Dates are inconsistent

Dates are inconsistent

217 results sorted by ID

2024/1591 (PDF) Last updated: 2024-10-08
MPC-in-the-Head Framework without Repetition and its Applications to the Lattice-based Cryptography
Weihao Bai, Long Chen, Qianwen Gao, Zhenfeng Zhang
Cryptographic protocols

The MPC-in-the-Head framework has been pro- posed as a solution for Non-Interactive Zero-Knowledge Arguments of Knowledge (NIZKAoK) due to its efficient proof generation. However, most existing NIZKAoK constructions using this approach require multiple MPC evaluations to achieve negligible soundness error, resulting in proof size and time that are asymptotically at least λ times the size of the circuit of the NP relation. In this paper, we propose a novel method to eliminate the need for...

2024/1522 (PDF) Last updated: 2024-09-27
Beware of Keccak: Practical Fault Attacks on SHA-3 to Compromise Kyber and Dilithium on ARM Cortex-M Devices
Yuxuan Wang, Jintong Yu, Shipei Qu, Xiaolin Zhang, Xiaowei Li, Chi Zhang, Dawu Gu
Attacks and cryptanalysis

Keccak acts as the hash algorithm and eXtendable-Output Function (XOF) specified in the NIST standard drafts for Kyber and Dilithium. The Keccak output is highly correlated with sensitive information. While in RSA and ECDSA, hash-like components are only used to process public information, such as the message. The importance and sensitivity of hash-like components like Keccak are much higher in Kyber and Dilithium than in traditional public-key cryptography. However, few works study Keccak...

2024/1515 (PDF) Last updated: 2024-09-26
Optimized Software Implementation of Keccak, Kyber, and Dilithium on RV{32,64}IM{B}{V}
Jipeng Zhang, Yuxing Yan, Junhao Huang, Çetin Kaya Koç
Implementation

With the standardization of NIST post-quantum cryptographic (PQC) schemes, optimizing these PQC schemes across various platforms presents significant research value. While most existing software implementation efforts have concentrated on ARM platforms, research on PQC implementations utilizing various RISC-V instruction set architectures (ISAs) remains limited. In light of this gap, this paper proposes comprehensive and efficient optimizations of Keccak, Kyber, and Dilithium on...

2024/1439 (PDF) Last updated: 2024-09-14
Scabbard: An Exploratory Study on Hardware Aware Design Choices of Learning with Rounding-based Key Encapsulation Mechanisms
Suparna Kundu, Quinten Norga, Angshuman Karmakar, Shreya Gangopadhyay, Jose Maria Bermudo Mera, Ingrid Verbauwhede
Implementation

Recently, the construction of cryptographic schemes based on hard lattice problems has gained immense popularity. Apart from being quantum resistant, lattice-based cryptography allows a wide range of variations in the underlying hard problem. As cryptographic schemes can work in different environments under different operational constraints such as memory footprint, silicon area, efficiency, power requirement, etc., such variations in the underlying hard problem are very useful for designers...

2024/1400 (PDF) Last updated: 2024-09-07
Efficient Asymmetric PAKE Compiler from KEM and AE
You Lyu, Shengli Liu, Shuai Han
Cryptographic protocols

Password Authenticated Key Exchange (PAKE) allows two parties to establish a secure session key with a shared low-entropy password pw. Asymmetric PAKE (aPAKE) extends PAKE in the client-server setting, and the server only stores a password file instead of the plain password so as to provide additional security guarantee when the server is compromised. In this paper, we propose a novel generic compiler from PAKE to aPAKE in the Universal Composable (UC) framework by making use of Key...

2024/1397 (PDF) Last updated: 2024-09-05
Efficient Batch Algorithms for the Post-Quantum Crystals Dilithium Signature Scheme and Crystals Kyber Encryption Scheme
Nazlı Deniz TÜRE, Murat CENK
Cryptographic protocols

Digital signatures ensure authenticity and secure communication. They are used to verify the integrity and authenticity of signed documents and are widely utilized in various fields such as information technologies, finance, education, and law. They are crucial in securing servers against cyber attacks and authenticating connections between clients and servers. Additionally, encryption is used in many areas, such as secure communication, cloud, server and database security to ensure data...

2024/1367 (PDF) Last updated: 2024-08-30
A Better Kyber Butterfly for FPGAs
Jonas Bertels, Quinten Norga, Ingrid Verbauwhede
Implementation

Kyber was selected by NIST as a Post-Quantum Cryptography Key Encapsulation Mechanism standard. This means that the industry now needs to transition and adopt these new standards. One of the most demanding operations in Kyber is the modular arithmetic, making it a suitable target for optimization. This work offers a novel modular reduction design with the lowest area on Xilinx FPGA platforms. This novel design, through K-reduction and LUT-based reduction, utilizes 49 LUTs and 1 DSP...

2024/1360 (PDF) Last updated: 2024-09-25
CPA-secure KEMs are also sufficient for Post-Quantum TLS 1.3
Biming Zhou, Haodong Jiang, Yunlei Zhao
Cryptographic protocols

In the post-quantum migration of TLS 1.3, an ephemeral Diffie-Hellman must be replaced with a post-quantum key encapsulation mechanism (KEM). At EUROCRYPT 2022, Huguenin-Dumittan and Vaudenay [EC:HugVau22] demonstrated that KEMs with standard CPA security are sufficient for the security of the TLS1.3 handshake. However, their result is only proven in the random oracle model (ROM), and as the authors comment, their reduction is very much non-tight and not sufficient to guarantee security in...

2024/1287 (PDF) Last updated: 2024-08-29
Basic Lattice Cryptography: The concepts behind Kyber (ML-KEM) and Dilithium (ML-DSA)
Vadim Lyubashevsky
Public-key cryptography

This tutorial focuses on describing the fundamental mathematical concepts and design decisions used in the two ``main'' lattice schemes standardized by NIST and included in the CNSA 2.0 algorithmic suite. They are the KEM / encryption scheme CRYSTALS-Kyber (ML-KEM) and the signature scheme CRYSTALS-Dilithium (ML-DSA) . In addition, we will also give the main ideas behind other lattice-based KEMs like Frodo and NTRU.

2024/1282 (PDF) Last updated: 2024-09-02
NTRU+PKE: Efficient Public-Key Encryption Schemes from the NTRU Problem
Jonghyun Kim, Jong Hwan Park
Public-key cryptography

We propose a new NTRU-based Public-Key Encryption (PKE) scheme called $\mathsf{NTRU+}\mathsf{PKE}$, which effectively incorporates the Fujisaki-Okamoto transformation for PKE (denoted as $\mathsf{FO}_{\mathsf{PKE}}$) to achieve chosen-ciphertext security in the Quantum Random Oracle Model (QROM). While $\mathsf{NTRUEncrypt}$, a first-round candidate in the NIST PQC standardization process, was proven to be chosen-ciphertext secure in the Random Oracle Model (ROM), it lacked corresponding...

2024/1243 (PDF) Last updated: 2024-08-06
Tailoring two-dimensional codes for structured lattice-based KEMs and applications to Kyber
Thales B. Paiva, Marcos A. Simplicio Jr, Syed Mahbub Hafiz, Bahattin Yildiz, Eduardo L. Cominetti
Public-key cryptography

Kyber is a post-quantum lattice-based key encapsulation mechanism (KEM) selected by NIST for standardization as ML-KEM. The scheme is designed to ensure that the unintentional errors accumulated during decryption do not prevent the receiver to correctly recover the encapsulated key. This is done by using a simple error-correction code independently applied to each bit of the message, for which it is possible to show that the decryption failure rate (DFR) is negligible. Although there have...

2024/1229 (PDF) Last updated: 2024-08-02
Benchmarking Attacks on Learning with Errors
Emily Wenger, Eshika Saxena, Mohamed Malhou, Ellie Thieu, Kristin Lauter
Attacks and cryptanalysis

Lattice cryptography schemes based on the learning with errors (LWE) hardness assumption have been standardized by NIST for use as post-quantum cryptosystems, and by HomomorphicEncryption.org for encrypted compute on sensitive data. Thus, understanding their concrete security is critical. Most work on LWE security focuses on theoretical estimates of attack performance, which is important but may overlook attack nuances arising in real-world implementations. The sole existing concrete...

