, 1− (kF∗ , wF∗)[i])}. We must ensure that B does not make
key queries for policies F̂ such that F̂(x∗, i, 1− (kF∗ , wF∗)[i]) = 1. In the Second Response Phase, B
makes a query for policy of the form F̂∗ such that F̂∗(x, (i, b)) = 1 ⇐⇒ F(x) = 1∧ b = (kF∗ , wF∗)[i].
Observe that even though F∗(x∗) = 1, we have F̂∗(x∗, i, 1− (kF∗ , wF∗)[i]) = 0 for all i.

Lemma 30. Assuming GC is a secure garbling scheme, then for all PPT adversaries A = (A1,A2), there
exists a negligible function negl(·) such that for all λ, |pA,2 − pA,1| ≤ negl(λ).

Proof. Security follows from the simulation property of the garbling scheme. The reduction simu-
lates the game G2 exactly, differing only during the challenge phase when it relies on the challenger
of the garbling scheme’s security game to create the circuit and the labels. If the challenger provides
the garbled circuit and labels, then the reduction has simulated G1, and if the challenger sends
over the simulated output, the reduction has simulated G2. Thus, the advantage with which the
reduction wins is exactly equal to the advantage with which an adversary can distinguish between
G1 and G2.

Lemma 31. Assuming FE is 1-key 1-ciphertext secure FE scheme, then for allPPT adversariesA = (A1,A2),
there exists a negligible function negl(·) such that for all λ, |pA,3 − pA,2| ≤ negl(λ).

Proof. Security follows from the simulation security of the FE scheme. The reduction simulates the
game G3 exactly, differing only during the challenge phasewhen it relies on the challenger/simulator
of the FE scheme’s security game to create the FE ciphertext and secret key. If the FE challenger
provides the ciphertext and secret key, then the reduction has simulated G2, and if the FE simulator
sends over the simulated ciphertext and secret key, the reduction has simulated G3. Thus, the
advantage with which the reduction wins is exactly equal to the advantage with which an adversary
can distinguish between G3 and G2.

Lemma 32. For all PPT adversaries A = (A1,A2), there exists a negligible function negl(·) such that for
all λ, |pA,4 − pA,3| ≤ negl(λ).
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Proof. The only distinction between G3 and G4 lies in the generation of fe.ct∗. To be precise, in G4 the
FE simulator takes DR∗(kF∗ , wF∗ ⊕ prf.key∗) as input, whereas in G5, it is DR∗(kF∗ , wF∗ ⊕ 0). Observe
that DR∗(kF∗ , wF∗ ⊕ v) = ExtkF∗ (R∗)⊕ wF∗ ⊕ v and (R∗,ExtkF∗ (R∗)⊕ wF∗ ⊕ v) is an encryption of v
under the Dziembowski’s SKE scheme with secret key (kF∗ , wF∗). This is an incompressible encryp-
tion scheme. Hence, we can trivially reduce the incompressibility security game of Dziembowski’s
scheme to a distinguishing game between G5 and G4. This is because A1 has access to (kF∗ , wF∗)
only via the ciphertext DR∗(kF∗ , wF∗ ⊕ prf.key∗), while the reduction gains access to (kF∗ , wF∗) in the
second phase and will be able to successfully respond to the distinguishing query F∗.

Lemma 33. Assuming PRF is a secure PRF scheme, for all PPT adversaries A = (A1,A2), there exists a
negligible function negl(·) such that for all λ, |pA,5 − pA,4| ≤ negl(λ).

Proof. In both the games, the PRF key prf.key∗ is only used for generating t∗. Therefore, it is a
straightforward reduction from the PRF security game to distinguishing G4 and G5.

Lemma 34. For all PPT adversaries A = (A1,A2), there exists a negligible function negl(·) such that for
all λ, pA,5 = 1/2 + negl(λ).

Proof. The information b is only present in the challenge ciphertext in the form of t∗ ⊕md. Given
that t∗ is a truly random string, it follows that t∗ ⊕md is also a truly random string. Therefore, the
adversary has negligible advantage in guessing the value of b.

Using the above lemmas and triangular inequality, for all PPT adversaries A = (A1,A2), there
exists a negligible function negl(·) such that for all λ ∈N, pA,0 ≤ 1/2 + negl(λ).

D Proof of Theorem 18

Wewill show that the scheme provided in Section 5 is secure using a sequence of hybrid arguments.

G0: This is the real adaptive semi-strongly incompressible FE security game with the challenge bit b.

• Initialization Phase:

1. The first adversary A1 outputs S - an upper bound on the state size and 1n - index of a
function class.

2. The challenger computes (fe.mpk, fe.msk)← FE.Setup(1λ, 1ñ).
3. It computes inc.sk← IncSKE.Setup(1λ, 1S).
4. It computes ske.sk← SKE.Setup(1λ).
5. It computes ske.sk′ ← SKE.Setup(1λ).
6. It sets mpk = fe.mpk and msk = (fe.msk, inc.sk, ske.sk, ske.sk′) and sends mpk to A1.