2024/1211 (PDF) Last updated: 2024-08-06
A Generic Framework for Side-Channel Attacks against LWE-based Cryptosystems
Julius Hermelink, Silvan Streit, Erik Mårtensson, Richard Petri
Attacks and cryptanalysis

Lattice-based cryptography is in the process of being standardized. Several proposals to deal with side-channel information using lattice reduction exist. However, it has been shown that algorithms based on Bayesian updating are often more favorable in practice. In this work, we define distribution hints; a type of hint that allows modelling probabilistic information. These hints generalize most previously defined hints and the information obtained in several attacks. We define two...

2024/1198 (PDF) Last updated: 2024-07-25
ECO-CRYSTALS: Efficient Cryptography CRYSTALS on Standard RISC-V ISA
Xinyi Ji, Jiankuo Dong, Junhao Huang, Zhijian Yuan, Wangchen Dai, Fu Xiao, Jingqiang Lin
Implementation

The field of post-quantum cryptography (PQC) is continuously evolving. Many researchers are exploring efficient PQC implementation on various platforms, including x86, ARM, FPGA, GPU, etc. In this paper, we present an Efficient CryptOgraphy CRYSTALS (ECO-CRYSTALS) implementation on standard 64-bit RISC-V Instruction Set Architecture (ISA). The target schemes are two winners of the National Institute of Standards and Technology (NIST) PQC competition: CRYSTALS-Kyber and CRYSTALS-Dilithium,...

2024/1194 (PDF) Last updated: 2024-07-24
Hardware Implementation and Security Analysis of Local-Masked NTT for CRYSTALS-Kyber
Rafael Carrera Rodriguez, Emanuele Valea, Florent Bruguier, Pascal Benoit
Implementation

The rapid evolution of post-quantum cryptography, spurred by standardization efforts such as those led by NIST, has highlighted the prominence of lattice-based cryptography, notably exemplified by CRYSTALS-Kyber. However, concerns persist regarding the security of cryptographic implementations, particularly in the face of Side-Channel Attacks (SCA). The usage of operations like the Number Theoretic Transform (NTT) in CRYSTALS-Kyber introduces vulnerabilities to SCA, especially single-trace...

2024/1174 (PDF) Last updated: 2024-07-20
Grafted Trees Bear Better Fruit: An Improved Multiple-Valued Plaintext-Checking Side-Channel Attack against Kyber
Jinnuo Li, Chi Cheng, Muyan Shen, Peng Chen, Qian Guo, Dongsheng Liu, Liji Wu, Jian Weng
Attacks and cryptanalysis

As a prominent category of side-channel attacks (SCAs), plaintext-checking (PC) oracle-based SCAs offer the advantages of generality and operational simplicity on a targeted device. At TCHES 2023, Rajendran et al. and Tanaka et al. independently proposed the multiple-valued (MV) PC oracle, significantly reducing the required number of queries (a.k.a., traces) in the PC oracle. However, in practice, when dealing with environmental noise or inaccuracies in the waveform classifier, they...

2024/1170 (PDF) Last updated: 2024-07-29
Rudraksh: A compact and lightweight post-quantum key-encapsulation mechanism
Suparna Kundu, Archisman Ghosh, Angshuman Karmakar, Shreyas Sen, Ingrid Verbauwhede
Public-key cryptography

Resource-constrained devices such as wireless sensors and Internet of Things (IoT) devices have become ubiquitous in our digital ecosystem. These devices generate and handle a major part of our digital data. In the face of the impending threat of quantum computers on our public-key infrastructure, it is impossible to imagine the security and privacy of our digital world without integrating post-quantum cryptography (PQC) into these devices. Usually, due to the resource constraints of these...

2024/1116 (PDF) Last updated: 2024-07-09
A Simple Post-Quantum Oblivious Transfer Protocol from Mod-LWR
Shen Dong, Hongrui Cui, Kaiyi Zhang, Kang Yang, Yu Yu
Cryptographic protocols

Oblivious transfer (OT) is a fundamental cryptographic protocol that plays a crucial role in secure multi-party computation (MPC). Most practical OT protocols by, e.g., Naor and Pinkas (SODA'01) or Chou and Orlandi (Latincrypt'15), are based on Diffie-Hellman (DH)-like assumptions and not post-quantum secure. In contrast, many other components of MPC protocols, including garbled circuits and secret sharings, are post-quantum secure. The reliance on non-post-quantum OT protocols presents a...

2024/1086 (PDF) Last updated: 2024-08-12
Obfuscated Key Exchange
Felix Günther, Douglas Stebila, Shannon Veitch
Cryptographic protocols

Censorship circumvention tools enable clients to access endpoints in a network despite the presence of a censor. Censors use a variety of techniques to identify content they wish to block, including filtering traffic patterns that are characteristic of proxy or circumvention protocols and actively probing potential proxy servers. Circumvention practitioners have developed fully encrypted protocols (FEPs), intended to have traffic that appears indistinguishable from random. A FEP is typically...

2024/1070 (PDF) Last updated: 2024-07-01
Protecting cryptographic code against Spectre-RSB
Santiago Arranz Olmos, Gilles Barthe, Chitchanok Chuengsatiansup, Benjamin Grégoire, Vincent Laporte, Tiago Oliveira, Peter Schwabe, Yuval Yarom, Zhiyuan Zhang
Implementation

It is fundamental that executing cryptographic software must not leak secrets through side-channels. For software-visible side-channels, it was long believed that "constant-time" programming would be sufficient as a systematic countermeasure. However, this belief was shattered in 2018 by attacks exploiting speculative execution—so called Spectre attacks. Recent work shows that language support suffices to protect cryptographic code with minimal overhead against one class of such attacks,...

2024/1049 (PDF) Last updated: 2024-06-28
KyberSlash: Exploiting secret-dependent division timings in Kyber implementations
Daniel J. Bernstein, Karthikeyan Bhargavan, Shivam Bhasin, Anupam Chattopadhyay, Tee Kiah Chia, Matthias J. Kannwischer, Franziskus Kiefer, Thales Paiva, Prasanna Ravi, Goutam Tamvada
Implementation

This paper presents KyberSlash1 and KyberSlash2 – two timing vulnerabilities in several implementations (including the official reference code) of the Kyber Post-Quantum Key Encapsulation Mechanism, currently undergoing standardization as ML-KEM. We demonstrate the exploitability of both KyberSlash1 and KyberSlash2 on two popular platforms: the Raspberry Pi 2 (Arm Cortex-A7) and the Arm Cortex-M4 microprocessor. Kyber secret keys are reliably recovered within minutes for KyberSlash2 and a...

2024/946 (PDF) Last updated: 2024-06-12
Provably Secure Butterfly Key Expansion from the CRYSTALS Post-Quantum Schemes
Edward Eaton, Philippe Lamontagne, Peter Matsakis
Applications

This work presents the first provably secure protocol for Butterfly Key Expansion (BKE) -- a tripartite protocol for provisioning users with pseudonymous certificates -- based on post-quantum cryptographic schemes. Our work builds upon the CRYSTALS family of post-quantum algorithms that have been selected for standardization by NIST. We extend those schemes by imbuing them with the additional functionality of public key expansion: a process by which pseudonymous public keys can be derived by...

2024/843 (PDF) Last updated: 2024-05-29
Formally verifying Kyber Episode V: Machine-checked IND-CCA security and correctness of ML-KEM in EasyCrypt
José Bacelar Almeida, Santiago Arranz Olmos, Manuel Barbosa, Gilles Barthe, François Dupressoir, Benjamin Grégoire, Vincent Laporte, Jean-Christophe Léchenet, Cameron Low, Tiago Oliveira, Hugo Pacheco, Miguel Quaresma, Peter Schwabe, Pierre-Yves Strub
Public-key cryptography

We present a formally verified proof of the correctness and IND-CCA security of ML-KEM, the Kyber-based Key Encapsulation Mechanism (KEM) undergoing standardization by NIST. The proof is machine-checked in EasyCrypt and it includes: 1) A formalization of the correctness (decryption failure probability) and IND-CPA security of the Kyber base public-key encryption scheme, following Bos et al. at Euro S&P 2018; 2) A formalization of the relevant variant of the Fujisaki-Okamoto transform in...

2024/810 (PDF) Last updated: 2024-05-24
The Perils of Limited Key Reuse: Adaptive and Parallel Mismatch Attacks with Post-processing Against Kyber
Qian Guo, Erik Mårtensson, Adrian Åström
Attacks and cryptanalysis

In this paper, we study the robustness of Kyber, the Learning With Errors (LWE)-based Key Encapsulation Mechanism (KEM) chosen for standardization by NIST, against key mismatch attacks. We demonstrate that Kyber's security levels can be compromised with a few mismatch queries by striking a balance between the parallelization level and the cost of lattice reduction for post-processing. This highlights the imperative need to strictly prohibit key reuse in CPA-secure Kyber. We further...

2024/788 (PDF) Last updated: 2024-05-22
A Fault-Resistant NTT by Polynomial Evaluation and Interpolation
Sven Bauer, Fabrizio De Santis, Kristjane Koleci, Anita Aghaie

In computer arithmetic operations, the Number Theoretic Transform (NTT) plays a significant role in the efficient implementation of cyclic and nega-cyclic convolutions with the application of multiplying large integers and large degree polynomials. Multiplying polynomials is a common operation in lattice-based cryptography. Hence, the NTT is a core component of several lattice-based cryptographic algorithms. Two well-known examples are the key encapsulation mechanism Kyber and the...

2024/702 (PDF) Last updated: 2024-08-28
Security Analysis of Signal's PQXDH Handshake
Rune Fiedler, Felix Günther
Cryptographic protocols

Signal recently deployed a new handshake protocol named PQXDH to protect against "harvest-now-decrypt-later" attacks of a future quantum computer. To this end, PQXDH adds a post-quantum KEM to the Diffie-Hellman combinations of the prior X3DH handshake. In this work, we give a reductionist security analysis of Signal's PQXDH handshake in a game-based security model that captures the targeted "maximum-exposure" security against both classical and quantum adversaries, allowing fine-grained...

2024/678 (PDF) Last updated: 2024-05-09
Quantum-Safe Account Recovery for WebAuthn
Douglas Stebila, Spencer Wilson
Cryptographic protocols

WebAuthn is a passwordless authentication protocol which allows users to authenticate to online services using public-key cryptography. Users prove their identity by signing a challenge with a private key, which is stored on a device such as a cell phone or a USB security token. This approach avoids many of the common security problems with password-based authentication. WebAuthn's reliance on proof-of-possession leads to a usability issue, however: a user who loses access to their...

2024/667 (PDF) Last updated: 2024-05-01
Agile, Post-quantum Secure Cryptography in Avionics
Karolin Varner, Wanja Zaeske, Sven Friedrich, Aaron Kaiser, Alice Bowman
Cryptographic protocols

To introduce a post-quantum-secure encryption scheme specifically for use in flight-computers, we used avionics’ module-isolation methods to wrap a recent encryption standard (HPKE – Hybrid Public Key Encryption) within a software partition. This solution proposes an upgrade to HPKE, using quantum-resistant ciphers (Kyber/ML-KEM and Dilithium/ML-DSA) redundantly alongside well-established ciphers, to achieve post-quantum security. Because cryptographic technology can suddenly become...

2024/652 Last updated: 2024-05-08
Compact and Secure Zero-Knowledge Proofs for Quantum-Resistant Cryptography from Modular Lattice Innovations
Samuel Lavery
Public-key cryptography

This paper presents a comprehensive security analysis of the Adh zero-knowledge proof system, a novel lattice-based, quantum-resistant proof of possession system. The Adh system offers compact key and proof sizes, making it suitable for real-world digital signature and public key agreement protocols. We explore its security by reducing it to the hardness of the Module-ISIS problem and introduce three new variants: Module-ISIS+, Module-ISIS*, and Module-ISIS**. These constructions enhance...

2024/551 (PDF) Last updated: 2024-04-09
Probabilistic Algorithms with applications to countering Fault Attacks on Lattice based Post-Quantum Cryptography
Nimish Mishra, Debdeep Mukhopadhyay
Attacks and cryptanalysis

Fault attacks that exploit the propagation of effective/ineffective faults present a richer attack surface than Differential Fault Attacks, in the sense that the adversary depends on a single bit of information to eventually leak secret cryptographic material. In the recent past, a number of propagation-based fault attacks on Lattice-based Key Encapsulation Mechanisms have been proposed; many of which have no known countermeasures. In this work, we propose an orthogonal countermeasure...

2024/440 (PDF) Last updated: 2024-06-10
Secret and Shared Keys Recovery on Hamming Quasi-Cyclic with SASCA
Chloé Baïsse, Antoine Moran, Guillaume Goy, Julien Maillard, Nicolas Aragon, Philippe Gaborit, Maxime Lecomte, Antoine Loiseau
Attacks and cryptanalysis

Soft Analytical Side Channel Attacks (SASCA) are a powerful family of Side Channel Attacks (SCA) that allows the recovery of secret values with only a small number of traces. Their effectiveness lies in the Belief Propagation (BP) algorithm, which enables efficient computation of the marginal distributions of intermediate values. Post-quantum schemes such as Kyber, and more recently, Hamming Quasi-Cyclic (HQC), have been targets of SASCA. Previous SASCA on HQC focused on Reed-Solomon (RS)...

2024/324 (PDF) Last updated: 2024-03-09
Under What Conditions Is Encrypted Key Exchange Actually Secure?
Jake Januzelli, Lawrence Roy, Jiayu Xu
Cryptographic protocols

A Password-Authenticated Key Exchange (PAKE) protocol allows two parties to agree upon a cryptographic key, in the setting where the only secret shared in advance is a low-entropy password. The standard security notion for PAKE is in the Universal Composability (UC) framework. In recent years there have been a large number of works analyzing the UC-security of Encrypted Key Exchange (EKE), the very first PAKE protocol, and its One-encryption variant (OEKE), both of which compile an...

2024/308 (PDF) Last updated: 2024-09-20
C'est très CHIC: A compact password-authenticated key exchange from lattice-based KEM
Afonso Arriaga, Manuel Barbosa, Stanislaw Jarecki, Marjan Skrobot
Cryptographic protocols

Driven by the NIST's post-quantum standardization efforts and the selection of Kyber as a lattice-based Key-Encapsulation Mechanism (KEM), several Password Authenticated Key Exchange (PAKE) protocols have been recently proposed that leverage a KEM to create an efficient, easy-to-implement and secure PAKE. In two recent works, Beguinet et al. (ACNS 2023) and Pan and Zeng (ASIACRYPT 2023) proposed generic compilers that transform KEM into PAKE, relying on an Ideal Cipher (IC) defined over a...

2024/260 (PDF) Last updated: 2024-02-16
Kleptographic Attacks against Implicit Rejection
Antoine Joux, Julian Loss, Benedikt Wagner

Given its integral role in modern encryption systems such as CRYSTALS-Kyber, the Fujisaki-Okamoto (FO) transform will soon be at the center of our secure communications infrastructure. An enduring debate surrounding the FO transform is whether to use explicit or implicit rejection when decapsulation fails. Presently, implicit rejection, as implemented in CRYSTALS-Kyber, is supported by a strong set of arguments. Therefore, understanding its security implications in different attacker models...

2024/169 (PDF) Last updated: 2024-02-05
Machine Learning based Blind Side-Channel Attacks on PQC-based KEMs - A Case Study of Kyber KEM
Prasanna Ravi, Dirmanto Jap, Shivam Bhasin, Anupam Chattopadhyay
Attacks and cryptanalysis

Kyber KEM, the NIST selected PQC standard for Public Key Encryption and Key Encapsulation Mechanisms (KEMs) has been subjected to a variety of side-channel attacks, through the course of the NIST PQC standardization process. However, all these attacks targeting the decapsulation procedure of Kyber KEM either require knowledge of the ciphertexts or require to control the value of ciphertexts for key recovery. However, there are no known attacks in a blind setting, where the attacker does not...

2024/135 (PDF) Last updated: 2024-01-31
A Closer Look at the Belief Propagation Algorithm in Side-Channel-Assisted Chosen-Ciphertext Attacks
Kexin Qiao, Siwei Sun, Zhaoyang Wang, Zehan Wu, Junjie Cheng, An Wang, Liehuang Zhu
Attacks and cryptanalysis

The implementation security of post-quantum cryptography (PQC) algorithms has emerged as a critical concern with the PQC standardization process reaching its end. In a side-channel-assisted chosen-ciphertext attack, the attacker builds linear inequalities on secret key components and uses the belief propagation (BP) algorithm to solve. The number of inequalities leverages the query complexity of the attack, so the fewer the better. In this paper, we use the PQC standard algorithm Kyber512 as...