• Pre-challenge Query Phase:

1. For each query f from the first adversary A1, the challenger first computes ske.ct =
SKE.Enc(ske.sk, (0, 0α)) and ske.ct′ = SKE.Enc(ske.sk′, 0).

2. It generates fe.sk f ← FE.Keygen(fe.msk, C f ,ske.ct,ske.ct′) and sends it to A1.
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• Challenge Phase:

1. The first adversaryA1 sends (m0, m1, aux)where aux is auxiliary information which will
be relayed to the second adversary A2.

2. The challenger randomly samples inc.ct∗ ← {0, 1}β.
3. It computes ct∗ ← FE.Enc(fe.mpk, (mb,⊥, inc.ct∗, 0)) and sends it to A1.

• Post-challenge Query Phase:

1. For each query f such that f (m0) = f (m1) from the first adversary A1, the challenger
first computes ske.ct = SKE.Enc(ske.sk, (0, 0α)) and ske.ct′ = SKE.Enc(ske.sk′, 0).

2. It generates fe.sk f ← FE.Keygen(fe.msk, C f ,ske.ct,ske.ct′) and sends it to A1.

• First Response Phase:

1. The first adversary A1 outputs a state st such that |st| ≤ S.

• Second Response Phase:

1. The second adversary A2 is given the master public key mpk, the auxiliary information
aux and state st from the first adversary A1.

2. Key Generation Queries
(a) For every query f from the first adversary A2, the challenger first computes ske.ct =

SKE.Enc(ske.sk, (0, 0α)).
(b) It computes ske.ct′ ← SKE.Enc(ske.sk′, 0).
(c) It generates fe.sk f ← FE.Keygen(fe.msk, C f ,ske.ct,ske.ct′) and sends it to A2.

3. Finally, A2 outputs b′ ∈ {0, 1}.

G1: In this hybrid, ske.ct′ in the generation of distinguishing keys in the Second Response phase is
computes as ske.ct′ ← SKE.Enc(ske.sk′, mb) rather than ske.ct′ ← SKE.Enc(ske.sk′, 0).

• Second Response Phase:

1. The second adversary A2 is given the master public key mpk, the auxiliary information
aux and state st from the first adversary A1.

2. Key Generation Queries
(a) For every query f such that f (m0) ̸= f (m1) from the second adversary A2,

– The challenger first computes ske.ct = SKE.Enc(ske.sk, (0, 0α)).
– It computes ske.ct′ ← SKE.Enc(ske.sk′, f (mb)).
– It generates fe.sk f ← FE.Keygen(fe.msk, C f ,ske.ct,ske.ct′) and sends it to A2.

(b) For other queries f from A2,
– The challenger first computes ske.ct = SKE.Enc(ske.sk, (0, 0α)).
– It computes ske.ct′ ← SKE.Enc(ske.sk′, 0).
– It generates fe.sk f ← FE.Keygen(fe.msk, C f ,ske.ct,ske.ct′) and sends it to A2.
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3. Finally, A2 outputs b′ ∈ {0, 1}.

G2: In this hybrid, the incompressible ciphertext is modified to inc.ct∗ ← IncSKE.Enc(inc.sk, ske.sk′).

• Challenge Phase:

1. The first adversaryA1 sends (m0, m1, aux)where aux is auxiliary information which will
be relayed to the second adversary A2.

2. The challenger computes inc.ct∗ ← IncSKE.Enc(inc.sk, ske.sk′).

3. It computes ct∗ ← FE.Enc(fe.mpk, (mb,⊥, inc.ct∗, 0)) and sends it to A1.

G3: In this hybrid, ske.ct in the generation of distinguishing keys in the Second Response Phase is
computed as ske.ct← SKE.Enc(ske.sk, (1, inc.sk)).

• Second Response Phase:

1. The second adversary A2 is given the master public key mpk, the auxiliary information
aux and state st from the first adversary A1.

2. Key Generation Queries
(a) For every query f such that f (m0) ̸= f (m1) from the second adversary A2,

– The challenger first computes ske.ct← SKE.Enc(ske.sk, (1, inc.sk)).
– It computes ske.ct′ ← SKE.Enc(ske.sk′, f (mb)).
– It generates fe.sk f ← FE.Keygen(fe.msk, C f ,ske.ct,ske.ct′) and sends it to A2.

(b) For other queries f from A2,
– The challenger first computes ske.ct = SKE.Enc(ske.sk, (0, 0α)).
– It computes ske.ct′ ← SKE.Enc(ske.sk′, 0).
– It generates fe.sk f ← FE.Keygen(fe.msk, C f ,ske.ct,ske.ct′) and sends it to A2.

3. Finally, A2 outputs b′ ∈ {0, 1}.

G4: In this hybrid, the challenge ciphertext is generated as ct∗ ← FE.Enc(fe.mpk, (m, ske.sk, inc.ct, 1)).