2024/130 (PDF) Last updated: 2024-01-30
HADES: Automated Hardware Design Exploration for Cryptographic Primitives
Fabian Buschkowski, Georg Land, Jan Richter-Brockmann, Pascal Sasdrich, Tim Güneysu
Implementation

While formal constructions for cryptographic schemes have steadily evolved and emerged over the past decades, the design and implementation of efficient and secure hardware instances is still a mostly manual, tedious, and intuition-driven process. With the increasing complexity of modern cryptography, e.g., Post-Quantum Cryptography (PQC) schemes, and consideration of physical implementation attacks, e.g., Side-Channel Analysis (SCA), the design space often grows exorbitantly without...

2024/112 (PDF) Last updated: 2024-01-25
pqm4: Benchmarking NIST Additional Post-Quantum Signature Schemes on Microcontrollers
Matthias J. Kannwischer, Markus Krausz, Richard Petri, Shang-Yi Yang
Implementation

In July 2022, the US National Institute for Standards and Technology (NIST) announced the first set of Post-Quantum Cryptography standards: Kyber, Dilithium, Falcon, and SPHINCS+. Shortly after, NIST published a call for proposals for additional post-quantum signature schemes to complement their initial portfolio. In 2023, 50 submissions were received, and 40 were accepted as round-1 candidates for future standardization. In this paper, we study the suitability and performance of said...

2024/095 (PDF) Last updated: 2024-01-22
ConvKyber: Unleashing the Power of AI Accelerators for Faster Kyber with Novel Iteration-based Approaches
Tian Zhou, Fangyu Zheng, Guang Fan, Lipeng Wan, Wenxu Tang, Yixuan Song, Yi Bian, Jingqiang Lin
Implementation

The remarkable performance capabilities of AI accelerators offer promising opportunities for accelerating cryptographic algorithms, particularly in the context of lattice-based cryptography. However, current approaches to leveraging AI accelerators often remain at a rudimentary level of implementation, overlooking the intricate internal mechanisms of these devices. Consequently, a significant number of computational resources is underutilized. In this paper, we present a comprehensive...

2024/080 (PDF) Last updated: 2024-04-25
Memory adds no cost to lattice sieving for computers in 3 or more spatial dimensions
Samuel Jaques
Attacks and cryptanalysis

The security of lattice-based crytography (LWE, NTRU, and FHE) depends on the hardness of the shortest-vector problem (SVP). Sieving algorithms give the lowest asymptotic runtime to solve SVP, but depend on exponential memory. Memory access costs much more in reality than in the RAM model, so we consider a computational model where processors, memory, and meters of wire are in constant proportions to each other. While this adds substantial costs to route data during lattice sieving, we...

2024/070 (PDF) Last updated: 2024-06-10
Hints from Hertz: Dynamic Frequency Scaling Side-Channel Analysis of Number Theoretic Transform in Lattice-Based KEMs
Tianrun Yu, Chi Cheng, Zilong Yang, Yingchen Wang, Yanbin Pan, Jian Weng
Attacks and cryptanalysis

Number Theoretic Transform (NTT) has been widely used in accelerating computations in lattice-based cryptography. However, attackers can potentially launch power analysis targeting NTT because it is usually the most time-consuming part of the implementation. This extended time frame provides a natural window of opportunity for attackers. In this paper, we investigate the first CPU frequency leakage (Hertzbleed-like) attacks against NTT in lattice-based KEMs. Our key observation is that...

2024/067 (PDF) Last updated: 2024-07-24
A Refined Hardness Estimation of LWE in Two-step Mode
Wenwen Xia, Leizhang Wang, Geng Wang, Dawu Gu, Baocang Wang
Public-key cryptography

Recently, researchers have proposed many LWE estimators, such as lattice-estimator (Albrecht et al, Asiacrypt 2017) and leaky-LWE-Estimator (Dachman-Soled et al, Crypto 2020), while the latter has already been used in estimating the security level of Kyber and Dilithium using only BKZ. However, we prove in this paper that solving LWE by combining a lattice reduction step (by LLL or BKZ) and a target vector searching step (by enumeration or sieving), which we call a Two-step mode, is more...

2024/066 (PDF) Last updated: 2024-10-01
Exploiting the Central Reduction in Lattice-Based Cryptography
Tolun Tosun, Amir Moradi, Erkay Savas
Attacks and cryptanalysis

This paper questions the side-channel security of central reduction technique, which is widely adapted in efficient implementations of Lattice-Based Cryptography (LBC). We show that the central reduction leads to a vulnerability by creating a strong dependency between the power consumption and the sign of sensitive intermediate values. We exploit this dependency by introducing the novel absolute value prediction function, which can be employed in higher-order non-profiled multi-query...

2024/063 Last updated: 2024-03-04
A Study of Soft Analytical Side-Channel Attacks on Secure Hash Algorithms
Julien Maillard, Thomas Hiscock, Maxime Lecomte, Christophe Clavier
Attacks and cryptanalysis

Hashing algorithms are one-way functions that are used in cryptographic protocols as Pseudo Random Functions (PRF), to assess data integrity or to create a Hash-based Message Authentication Code (HMAC). In many cryptographic constructions, secret data is processed with hashing functions. In these cases, recovering the input given to the hashing algorithm allows retrieving secret data. In this paper, we investigate the application of Soft Analytical Side-Channel Attacks (SASCA), based on a...

2024/060 (PDF) Last updated: 2024-10-01
The Insecurity of Masked Comparisons: SCAs on ML-KEM’s FO-Transform
Julius Hermelink, Kai-Chun Ning, Richard Petri, Emanuele Strieder
Attacks and cryptanalysis

NIST released the draft standard for ML-KEM, and we can expect its widespread use in the embedded world in the near future. Several side-channel attacks have been proposed, and one line of research has focused on attacks against the comparison step of the FO-transform. A work published at TCHES 2022 stressed the need for secure higher-order masked comparisons beyond the $t$-probing model and proposed a higher-order masked comparison method. Subsequently, D'Anvers, Van Beirendonck, and...

2024/036 (PDF) Last updated: 2024-01-09
Blink: Breaking Lattice-Based Schemes Implemented in Parallel with Chosen-Ciphertext Attack
Jian Wang, Weiqiong Cao, Hua Chen, Haoyuan Li
Attacks and cryptanalysis

As the message recovery-based attack poses a serious threat to lattice-based schemes, we conducted a study on the side-channel secu- rity of parallel implementations of lattice-based key encapsulation mech- anisms. Initially, we developed a power model to describe the power leakage during message encoding. Utilizing this power model, we pro- pose a multi-ciphertext message recovery attack, which can retrieve the required messages for a chosen ciphertext attack through a suitable mes- sage...

2023/1962 (PDF) Last updated: 2024-06-19
A Survey of Polynomial Multiplications for Lattice-Based Cryptosystems
Vincent Hwang
Implementation

We survey various mathematical tools used in software works multiplying polynomials in \[ \frac{\mathbb{Z}_q[x]}{\left\langle {x^n - \alpha x - \beta} \right\rangle}. \] In particular, we survey implementation works targeting polynomial multiplications in lattice-based cryptosystems Dilithium, Kyber, NTRU, NTRU Prime, and Saber with instruction set architectures/extensions Armv7-M, Armv7E-M, Armv8-A, and AVX2. There are three emphases in this paper: (i) modular arithmetic, (ii)...

2023/1952 (PDF) Last updated: 2023-12-25
Overview and Discussion of Attacks on CRYSTALS-Kyber
Stone Li
Attacks and cryptanalysis

This paper reviews common attacks in classical cryptography and plausible attacks in the post-quantum era targeted at CRYSTALS-Kyber. Kyber is a recently standardized post-quantum cryptography scheme that relies on the hardness of lattice problems. Although it has undergone rigorous testing by the National Institute of Standards and Technology (NIST), there have recently been studies that have successfully executed attacks against Kyber while showing their applicability outside of controlled...

2023/1933 (PDF) Last updated: 2024-08-02
Keeping Up with the KEMs: Stronger Security Notions for KEMs and automated analysis of KEM-based protocols
Cas Cremers, Alexander Dax, Niklas Medinger
Public-key cryptography

Key Encapsulation Mechanisms (KEMs) are a critical building block for hybrid encryption and modern security protocols, notably in the post-quantum setting. Given the asymmetric public key of a recipient, the primitive establishes a shared secret key between sender and recipient. In recent years, a large number of abstract designs and concrete implementations of KEMs have been proposed, e.g., in the context of the NIST process for post-quantum primitives. In this work, we (i)...

2023/1924 (PDF) Last updated: 2024-04-19
Analyzing the complexity of reference post-quantum software: the case of lattice-based KEMs
Daniel J. Bernstein
Implementation

Software for various post-quantum KEMs has been submitted by the KEM design teams to the SUPERCOP testing framework. The ref/*.c and ref/*.h files together occupy, e.g., 848 lines for ntruhps4096821, 928 lines for ntruhrss701, 1316 lines for sntrup1277, and 2633 lines for kyber1024. It is easy to see that these numbers overestimate the inherent complexity of software for these KEMs. It is more difficult to systematically measure this complexity. This paper takes these KEMs as case...

2023/1892 (PDF) Last updated: 2023-12-08
Asymptotics of hybrid primal lattice attacks
Daniel J. Bernstein
Attacks and cryptanalysis

The literature gives the impression that (1) existing heuristics accurately predict how effective lattice attacks are, (2) non-ternary lattice systems are not vulnerable to hybrid multi-decoding primal attacks, and (3) the asymptotic exponents of attacks against non-ternary systems have stabilized. This paper shows that 1 contradicts 2 and that 1 contradicts 3: the existing heuristics imply that hybrid primal key-recovery attacks are exponentially faster than standard non-hybrid primal...

2023/1875 (PDF) Last updated: 2023-12-07
The Blockwise Rank Syndrome Learning problem and its applications to cryptography
Nicolas Aragon, Pierre Briaud, Victor Dyseryn, Philippe Gaborit, Adrien Vinçotte
Cryptographic protocols

Recently the notion of blockwise error in a context of rank based cryptography has been introduced by Sont et al. at AsiaCrypt 2023 . This notion of error, very close to the notion sum-rank metric, permits, by decreasing the weight of the decoded error, to greatly improve parameters for the LRPC and RQC cryptographic schemes. A little before the multi-syndromes approach introduced for LRPC and RQC schemes had also allowed to considerably decrease parameters sizes for LRPC and RQC schemes,...

2023/1866 (PDF) Last updated: 2024-07-01
When NTT Meets SIS: Efficient Side-channel Attacks on Dilithium and Kyber
Zehua Qiao, Yuejun Liu, Yongbin Zhou, Mingyao Shao, Shuo Sun
Attacks and cryptanalysis

In 2022, NIST selected Kyber and Dilithium as post-quantum cryptographic standard algorithms. The Number Theoretic Transformation (NTT) algorithm, which facilitates polynomial multiplication, has become a primary target for side-channel attacks. In this work, we embed the NTT transformation matrix in Dilithium and Kyber into the SIS search problem, and further, we propose a divide and conquer strategy for dimensionality reduction of the SIS problem by utilizing the properties of NTT, and...

2023/1812 (PDF) Last updated: 2023-11-23
The NTT and residues of a polynomial modulo factors of $X^{2^d} + 1$
Sahil Sharma
Implementation

The Number Theoretic Transform (NTT) plays a central role in efficient implementations of cryptographic primitives selected for Post Quantum Cryptography. Although it certainly exists, academic papers that cite the NTT omit the connection between the NTT and residues of a polynomial modulo factors of $X^{2^d} + 1$ and mention only the final expressions of what the NTT computes. This short paper establishes that connection and, in doing so, elucidates key aspects of computing the NTT. Based...

2023/1811 (PDF) Last updated: 2024-06-10
A note on Failing gracefully: Completing the picture for explicitly rejecting Fujisaki-Okamoto transforms using worst-case correctness
Kathrin Hövelmanns, Christian Majenz
Public-key cryptography

The Fujisaki-Okamoto (FO) transformation is used in most proposals for post-quantum secure key encapsulation mechanisms (KEMs) like, e.g., Kyber [BDK+18]. The security analysis of FO in the presence of quantum attackers has made huge progress over the last years. Recently, [HHM22] made a particular improvement by giving a security proof that is agnostic towards how invalid ciphertexts are being treated: in contrast to previous proofs, it works regardless whether invalid ciphertexts are...

2023/1781 (PDF) Last updated: 2023-11-25
A Lattice Attack on CRYSTALS-Kyber with Correlation Power Analysis
Yen-Ting Kuo, Atsushi Takayasu
Attacks and cryptanalysis

CRYSTALS-Kyber is a key-encapsulation mechanism, whose security is based on the hardness of solving the learning-with-errors (LWE) problem over module lattices. As in its specification, Kyber prescribes the usage of the Number Theoretic Transform (NTT) for efficient polynomial multiplication. Side-channel assisted attacks against Post-Quantum Cryptography (PQC) algorithms like Kyber remain a concern in the ongoing standardization process of quantum-computer-resistant cryptosystems. Among the...

2023/1732 (PDF) Last updated: 2023-11-08
On the Masking-Friendly Designs for Post-Quantum Cryptography
Suparna Kundu, Angshuman Karmakar, Ingrid Verbauwhede
Implementation

Masking is a well-known and provably secure countermeasure against side-channel attacks. However, due to additional redundant computations, integrating masking schemes is expensive in terms of performance. The performance overhead of integrating masking countermeasures is heavily influenced by the design choices of a cryptographic algorithm and is often not considered during the design phase. In this work, we deliberate on the effect of design choices on integrating masking techniques into...

2023/1731 (PDF) Last updated: 2023-11-08
A practical key-recovery attack on LWE-based key- encapsulation mechanism schemes using Rowhammer
Puja Mondal, Suparna Kundu, Sarani Bhattacharya, Angshuman Karmakar, Ingrid Verbauwhede
Attacks and cryptanalysis

Physical attacks are serious threats to cryptosystems deployed in the real world. In this work, we propose a microarchitectural end-to-end attack methodology on generic lattice-based post-quantum key encapsulation mechanisms to recover the long-term secret key. Our attack targets a critical component of a Fujisaki-Okamoto transform that is used in the construction of almost all lattice-based key encapsulation mechanisms. We demonstrate our attack model on practical schemes such as Kyber and...

2023/1674 (PDF) Last updated: 2024-09-12
Carry Your Fault: A Fault Propagation Attack on Side-Channel Protected LWE-based KEM
Suparna Kundu, Siddhartha Chowdhury, Sayandeep Saha, Angshuman Karmakar, Debdeep Mukhopadhyay, Ingrid Verbauwhede
Attacks and cryptanalysis

Post-quantum cryptographic (PQC) algorithms, especially those based on the learning with errors (LWE) problem, have been subjected to several physical attacks in the recent past. Although the attacks broadly belong to two classes -- passive side-channel attacks and active fault attacks, the attack strategies vary significantly due to the inherent complexities of such algorithms. Exploring further attack surfaces is, therefore, an important step for eventually securing the deployment of these...

2023/1627 (PDF) Last updated: 2023-10-19
Defeating Low-Cost Countermeasures against Side-Channel Attacks in Lattice-based Encryption - A Case Study on Crystals-Kyber
Prasanna Ravi, Thales Paiva, Dirmanto Jap, Jan-Pieter D'Anvers, Shivam Bhasin
Attacks and cryptanalysis

In an effort to circumvent the high cost of standard countermeasures against side-channel attacks in post-quantum cryptography, some works have developed low-cost detection-based countermeasures. These countermeasures try to detect maliciously generated input ciphertexts and react to them by discarding the ciphertext or secret key. In this work, we take a look at two previously proposed low-cost countermeasures: the ciphertext sanity check and the decapsulation failure check, and demonstrate...

2023/1617 (PDF) Last updated: 2024-09-15
Designing Efficient and Flexible NTT Accelerators
Ahmet MALAL
Implementation

The Number Theoretic Transform (NTT) is a powerful mathematical tool with a wide range of applications in various fields, including signal processing, cryptography, and error correction codes. In recent years, there has been a growing interest in efficiently implementing the NTT on hardware platforms for lattice-based cryptography within the context of NIST's Post-Quantum Cryptography (PQC) competition. The implementation of NTT in cryptography stands as a pivotal advancement,...

2023/1590 (PDF) Last updated: 2024-03-18
Single trace HQC shared key recovery with SASCA
Guillaume Goy, Julien Maillard, Philippe Gaborit, Antoine Loiseau
Attacks and cryptanalysis

This paper presents practicable single trace attacks against the Hamming Quasi-Cyclic (HQC) Key Encapsulation Mechanism. These attacks are the first Soft Analytical Side-Channel Attacks (SASCA) against code-based cryptography. We mount SASCA based on Belief Propagation (BP) on several steps of HQC's decapsulation process. Firstly, we target the Reed-Solomon (RS) decoder involved in the HQC publicly known code. We perform simulated attacks under Hamming weight leakage model, and reach...