• Challenge Phase:

1. The first adversaryA1 sends (m0, m1, aux)where aux is auxiliary information which will
be relayed to the second adversary A2.

2. The challenger computes inc.ct∗ ← IncSKE.Enc(inc.sk, ske.sk′).

3. It computes ct∗ ← FE.Enc(fe.mpk, (m0, ske.sk, inc.ct∗, 1)) and sends it to A1.

G5: In this hybrid, the incompressible ciphertext is generated as inc.ct∗ ← {0, 1}β.
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• Challenge Phase:

1. The first adversaryA1 sends (m0, m1, aux)where aux is auxiliary information which will
be relayed to the second adversary A2.

2. The challenger computes inc.ct∗ ← {0, 1}β .

3. It computes ct∗ ← FE.Enc(fe.mpk, (m0, ske.sk, inc.ct∗, 1)) and sends it to A1.

Analysis: Let pA,i denote probability of A = (A1,A2) outputting b′ = b in Game Gi. We will
show that this probability is almost the same in every game.

Lemma 35. Assuming SKE is secure SKE scheme, then for all PPT adversaries A = (A1,A2), there exists
a negligible function negl(·) such that for all λ, |pA,1 − pA,0| ≤ negl(λ).

Proof. The proof of the lemma follows from the CPA security of the SKE scheme. The only difference
between G0 and G1 is that in G1, ske.ct′ used in the generation of the distinguishing keys in the
Second Response Phase is computed as ske.ct′ ← SKE.Enc(ske.sk′, f (mb)) instead of ske.ct′ ←
SKE.Enc(ske.sk′, 0). Observe that ske.sk′ is only used in the generation of SKE ciphertexts in the
entire game.

Consider T + 1 intermediate hybrids G0,i where 0 ≤ i ≤ T and T is the number of distinguishing
key queries made by the second adversary A2. In G0,i hybrid, for the first i distinguishing key
queries made by A2, the challenger computes ske.ct′ = SKE.Enc(ske.sk′, f (mb)) and for the rest
of the queries, it computes ske.ct′ = SKE.Enc(ske.sk′, 0). Observe that G0,0 = G0 and G0,T = G1
whereas G0,i and G0,i+1 only differ at the key generation for the ith distinguishing key query by A2.

We will now show that if there is a PPT adversary A = (A1,A2) that can distinguish between
any G0,i and G0,i−1 where 1 ≤ i ≤ T, then we can build an adversary B that breaks the indistin-
guishability security of the SKE scheme. For the CPA security game of SKE scheme, the adversary
B would simulate the game G1 till the (i− 1)th distinguishing key query in the second response
phase. It will send (0, f (mb)) to its challenger where f is the ith distinguishing query by A2, who
will respond with a challenge ciphertext c∗. It will use c∗ as ske.ct′ to generate the key in the ith

distinguishing key query and simulate the rest of the game. An important point to note is that B
does not have the secret key ske.sk, so it will have to query its challenger for encryptions of 0 or 1
to simulate the key generation algorithm. Observe that if c∗ is SKE.Enc(ske.sk′, f (mb)), then B has
exactly simulated G0,i. Else, it has simulated G0,i−1.

Lemma 36. Assuming the pseudorandomness of IncSKE scheme, for all PPT adversaries A = (A1,A2),
there exists a negligible function negl(·) such that for all λ, |pA,2 − pA,1| ≤ negl(λ).

Proof. The proof of the lemma follows from the pseudorandomness of the ciphertexts in the incom-
pressible SKE scheme. The only difference between G2 and G1 is in the generation of inc.ct∗. Observe
that in G1, we have inc.ct∗ ← {0, 1}β whereas in G2, it is inc.ct∗ ← IncSKE.Enc(inc.sk, ske.sk′).

We will show that if there exists A = (A1,A2) that can distinguish between G2 and G1, then
there exists B that can distinguish a ciphertext from a truly random string. B receives 1S, 1n and
sends 1S to its challenger. The challenger returns inc.sk and B simulates the game till it receives
(m0, m1, aux) from A1. It sends ske.sk′ to its challenger and receives inc.ct∗ using which it simulates
the rest of the game. Observe that if inc.ct∗ ← {0, 1}β, then B has simulated G1, otherwise it has
simulated G2 exactly.
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Lemma 37. Assuming SKE is a secure SKE scheme, for all PPT adversaries A = (A1,A2), there exists a
negligible function negl(·) such that for all λ, |pA,3 − pA,2| ≤ negl(λ).

Proof. The proof is similar to Theorem 35.

Lemma 38. Assuming FE is a adaptively secure FE scheme, for all PPT adversaries A = (A1,A2), there
exists a negligible function negl(·) such that for all λ, |pA,4 − pA,3| ≤ negl(λ).

Proof. The proof of the lemma follows from the adaptive security of the FE scheme. The only
difference between G4 and G3 is the message used in the challenge ciphertext. To be precise, in G3,
the challenge ciphertext is an encryption of M1 = (mb, 0, inc.ct∗, 0)whereas in G4, it is an encryption
of M2 = (m0, ske.sk, inc.ct∗, 1) where inc.ct∗ ← IncSKE.Enc(inc.sk, ske.sk′).