2023/1587 (PDF) Last updated: 2023-10-13
A Single-Trace Message Recovery Attack on a Masked and Shuffled Implementation of CRYSTALS-Kyber
Sönke Jendral, Kalle Ngo, Ruize Wang, Elena Dubrova
Attacks and cryptanalysis

Last year CRYSTALS-Kyber was chosen by NIST as a new, post-quantum secure key encapsulation mechanism to be standardized. This makes it important to assess the resistance of CRYSTALS-Kyber implementations to physical attacks. Pure side-channel attacks on post-quantum cryptographic algorithms have already been well-explored. In this paper, we present an attack on a masked and shuffled software implementation of CRYSTALS-Kyber that combines fault injection with side-channel analysis. First, a...

2023/1547 (PDF) Last updated: 2024-06-07
Further Improvements of the Estimation of Key Enumeration with Applications to Solving LWE
Alessandro Budroni, Erik Mårtensson
Attacks and cryptanalysis

In post-quantum cryptography, Learning With Errors (LWE) is one of the dominant underlying mathematical problems. The dual attack is one of the main strategies for solving the LWE problem, and it has recently gathered significant attention within the research community. The attack strategy consists of a lattice reduction part and a distinguishing part. The latter includes an enumeration subroutine over a certain number of positions of the secret key. Our contribution consists of giving a...

2023/1539 (PDF) Last updated: 2023-10-07
ELCA: Introducing Enterprise-level Cryptographic Agility for a Post-Quantum Era
Dimitrios Sikeridis, David Ott, Sean Huntley, Shivali Sharma, Vasantha Kumar Dhanasekar, Megha Bansal, Akhilesh Kumar, Anwitha U N, Daniel Beveridge, Sairam Veeraswamy
Implementation

Given the importance of cryptography to modern security and privacy solutions, it is surprising how little attention has been given to the problem of \textit{cryptographic agility}, or frameworks enabling the transition from one cryptographic algorithm or implementation to another. In this paper, we argue that traditional notions of cryptographic agility fail to capture the challenges facing modern enterprises that will soon be forced to implement a disruptive migration from today’s public...

2023/1508 (PDF) Last updated: 2024-02-21
Provable Dual Attacks on Learning with Errors
Amaury Pouly, Yixin Shen
Attacks and cryptanalysis

Learning with Errors (LWE) is an important problem for post-quantum cryptography (PQC) that underlines the security of several NIST PQC selected algorithms. Several recent papers have claimed improvements on the complexity of so-called dual attacks on LWE. These improvements make dual attacks comparable to or even better than primal attacks in certain parameter regimes. Unfortunately, those improvements rely on a number of untested and hard-to-test statistical assumptions. Furthermore, a...

2023/1505 (PDF) Last updated: 2024-01-10
PQ.V.ALU.E: Post-Quantum RISC-V Custom ALU Extensions on Dilithium and Kyber
Konstantina Miteloudi, Joppe Bos, Olivier Bronchain, Björn Fay, Joost Renes
Implementation

This paper explores the challenges and potential solutions of implementing the recommended upcoming post-quantum cryptography standards (the CRYSTALS-Dilithium and CRYSTALS-Kyber algorithms) on resource constrained devices. The high computational cost of polynomial operations, fundamental to cryptography based on ideal lattices, presents significant challenges in an efficient implementation. This paper proposes a hardware/software co-design strategy using RISC-V extensions to optimize...

2023/1400 (PDF) Last updated: 2023-10-02
Efficient Updatable Public-Key Encryption from Lattices
Calvin Abou Haidar, Alain Passelègue, Damien Stehlé
Public-key cryptography

Updatable public key encryption has recently been introduced as a solution to achieve forward-security in the context of secure group messaging without hurting efficiency, but so far, no efficient lattice-based instantiation of this primitive is known. In this work, we construct the first LWE-based UPKE scheme with polynomial modulus-to-noise rate, which is CPA-secure in the standard model. At the core of our security analysis is a generalized reduction from the standard LWE problem to (a...

2023/1368 (PDF) Last updated: 2024-07-24
Towards post-quantum secure PAKE - A tight security proof for OCAKE in the BPR model
Nouri Alnahawi, Kathrin Hövelmanns, Andreas Hülsing, Silvia Ritsch, Alexander Wiesmaier
Cryptographic protocols

We revisit OCAKE (ACNS 23), a generic recipe that constructs password-based authenticated key exchange (PAKE) from key encapsulation mechanisms (KEMs), to allow instantiations with post-quantums KEM like KYBER. The ACNS23 paper left as an open problem to argue security against quantum attackers, with its security proof being in the universal composability (UC) framework. This is common for PAKE, however, at the time of this submission’s writing, it was not known how to prove (computational)...

2023/1340 (PDF) Last updated: 2023-09-12
Methods for Masking CRYSTALS-Kyber Against Side-Channel Attacks
Sıla ÖZEREN, Oğuz YAYLA

In the context of post-quantum secure algorithms like CRYSTALS-Kyber, the importance of protecting sensitive polynomial coefficients from side-channel attacks is increasingly recognized. Our research introduces two alternative masking methods to enhance the security of the compression function in Kyber through masking. Prior to this, the topic had been addressed by only one other research study. The "Double and Check" method integrates arithmetic sharing and symmetry adjustments, introducing...

2023/1334 (PDF) Last updated: 2023-09-07
A Generic Construction of Tightly Secure Password-based Authenticated Key Exchange
Jiaxin Pan, Runzhi Zeng
Public-key cryptography

We propose a generic construction of password-based authenticated key exchange (PAKE) from key encapsulation mechanisms (KEM). Assuming that the KEM is oneway secure against plaintext-checkable attacks (OW-PCA), we prove that our PAKE protocol is \textit{tightly secure} in the Bellare-Pointcheval-Rogaway model (EUROCRYPT 2000). Our tight security proofs require ideal ciphers and random oracles. The OW-PCA security is relatively weak and can be implemented tightly with the Diffie-Hellman...

2023/1333 (PDF) Last updated: 2023-09-07
Neutrosophic Boolean Function and Rejection Sampling in Post Quantum Cryptography
Shashi Kant Pandey
Attacks and cryptanalysis

The use of random seeds to a deterministic random bit generator to generate uniform random sampling has been applied multiple times in post-quantum algorithms. The finalists Dilithium and Kyber use SHAKE and AES to generate the random sequence at multiple stages of the algorithm. Here we characterize one of the sampleing techniques available in Dilithium for a random sequence of length 256 with the help of the neutrosophic Boolean function. The idea of the neutrosophic Boolean function came...

2023/1298 (PDF) Last updated: 2023-08-31
NEV: Faster and Smaller NTRU Encryption using Vector Decoding
Jiang Zhang, Dengguo Feng, Di Yan
Public-key cryptography

In this paper, we present NEV -- a faster and smaller NTRU Encryption using Vector decoding, which is provably IND-CPA secure in the standard model under the decisional NTRU and RLWE assumptions over the cyclotomic ring $R_q = \mathbb{Z}_q[X]/(X^n+1)$. Our main technique is a novel and non-trivial way to integrate a previously known plaintext encoding and decoding mechanism into the provably IND-CPA secure NTRU variant by Stehl\'e and Steinfeld (Eurocrypt 2011). Unlike the original NTRU...

2023/1220 (PDF) Last updated: 2024-05-26
Securing Lattice-Based KEMs with Code-Based Masking: A Theoretical Approach
Pierre-Augustin Berthet, Yoan Rougeolle, Cédric Tavernier, Jean-Luc Danger, Laurent Sauvage

The recent technological advances in Post-Quantum Cryptography (PQC) raise the questions of robust implementations of new asymmetric cryptographic primitives in today’s technology. This is the case for the lattice-based Module Lattice-Key Encapsulation Mechanism (ML-KEM) algorithm which is proposed by the NIST as the first standard for Key Encapsulation Mechanism (KEM), taking inspiration from CRYSTALS-Kyber. We have notably to make sure the ML-KEM implementation is resilient against...

2023/1194 (PDF) Last updated: 2023-08-06
HI-Kyber: A novel high-performance implementation scheme of Kyber based on GPU
Xinyi Ji, Jiankuo Dong, Pinchang Zhang, Deng Tonggui, Hua Jiafeng, Fu Xiao
Implementation

CRYSTALS-Kyber, as the only public key encryption (PKE) algorithm selected by the National Institute of Standards and Technology (NIST) in the third round, is considered one of the most promising post-quantum cryptography (PQC) schemes. Lattice-based cryptography uses complex discrete alogarithm problems on lattices to build secure encryption and decryption systems to resist attacks from quantum computing. Performance is an important bottleneck affecting the promotion of post quantum...

2023/1184 (PDF) Last updated: 2023-10-19
STAMP-Single Trace Attack on M-LWE Pointwise Multiplication in Kyber
Bolin Yang, Prasanna Ravi, Fan Zhang, Ao Shen, Shivam Bhasin
Attacks and cryptanalysis

In this work, we propose a novel single-trace key recovery attack targeting side-channel leakage from the key-generation and encryption procedure of Kyber KEM. Our attack exploits the inherent nature of the Module-Learning With Errors (Module-LWE) problem used in Kyber KEM. We demonstrate that the inherent reliance of Kyber KEM on the Module-LWE problem results in higher number of repeated and secret key-related computations, referred to as STAMPs appearing on a single side channel trace,...

2023/1148 (PDF) Last updated: 2023-07-25
Post Quantum Fuzzy Stealth Signatures and Applications
Sihang Pu, Sri AravindaKrishnan Thyagarajan, Nico Döttling, Lucjan Hanzlik
Public-key cryptography

Private payments in blockchain-based cryptocurrencies have been a topic of research, both academic and industrial, ever since the advent of Bitcoin. Stealth address payments were proposed as a solution to improve payment privacy for users and are, in fact, deployed in several major cryptocurrencies today. The mechanism lets users receive payments so that none of these payments are linkable to each other or the recipient. Currently known stealth address mechanisms either (1) are insecure in...

2023/1084 (PDF) Last updated: 2023-07-12
A Side-Channel Attack on a Masked Hardware Implementation of CRYSTALS-Kyber
Yanning Ji, Elena Dubrova
Attacks and cryptanalysis

NIST has recently selected CRYSTALS-Kyber as a new public key encryption and key establishment algorithm to be standardized. This makes it important to evaluate the resistance of CRYSTALS-Kyber implementations to side-channel attacks. Software implementations of CRYSTALS-Kyber have already been thoroughly analysed. The discovered vulnerabilities helped improve the subsequently released versions and promoted stronger countermeasures against side-channel attacks. In this paper, we present the...

2023/1046 (PDF) Last updated: 2024-02-06
Zero-Value Filtering for Accelerating Non-Profiled Side-Channel Attack on Incomplete NTT based Implementations of Lattice-based Cryptography
Tolun Tosun, Erkay Savas
Attacks and cryptanalysis

Lattice-based cryptographic schemes such as Crystals-Kyber and Dilithium are post-quantum algorithms selected to be standardized by NIST as they are considered to be secure against quantum computing attacks. The multiplication in polynomial rings is the most time-consuming operation in many lattice-based cryptographic schemes, which is also subject to side-channel attacks. While NTT-based polynomial multiplication is almost a norm in a wide range of implementations, a relatively new method,...

2023/1042 (PDF) Last updated: 2023-07-04
A Side-Channel Attack on a Bitsliced Higher-Order Masked CRYSTALS-Kyber Implementation
Ruize Wang, Martin Brisfors, Elena Dubrova
Attacks and cryptanalysis

In response to side-channel attacks on masked implementations of post-quantum cryptographic algorithms, a new bitsliced higher-order masked implementation of CRYSTALS-Kyber has been presented at CHES'2022. The bitsliced implementations are typically more difficult to break by side-channel analysis because they execute a single instruction across multiple bits in parallel. However, in this paper, we reveal new vulnerabilities in the masked Boolean to arithmetic conversion procedure of this...

2023/1038 (PDF) Last updated: 2023-07-05
PQC Cloudization: Rapid Prototyping of Scalable NTT/INTT Architecture to Accelerate Kyber
Mojtaba Bisheh-Niasar, Daniel Lo, Anjana Parthasarathy, Blake Pelton, Bharat Pillilli, Bryan Kelly
Public-key cryptography

The advent of quantum computers poses a serious challenge to the security of cloud infrastructures and services, as they can potentially break the existing public-key cryptosystems, such as Rivest–Shamir–Adleman (RSA) and Elliptic Curve Cryptography (ECC). Even though the gap between today’s quantum computers and the threats they pose to current public-key cryptography is large, the cloud landscape should act proactively and initiate the transition to the post-quantum era as early as...

2023/887 (PDF) Last updated: 2023-06-09
Pairwise and Parallel: Enhancing the Key Mismatch Attacks on Kyber and Beyond
Mingyao Shao, Yuejun Liu, Yongbin Zhou
Public-key cryptography

Key mismatch attacks resilience is a great concern for KEMs in the NIST PQC standardization process. In key mismatch attacks, the adversary aims to recover the reused key by sending special form of ciphertexts to the target party and observing whether the shared key matches his guesses or not. In this paper, we propose pairwise-parallel key mismatch attacks on Kyber and other lattice-based KEMs. The strategy is to recover partial information about multiple secret key coefficient-pairs in...

2023/836 (PDF) Last updated: 2023-09-19
Covercrypt: an Efficient Early-Abort KEM for Hidden Access Policies with Traceability from the DDH and LWE
Théophile Brézot, Paola de Perthuis, David Pointcheval
Cryptographic protocols

Attribute-Based Encryption (ABE) is a very attractive primitive to limit access according to specific rights. While very powerful instantiations have been offered, under various computational assumptions, they rely on either classical or post-quantum problems, and are quite intricate to implement, generally resulting in poor efficiency; the construction we offer results in a powerful efficiency gap with respect to existing solutions. With the threat of quantum computers, post-quantum...

2023/797 (PDF) Last updated: 2024-03-08
Entropy Suffices for Guessing Most Keys
Timo Glaser, Alexander May, Julian Nowakowski
Attacks and cryptanalysis

Historically, most cryptosystems chose their keys uniformly at random. This is in contrast to modern (lattice-based) schemes, which typically sample their keys from more complex distributions $\mathcal{D}$, such as the discrete Gaussian or centered binomial distribution. It is well-known that any key drawn from the uniform distribution $\mathcal{U}$ can be guessed using at most $2^{\operatorname{H}(\mathcal{U})}$ key guesses, where $\operatorname{H}(\mathcal{U})$ denotes the entropy of...

2023/777 (PDF) Last updated: 2023-09-20
Too Many Hints - When LLL Breaks LWE
Alexander May, Julian Nowakowski
Attacks and cryptanalysis

All modern lattice-based schemes build on variants of the LWE problem. Information leakage of the LWE secret $\mathbf{s} \in \mathbb{Z}_q^n$ is usually modeled via so-called hints, i.e., inner products of $\mathbf{s}$ with some known vector. At Crypto`20, Dachman-Soled, Ducas, Gong and Rossi (DDGR) defined among other so-called perfect hints and modular hints. The trailblazing DDGR framework allows to integrate and combine hints successively into lattices, and estimates the resulting LWE...

2023/755 (PDF) Last updated: 2023-05-25
The security of Kyber's FO-transform
Manuel Barbosa, Andreas Hülsing
Public-key cryptography

In this short note we give another direct proof for the variant of the FO transform used by Kyber in the QROM. At PKC'23 Maram & Xagawa gave the first direct proof which does not require the indirection via FO with explicit rejection, thereby avoiding either a non-tight bound, or the necessity to analyze the failure probability in a new setting. However, on the downside their proof produces a bound that incurs an additive collision bound term. We explore a different approach for a direct...

2023/739 (PDF) Last updated: 2023-09-13
SMAUG: Pushing Lattice-based Key Encapsulation Mechanisms to the Limits
Jung Hee Cheon, Hyeongmin Choe, Dongyeon Hong, MinJune Yi
Public-key cryptography

Recently, NIST has announced Kyber, a lattice-based key encapsulation mechanism (KEM), as a post-quantum standard. However, it is not the most efficient scheme among the NIST's KEM finalists. Saber enjoys more compact sizes and faster performance, and Mera et al. (TCHES '21) further pushed its efficiency, proposing a shorter KEM, Sable. As KEM are frequently used on the Internet, such as in TLS protocols, it is essential to achieve high efficiency while maintaining sufficient security....