We first show that for each query f in the Pre-challenge Query and Post-challenge Query phase
in both the games, the secret key generated decrypts their respective challenge ciphertext to the same
value. In both the hybrids, the secret key is generated as fe.sk f ← FE.Keygen(fe.msk, C f ,ske.ct,ske.ct′)
where ske.ct = SKE.Enc(ske.sk, (0, 0α)) and ske.ct′ = SKE.Enc(ske.sk′, 0). Since b = 0 in the chal-
lenge ciphertext of G3, from the description of C f ,ske.ct,ske.ct′ , the decryption will produce f (mb).
Whereas, in G4, b = 1 in the challenge ciphertext. Therefore, C f ,ske.ct,ske.ct′ will first compute
( f lag, inc.sk′) ← SKE.Dec(ske.sk, ske.ct). From the description of ske.ct, we have ( f lag, inc.sk′) =
(0, 0α). Therefore, C f ,ske.ct,ske.ct′ will output f (m0) which is equal to f (mb).

We now show that for each query f in the Second Response Phase in both the games, the secret
key decrypts their respective challenge ciphertext to the same value. Observe that for queries f such
that f (m0) = f (mb), the argument in the above paragraph follows. Let us focus on queries f such
that f (m0) ̸= f (m1). In both the games, the secret key is fe.sk f ← FE.Keygen(fe.msk, C f ,ske.ct,ske.ct′)
where ske.ct ← SKE.Enc(ske.sk, (1, inc.sk)) and ske.ct′ ← SKE.Enc(ske.sk′, f (mb)). In G3, since
b = 0, the decryption would produce f (mb). In G4, b is set to 1 in the challenge ciphertext.
Therefore, C f ,ske.ct,ske.ct′ will first decryption ske.ct to get (1, inc.sk)← SKE.Dec(ske.sk, ske.ct). Since
f lag = 1, it will compute ske.sk′ ← IncSKE.Dec(inc.sk, inc.ct∗) using which it will output y =
SKE.Dec(ske.sk′, ske.ct′). From the description of ske.ct′, we have y = f (mb) as required.

Lemma 39. Assuming IncSKE is a secure incompressible SKE scheme, for allPPT adversariesA = (A1,A2),
there exists a negligible function negl(·) such that for all λ, |pA,5 − pA,4| ≤ negl(λ).

Proof. The proof of the lemma follows from the incompressible security of the incompressible SKE
scheme. The only difference between G5 and G4 is in the generation of inc.ct∗. Observe that in G5,
we have inc.ct∗ ← {0, 1}β whereas in G4, it is inc.ct∗ ← IncSKE.Enc(inc.sk, ske.sk′).

We will show that if there exists A = (A1,A2) that can distinguish between G5 and G4, then
there exists B = (B1,B2) that can win the incompressibility security game with equal probability.
B1 receives 1S, 1n and sends 1S to its challenger. The challenger returns inc.sk and B simulates the
game till it receives (m0, m1, aux) fromA1. It sends ske.sk′ to its challenger and receives inc.ct∗ using
which it simulates the game till the Second Response Phase. On receiving inc.sk from this challenger,
B2 can respond to queries f such that f (m0) ̸= f (m1).

Observe that if inc.ct∗ ← {0, 1}β, then B has simulated G5, otherwise it has simulated G4
exactly.

Lemma 40. Assuming SKE is a secure SKE scheme, for all PPT adversaries A = (A1,A2), there exists a
negligible function negl(·) such that for all λ, pA,5 = 1/2 + negl(λ).
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Proof. The proof is similar to Lemma 35.

Using the above lemmas and triangular inequality, for all PPT adversaries A = (A1,A2), there
exists a negligible function negl(·) such that for all λ ∈N, pA,0 ≤ 1/2 + negl(λ).

E Proof of Theorem 21

We will show that the construction in section 6 is secure using a sequence of hybrid arguments.

G0: This is the real selective semi-strongly incompressible PK-FE security game with challenge bit b.

• Initialization Phase:

1. The first adversary A1 outputs S - an upper bound on the state size and 1n - index of a
function class and two message (m0, m1).

2. The challenger computes ske.sk← SKE.Setup(1λ).
3. It computes (fe.mpk, fe.msk)← FE.Setup(1λ, 1ñ).
4. It sets msk = (ske.sk, fe.msk) and mpk = fe.mpk.
5. It sends mpk to A1.

• Pre-challenge Query Phase:

1. For each query f from the first adversary A1, the challenger first computes ske.ct =
SKE.Enc(ske.sk, 0n+d+1).

2. It generates fe.sk f ← FE.Keygen(fe.msk, C f ,ske.ct) and sends it to A1.

• Challenge Phase:

1. The first adversaryA1 sends aux where aux is auxiliary informationwhichwill be relayed
to the second adversary A2.

2. The challenger randomly samples b← {0, 1}.
3. It computes ct∗ ← FE.Enc(fe.msk, (mb,⊥, 0)) and sends it to A1.

• Post-challenge Query Phase:

1. For each query f such that f (m0) = f (m1) from the first adversary A1, the challenger
first computes ske.ct = SKE.Enc(ske.sk, 0n+d+1).

2. It generates fe.sk f ← FE.Keygen(fe.msk, C f ,ske.ct) and sends it to A1.

• First Response Phase:

1. The first adversary A1 outputs a state st such that |st| ≤ S.

• Second Response Phase:

1. The second adversary A2 is given the master public key mpk, the auxiliary information
aux and state st from the first adversary A1.
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2. Key Generation Queries
(a) For each query f from the first adversary A1, the challenger first computes ske.ct =

SKE.Enc(ske.sk, 0n+d+1).
(b) It generates fe.sk f ← FE.Keygen(fe.msk, C f ,ske.ct) and sends it to A1.

3. Finally, A2 outputs b′ ∈ {0, 1}.

G1: In this game, the challenger modifies the secret keys generates in the query phases as follows.

• Initialization Phase:

1. The first adversary A1 outputs S - an upper bound on the state size and 1n - index of a
function class and two message (m0, m1).

2. The challenger computes ske.sk← SKE.Setup(1λ).
3. It computes (fe.mpk, fe.msk)← FE.Setup(1λ, 1ñ).
4. It sets msk = (ske.sk, fe.msk) and mpk = fe.mpk.
5. It sends mpk to A1.

6. It randomly samples R← {0, 1}S and s← {0, 1}d.

• Pre-challenge Query Phase:

1. For each query f from the first adversary A1, the challenger first computes
ske.ct = SKE.Enc(ske.sk, (0, f (m0), 0)).

2. It generates fe.sk f ← FE.Keygen(fe.msk, C f ,ske.ct) and sends it to A1.

• Post-challenge Query Phase:

1. For each query f from the first adversary A1, the challenger first computes
ske.ct = SKE.Enc(ske.sk, (0, f (m0), 0)).

2. It generates fe.sk f ← FE.Keygen(fe.msk, C f ,ske.ct) and sends it to A1.

• Second Response Phase:

1. The second adversary A2 is given the master public key mpk, the auxiliary information
aux and state st from the first adversary A1.

2. Key Generation Queries
(a) For every query f such that f (m0) ̸= f (m1) from the second adversary A2,

i. For each query f from the first adversary A1, the challenger first computes
ske.ct = SKE.Enc(ske.sk, (1, s, v))) where v = mb ⊕ Exts(R).

ii. It generates fe.sk f ← FE.Keygen(fe.msk, C f ,ske.ct) and sends it to A1.
(b) For other queries f from A2

i. For each query f from the first adversary A1, the challenger first computes
ske.ct = SKE.Enc(ske.sk, (0, f (m0), 0)).

55



ii. It generates fe.sk f ← FE.Keygen(fe.msk, C f ,ske.ct) and sends it to A1.
3. Finally, A2 outputs b′ ∈ {0, 1}.

G2: The challenger computes the challenge ciphertext by encrypting (R, ske.sk, 1) instead of (mb,⊥, 0).

• Challenge Phase:

1. The first adversaryA1 sends aux where aux is auxiliary informationwhichwill be relayed
to the second adversary A2.

2. The challenger randomly samples b← {0, 1}.

3. It computes ct∗ ← FE.Enc(fe.msk, (R, ske.sk, 1)) and sends it to A1.

G3: The challenger sets v to a truly random string (consistent across all distinguishing key queries)
instead of mb ⊕ Exts(R).

Analysis: Let pA,i denote probability of A = (A1,A2) outputting b′ = b in Game Gi. We will
show that this probability is almost the same in every game.

Lemma 41. Assuming SKE is secure SKE scheme, then for all PPT adversaries A = (A1,A2), there exists
a negligible function negl(·) such that for all λ, |pA,1 − pA,0| ≤ negl(λ).

Proof. The proof of the lemma follows from the CPA security of the SKE scheme. The only difference
between G0 and G1 is that in G1, ske.ct used in the generation of the distinguishing keys (non-
distinguishing keys) is computed as ske.ct ← SKE.Enc(ske.sk, (1, s, v))) (ske.ct ← SKE.Enc(ske.sk,
(0, f (m0), 0)))) instead of ske.ct ← SKE.Enc(ske.sk, 0). Observe that ske.sk is only used in the
generation of SKE ciphertexts in the entire game.

Consider T + 1 intermediate hybrids G0,i where 0 ≤ i ≤ T and T is the number of key queries
made by both the adversaries A1,A2. In G0,i hybrid, for the first i key queries, the challenger
computes ske.ct as described in G1 whereas for the rest of the queries, it computes ske.ct as described
in G0. Observe that G0,0 = G0 and G0,T = G1 whereas G0,i and G0,i+1 only differ at the key generation
for the ith key query.