2023/708 (PDF) Last updated: 2023-05-17
Kyber terminates
Manuel Barbosa, Peter Schwabe
Public-key cryptography

The key generation of the lattice-based key-encapsulation mechanism CRYSTALS-Kyber (or short, just Kyber) involves a rejection-sampling routine to produce coefficients modulo $q=3329$ that look uniformly random. The input to this rejection sampling is output of the SHAKE-128 extendable output function (XOF). If this XOF is modelled as a random oracle with infinite output length, it is easy to see that Kyber terminates with probability 1; also, in this model, for any upper bound on the...

2023/686 (PDF) Last updated: 2024-08-13
Efficient Accelerator for NTT-based Polynomial Multiplication
Raziyeh Salarifard, Hadi Soleimany
Implementation

The Number Theoretic Transform (NTT) is used to efficiently execute polynomial multiplication. It has become an important part of lattice-based post-quantum methods and the subsequent generation of standard cryptographic systems. However, implementing post-quantum schemes is challenging since they rely on intricate structures. This paper demonstrates how to develop a high-speed NTT multiplier highly optimized for FPGAs with few logical resources. We describe a novel architecture for NTT...

2023/582 (PDF) Last updated: 2023-06-23
New NTRU Records with Improved Lattice Bases
Elena Kirshanova, Alexander May, Julian Nowakowski
Attacks and cryptanalysis

The original NTRU cryptosystem from 1998 can be considered the starting point of the great success story of lattice-based cryptography. Modern NTRU versions like NTRU-HPS and NTRU-HRSS are round-3 finalists in NIST's selection process, and also Crystals-Kyber and especially Falcon are heavily influenced by NTRU. Coppersmith and Shamir proposed to attack NTRU via lattice basis reduction, and variations of the Coppersmith-Shamir lattice have been successfully applied to solve official NTRU...

2023/551 (PDF) Last updated: 2024-04-05
Breaking DPA-protected Kyber via the pair-pointwise multiplication
Estuardo Alpirez Bock, Gustavo Banegas, Chris Brzuska, Łukasz Chmielewski, Kirthivaasan Puniamurthy, Milan Šorf
Attacks and cryptanalysis

We introduce a novel template attack for secret key recovery in Kyber, leveraging side-channel information from polynomial multiplication during decapsulation. Conceptually, our attack exploits that Kyber's incomplete number-theoretic transform (NTT) causes each secret coefficient to be used multiple times, unlike when performing a complete NTT. Our attack is a single trace \emph{known} ciphertext attack that avoids machine-learning techniques and instead relies on correlation-matching...

2023/470 (PDF) Last updated: 2024-01-22
GeT a CAKE: Generic Transformations from Key Encaspulation Mechanisms to Password Authenticated Key Exchanges
Hugo Beguinet, Céline Chevalier, David Pointcheval, Thomas Ricosset, Mélissa Rossi
Public-key cryptography

Password Authenticated Key Exchange (PAKE) have become a key building block in many security products as they provide interesting efficiency/security trade-offs. Indeed, a PAKE allows to dispense with the heavy public key infrastructures and its efficiency and portability make it well suited for applications such as Internet of Things or e-passports. With the emerging quantum threat and the effervescent development of post-quantum public key algorithms in the last five years, one would...

2023/419 (PDF) Last updated: 2023-03-31
Asynchronous Remote Key Generation for Post-Quantum Cryptosystems from Lattices
Nick Frymann, Daniel Gardham, Mark Manulis
Cryptographic protocols

Asynchronous Remote Key Generation (ARKG), introduced by Frymann et al. at CCS 2020, allows for the generation of unlinkable public keys by third parties, for which corresponding private keys may be later learned only by the key pair's legitimate owner. These key pairs can then be used in common public-key cryptosystems, including signatures, PKE, KEMs, and schemes supporting delegation, such as proxy signatures. The only known instance of ARKG generates discrete-log-based keys. In this...

2023/294 (PDF) Last updated: 2023-02-27
SCA-LDPC: A Code-Based Framework for Key-Recovery Side-Channel Attacks on Post-Quantum Encryption Schemes
Qian Guo, Denis Nabokov, Alexander Nilsson, Thomas Johansson
Attacks and cryptanalysis

Whereas theoretical attacks on standardized crypto primitives rarely lead to actual practical attacks, the situation is different for side-channel attacks. Improvements in the performance of side-channel attacks are of utmost importance. In this paper, we propose a framework to be used in key-recovery side-channel attacks on CCA-secure post-quantum encryption schemes. The basic idea is to construct chosen ciphertext queries to a plaintext checking oracle that collects information on a...

2023/243 (PDF) Last updated: 2024-08-25
Memory-Efficient Attacks on Small LWE Keys
Andre Esser, Arindam Mukherjee, Santanu Sarkar
Public-key cryptography

Combinatorial attacks on small max norm LWE keys suffer enormous memory requirements, which render them inefficient in realistic attack scenarios. Therefore, more memory-efficient substitutes for these algorithms are needed. In this work, we provide new combinatorial algorithms for recovering small max norm LWE secrets outperforming previous approaches whenever the available memory is limited. We provide analyses of our algorithms for secret key distributions of current NTRU, Kyber and...

2023/222 (PDF) Last updated: 2023-02-18
A Lightweight Identification Protocol Based on Lattices
Samed Düzlü, Juliane Krämer, Thomas Pöppelmann, Patrick Struck
Cryptographic protocols

In this work we present a lightweight lattice-based identification protocol based on the CPA-secured public key encryption scheme Kyber. It is designed as a replacement for existing classical ECC- or RSA-based identification protocols in IoT, smart card applications, or for device authentication. The proposed protocol is simple, efficient, and implementations are supposed to be easy to harden against side-channel attacks. Compared to standard constructions for identification protocols based...

2023/215 (PDF) Last updated: 2023-04-24
Formally verifying Kyber Episode IV: Implementation Correctness
José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Benjamin Grégoire, Vincent Laporte, Jean-Christophe Léchenet, Tiago Oliveira, Hugo Pacheco, Miguel Quaresma, Peter Schwabe, Antoine Séré, Pierre-Yves Strub
Implementation

In this paper we present the first formally verified implementations of Kyber and, to the best of our knowledge, the first such implementations of any post-quantum cryptosystem. We give a (readable) formal specification of Kyber in the EasyCrypt proof assistant, which is syntactically very close to the pseudocode description of the scheme as given in the most recent version of the NIST submission. We present high-assurance open-source implementations of Kyber written in the Jasmin language,...

2023/158 (PDF) Last updated: 2023-04-14
Enabling FrodoKEM on Embedded Devices
Joppe W. Bos, Olivier Bronchain, Frank Custers, Joost Renes, Denise Verbakel, Christine van Vredendaal
Implementation

FrodoKEM is a lattice-based Key Encapsulation Mechanism (KEM) based on unstructured lattices. From a security point of view this makes it a conservative option to achieve post-quantum security, hence why it is favored by several European authorities (e.g., German BSI and French ANSSI). Relying on unstructured instead of structured lattices (e.g., CRYSTALS-Kyber) comes at the cost of additional memory usage, which is particularly critical for embedded security applications such as smart...

2023/139 (PDF) Last updated: 2023-05-11
Improved Estimation of Key Enumeration with Applications to Solving LWE
Alessandro Budroni, Erik Mårtensson
Attacks and cryptanalysis

In post-quantum cryptography (PQC), Learning With Errors (LWE) is one of the dominant underlying mathematical problems. For example, in NIST's PQC standardization process, the Key Encapsulation Mechanism (KEM) protocol chosen for standardization was Kyber, an LWE-based scheme. Recently the dual attack surpassed the primal attack in terms of concrete complexity for solving the underlying LWE problem for multiple cryptographic schemes, including Kyber. The dual attack consists of a reduction...

2023/105 (PDF) Last updated: 2023-01-27
Gate-Level Masking of Streamlined NTRU Prime Decapsulation in Hardware
Georg Land, Adrian Marotzke, Jan Richter-Brockmann, Tim Güneysu
Implementation

Streamlined NTRU Prime is a lattice-based Key Encapsulation Mechanism (KEM) that is, together with X25519, currently the default algorithm in OpenSSH 9. Being based on lattice assumptions, it is assumed to be secure also against attackers with access to large-scale quantum computers. While Post-Quantum Cryptography (PQC) schemes have been subject to extensive research in the recent years, challenges remain with respect to protection mechanisms against attackers that have additional...

Note: In order to protect the privacy of readers, eprint.iacr.org does not use cookies or embedded third party content.