We will now show that if there is a PPT adversary A = (A1,A2) that can distinguish between
any G0,i and G0,i−1 where 1 ≤ i ≤ T, then we can build an adversary B that breaks the indistin-
guishability security of the SKE scheme. For the CPA security game of SKE scheme, the adversary
B would simulate the game G1 till the (i− 1)th key queries. If the ith query is a non-distinguishing
query, then it will send (0, (0, f (m0), 0)) to its challenger (where f is the ith query), whowill respond
with a challenge ciphertext c∗. It will use c∗ as ske.ct to generate the key in the ith key query and
simulate the rest of the game. An important point to note is that B does not have the secret key
ske.sk, so it will have to query its challenger for encryptions to simulate the key generation algorithm.
Observe that if c∗ is SKE.Enc(ske.sk, 0), then B has exactly simulated G0,i−1. Else, it has simulated
G0,i. A similar argument follows if the ith query is a distinguishing query, except that B will send
(0, (1, s, v)) to its challenger.

Lemma 42. Assuming FE is a selectively secure FE scheme, for all PPT adversaries A = (A1,A2), there
exists a negligible function negl(·) such that for all λ ∈N,|pA,2 − pA,1| ≤ negl(λ).
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Proof. The proof of the lemma follows from the selective security of the FE scheme. The only
difference between G2 and G1 is the message used in the challenge ciphertext. To be precise, in G1,
the challenge ciphertext is an encryption of M1 = (mb,⊥, 0) whereas in G2, it is an encryption of
M2 = (R, ske.sk, 1).

We first show that for each query f in Pre and Post-challenge Query phase in both the games,
the secret key generated decrypts their respective challenge ciphertext to the same value. In both
the hybrids, the secret key is generated as fe.sk f ← FE.Keygen(fe.msk, C f ,ske.ct) where ske.ct =
SKE.Enc(ske.sk, (0, f (m0), 0)). In G1, since the challenge ciphertext is encryption of (mb,⊥, 0), the
decryption of the challenge ciphertext using fe.sk f would give f (mb) because the the f lag bit is set
to 0. Whereas in G2, the challenge ciphertext is encryption of (R, ske.sk, 1), therefore, the decryption
of the challenge ciphertext using fe.sk f would first decrypt ske.ct to get M = (0, f (m0), 0)). Since,
the first bit of M is 0, it will output the second bit of M (see Figure 2), i.e., f (m0) which is equal to
f (mb).

We now show that for each distinguishing query f in Second Response Phase in both the
games, the secret key decrypts their respective challenge ciphertext to the same value (For non-
distinguishing query, the argument is similar to the above paragraph). In both the hybrids, the secret
key is generated as fe.sk f ← FE.Keygen(fe.msk, C f ,ske.ct)where ske.ct = SKE.Enc(ske.sk, (1, ske.sk, v))
where v = mb ⊕ Exts(R). In G1, since the challenge ciphertext is encryption of (mb,⊥, 0), the
decryption of the challenge ciphertext using fe.sk f would give f (mb) because the f lag bit is set to 0.
Whereas in G2, the challenge ciphertext is encryption of (R, ske.sk, 1), therefore, the decryption of
the challenge ciphertext using fe.sk f would first decrypt ske.ct to get M = (1, ske.sk, v)). Since, the
first of M is 1, it computes f (v⊕ Exts(R)) (see Figure 2) which is equal to f (mb). Therefore, the
outputs in both the games are identical.

Lemma 43. Assuming that Ext is a strong average min-entropy extractor, for all PPT adversaries A =
(A1,A2), there exists a negligible function negl(·) such that for all λ ∈N,|pA,3 − pA,2| ≤ negl(λ).

Proof. From the fact that Ext is a strong average min-entropy extractor and |st| ≤ S, we have
(s, mb ⊕ Exts(R), st) is statistically close to (s, v, st) where v is a truly random string.

Lemma 44. For all PPT adversaries A = (A1,A2), there exists a negligible function negl(·) such that for

all λ ∈N,pA,3 ≤
1
2
+ negl(λ).

Proof. Observe that the information b is not used anywhere in the entire game. Therefore, an
adversary can wins the game with probability at most 1/2 + negl(λ).

Using the above lemmas and triangular inequality, for all PPT adversaries A = (A1,A2), there
exists a negligible function negl(·) such that for all λ ∈N, pA,0 ≤ 1/2 + negl(λ).

F Proof of Theorem 23

We will show that the construction in section 7 is secure using a sequence of hybrid arguments.

G0: This is the real selective regular incompressible PK-FE security game with challenge bit b.

• Initialization Phase:
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1. The first adversary A1 outputs S - an upper bound on the state size and 1n - index of a
function class and two message (m0, m1).

2. The challenger computes ske.sk← SKE.Setup(1λ).
3. It computes (fe.mpk, fe.msk)← FE.Setup(1λ, 1ñ).
4. It sets msk = (ske.sk, fe.msk) and mpk = fe.mpk.
5. It sends mpk to A1.

• Pre-challenge Query Phase:

1. For each query f from the first adversary A1, the challenger first computes ske.ct =
SKE.Enc(ske.sk, 0d+2).

2. It generates fe.sk f ← FE.Keygen(fe.msk, C f ,ske.ct) and sends it to A1.

• Challenge Phase:

1. The first adversaryA1 sends aux where aux is auxiliary informationwhichwill be relayed
to the second adversary A2.

2. The challenger randomly samples b← {0, 1}.
3. It computes ct∗ ← FE.Enc(fe.msk, (mb,⊥, 0)) and sends it to A1.

• Post-challenge Query Phase:

1. For each query f such that f (m0) = f (m1) from the first adversary A1, the challenger
first computes ske.ct = SKE.Enc(ske.sk, 0d+2).

2. It generates fe.sk f ← FE.Keygen(fe.msk, C f ,ske.ct) and sends it to A1.

• First Response Phase:

1. The first adversary A1 outputs a state st such that |st| ≤ S.

• Second Response Phase:

1. The second adversary A2 is given the master public key mpk, the auxiliary information
aux and state st from the first adversary A1.

2. Key Generation Queries
(a) For each query f from the first adversary A1, the challenger first computes ske.ct =

SKE.Enc(ske.sk, 0d+2).
(b) It generates fe.sk f ← FE.Keygen(fe.msk, C f ,ske.ct) and sends it to A1.

3. Finally, A2 outputs b′ ∈ {0, 1}.

G1: In this game, the challenger modifies the secret keys generates in the query phases as follows.

• Initialization Phase:

1. The first adversary A1 outputs S - an upper bound on the state size and 1n - index of a
function class and two message (m0, m1).

2. The challenger computes ske.sk← SKE.Setup(1λ).
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3. It computes (fe.mpk, fe.msk)← FE.Setup(1λ, 1ñ).
4. It sets msk = (ske.sk, fe.msk) and mpk = fe.mpk.
5. It sends mpk to A1.

6. It randomly samples R← {0, 1}S and s← {0, 1}d.

• Pre-challenge Query Phase:

1. For each query f from the first adversary A1, the challenger first computes
ske.ct = SKE.Enc(ske.sk, (0, f (m0), 0)).

2. It generates fe.sk f ← FE.Keygen(fe.msk, C f ,ske.ct) and sends it to A1.

• Post-challenge Query Phase:

1. For each query f from the first adversary A1, the challenger first computes
ske.ct = SKE.Enc(ske.sk, (0, f (m0), 0)).

2. It generates fe.sk f ← FE.Keygen(fe.msk, C f ,ske.ct) and sends it to A1.

• Second Response Phase:

1. The second adversary A2 is given the master public key mpk, the auxiliary information
aux and state st from the first adversary A1.

2. Key Generation Queries
(a) For the single query f such that f (m0) ̸= f (m1) from the second adversary A2,

i. For each query f from the first adversary A1, the challenger first computes
ske.ct = SKE.Enc(ske.sk, (1, s, v)) where v = f (mb)⊕ Exts(R).

ii. It generates fe.sk f ← FE.Keygen(fe.msk, C f ,ske.ct) and sends it to A1.
(b) For other queries f from A2

i. For each query f from the first adversary A1, the challenger first computes
ske.ct = SKE.Enc(ske.sk, (0, f (m0), 0)).

ii. It generates fe.sk f ← FE.Keygen(fe.msk, C f ,ske.ct) and sends it to A1.
3. Finally, A2 outputs b′ ∈ {0, 1}.

G2: The challenger computes the challenge ciphertext by encrypting (R, ske.sk, 1) instead of (mb,⊥, 0).

• Challenge Phase:

1. The first adversaryA1 sends aux where aux is auxiliary informationwhichwill be relayed
to the second adversary A2.

2. The challenger randomly samples b← {0, 1}.
3. It computes ct∗ ← FE.Enc(fe.msk, (R, ske.sk, 1)) and sends it to A1.

G3: The challenger sets v to a truly random string (consistent across all distinguishing key queries)
instead of f (mb)⊕ Exts(R).
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Analysis: Let pA,i denote probability of A = (A1,A2) outputting b′ = b in Game Gi. We will
show that this probability is almost the same in every game.

Lemma 45. Assuming SKE is secure SKE scheme, then for all PPT adversaries A = (A1,A2), there exists
a negligible function negl(·) such that for all λ, |pA,1 − pA,0| ≤ negl(λ).

Proof. The proof of the lemma follows from the CPA security of the SKE scheme. The only difference
between G0 and G1 is that in G1, ske.ct used in the generation of the distinguishing keys (non-
distinguishing keys) is computed as ske.ct ← SKE.Enc(ske.sk, (1, s, v))) (ske.ct ← SKE.Enc(ske.sk,
(0, f (m0), 0)))) instead of ske.ct ← SKE.Enc(ske.sk, 0). Observe that ske.sk is only used in the
generation of SKE ciphertexts in the entire game.

Consider T + 1 intermediate hybrids G0,i where 0 ≤ i ≤ T and T is the number of key queries
made by both the adversaries A1,A2. In G0,i hybrid, for the first i key queries, the challenger
computes ske.ct as described in G1 whereas for the rest of the queries, it computes ske.ct as described
in G0. Observe that G0,0 = G0 and G0,T = G1 whereas G0,i and G0,i+1 only differ at the key generation
for the ith key query.

We will now show that if there is a PPT adversary A = (A1,A2) that can distinguish between
any G0,i and G0,i−1 where 1 ≤ i ≤ T, then we can build an adversary B that breaks the indistin-
guishability security of the SKE scheme. For the CPA security game of SKE scheme, the adversary
B would simulate the game G1 till the (i− 1)th key queries. If the ith query is a non-distinguishing
query, then it will send (0, (0, f (m0), 0)) to its challenger (where f is the ith query), whowill respond
with a challenge ciphertext c∗. It will use c∗ as ske.ct to generate the key in the ith key query and
simulate the rest of the game. An important point to note is that B does not have the secret key
ske.sk, so it will have to query its challenger for encryptions to simulate the key generation algorithm.
Observe that if c∗ is SKE.Enc(ske.sk, 0), then B has exactly simulated G0,i−1. Else, it has simulated
G0,i. A similar argument follows if the ith query is a distinguishing query, except that B will send
(0, (1, s, v)) to its challenger.

Lemma 46. Assuming FE is a selectively secure FE scheme, for all PPT adversaries A = (A1,A2), there
exists a negligible function negl(·) such that for all λ ∈N,|pA,2 − pA,1| ≤ negl(λ).

Proof. The proof of the lemma follows from the selective security of the FE scheme. The only
difference between G2 and G1 is the message used in the challenge ciphertext. To be precise, in G1,
the challenge ciphertext is an encryption of M1 = (mb,⊥, 0) whereas in G2, it is an encryption of
M2 = (R, ske.sk, 1).

We first show that for each query f in Pre and Post-challenge Query phase in both the games,
the secret key generated decrypts their respective challenge ciphertext to the same value. In both
the hybrids, the secret key is generated as fe.sk f ← FE.Keygen(fe.msk, C f ,ske.ct) where ske.ct =
SKE.Enc(ske.sk, (0, f (m0), 0)). In G1, since the challenge ciphertext is encryption of (mb,⊥, 0), the
decryption of the challenge ciphertext using fe.sk f would give f (mb) because the the f lag bit is set
to 0. Whereas in G2, the challenge ciphertext is encryption of (R, ske.sk, 1), therefore, the decryption
of the challenge ciphertext using fe.sk f would first decrypt ske.ct to get M = (0, f (m0), 0)). Since,
the first bit of M is 0, it will output the second bit of M (see Figure 3), i.e., f (m0) which is equal to
f (mb).

We now show that the distinguishing query f in Second Response Phase in both the games, the
secret key decrypts their respective challenge ciphertext to the same value (For non-distinguishing
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query, the argument is similar to the above paragraph). In both the hybrids, the secret key is gen-
erated as fe.sk f ← FE.Keygen(fe.msk, C f ,ske.ct) where ske.ct = SKE.Enc(ske.sk, (1, ske.sk, v)) where
v = f (mb)⊕Exts(R). In G1, since the challenge ciphertext is encryption of (mb,⊥, 0), the decryption
of the challenge ciphertext using fe.sk f would give f (mb) because the f lag bit is set to 0. Whereas in
G2, the challenge ciphertext is encryption of (R, ske.sk, 1), therefore, the decryption of the challenge
ciphertext using fe.sk f would first decrypt ske.ct to get M = (1, ske.sk, v)). Since, the first of M is 1,
it computes v⊕ Exts(R) (see Figure 3) which is equal to f (mb). Therefore, the outputs in both the
games are identical.

Lemma 47. Assuming that Ext is a strong average min-entropy extractor, for all PPT adversaries A =
(A1,A2), there exists a negligible function negl(·) such that for all λ ∈N,|pA,3 − pA,2| ≤ negl(λ).

Proof. From the fact that Ext is a strong average min-entropy extractor and |st| ≤ S, we have
(s, f (mb)⊕ Exts(R), st) is statistically close to (s, v, st) where v is a truly random bit.

Lemma 48. For all PPT adversaries A = (A1,A2), there exists a negligible function negl(·) such that for

all λ ∈N,pA,3 ≤
1
2
+ negl(λ).

Proof. Observe that the information b is not used anywhere in the entire game. Therefore, an
adversary can wins the game with probability at most 1/2 + negl(λ).

Using the above lemmas and triangular inequality, for all PPT adversaries A = (A1,A2), there
exists a negligible function negl(·) such that for all λ ∈N, pA,0 ≤ 1/2 + negl(λ).
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